
NAME
bus_space, bus_space_barrier, bus_space_copy_region_1, bus_space_copy_region_2,

bus_space_copy_region_4, bus_space_copy_region_8, bus_space_copy_region_stream_1,

bus_space_copy_region_stream_2, bus_space_copy_region_stream_4,

bus_space_copy_region_stream_8, bus_space_free, bus_space_map, bus_space_peek_1,

bus_space_peek_2, bus_space_peek_4, bus_space_peek_8, bus_space_poke_1, bus_space_poke_2,

bus_space_poke_4, bus_space_poke_8, bus_space_read_1, bus_space_read_2, bus_space_read_4,

bus_space_read_8, bus_space_read_multi_1, bus_space_read_multi_2, bus_space_read_multi_4,

bus_space_read_multi_8, bus_space_read_multi_stream_1, bus_space_read_multi_stream_2,

bus_space_read_multi_stream_4, bus_space_read_multi_stream_8, bus_space_read_region_1,

bus_space_read_region_2, bus_space_read_region_4, bus_space_read_region_8,

bus_space_read_region_stream_1, bus_space_read_region_stream_2, bus_space_read_region_stream_4,

bus_space_read_region_stream_8, bus_space_read_stream_1, bus_space_read_stream_2,

bus_space_read_stream_4, bus_space_read_stream_8, bus_space_set_multi_1, bus_space_set_multi_2,

bus_space_set_multi_4, bus_space_set_multi_8, bus_space_set_multi_stream_1,

bus_space_set_multi_stream_2, bus_space_set_multi_stream_4, bus_space_set_multi_stream_8,

bus_space_set_region_1, bus_space_set_region_2, bus_space_set_region_4, bus_space_set_region_8,

bus_space_set_region_stream_1, bus_space_set_region_stream_2, bus_space_set_region_stream_4,

bus_space_set_region_stream_8, bus_space_subregion, bus_space_unmap, bus_space_write_1,

bus_space_write_2, bus_space_write_4, bus_space_write_8, bus_space_write_multi_1,

bus_space_write_multi_2, bus_space_write_multi_4, bus_space_write_multi_8,

bus_space_write_multi_stream_1, bus_space_write_multi_stream_2, bus_space_write_multi_stream_4,

bus_space_write_multi_stream_8, bus_space_write_region_1, bus_space_write_region_2,

bus_space_write_region_4, bus_space_write_region_8, bus_space_write_region_stream_1,

bus_space_write_region_stream_2, bus_space_write_region_stream_4,

bus_space_write_region_stream_8, bus_space_write_stream_1, bus_space_write_stream_2,

bus_space_write_stream_4, bus_space_write_stream_8 - bus space manipulation functions

SYNOPSIS
#include <machine/bus.h>

int

bus_space_map(bus_space_tag_t space, bus_addr_t address, bus_size_t size, int flags,

bus_space_handle_t *handlep);

void

bus_space_unmap(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t size);

int

bus_space_subregion(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



bus_size_t size, bus_space_handle_t *nhandlep);

int

bus_space_alloc(bus_space_tag_t space, bus_addr_t reg_start, bus_addr_t reg_end, bus_size_t size,

bus_size_t alignment, bus_size_t boundary, int flags, bus_addr_t *addrp,

bus_space_handle_t *handlep);

void

bus_space_free(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t size);

int

bus_space_peek_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t *datap);

int

bus_space_peek_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t *datap);

int

bus_space_peek_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t *datap);

int

bus_space_peek_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t *datap);

int

bus_space_poke_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t *datap);

int

bus_space_poke_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t *datap);

int

bus_space_poke_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t *datap);

int

bus_space_poke_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



uint8_t *datap);

uint8_t

bus_space_read_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset);

uint16_t

bus_space_read_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset);

uint32_t

bus_space_read_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset);

uint64_t

bus_space_read_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset);

uint8_t

bus_space_read_stream_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset);

uint16_t

bus_space_read_stream_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset);

uint32_t

bus_space_read_stream_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset);

uint64_t

bus_space_read_stream_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset);

void

bus_space_write_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t value);

void

bus_space_write_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint16_t value);

void

bus_space_write_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint32_t value);

void

bus_space_write_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



uint64_t value);

void

bus_space_write_stream_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t value);

void

bus_space_write_stream_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint16_t value);

void

bus_space_write_stream_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint32_t value);

void

bus_space_write_stream_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint64_t value);

void

bus_space_barrier(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

bus_size_t length, int flags);

void

bus_space_read_region_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t *datap, bus_size_t count);

void

bus_space_read_region_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint16_t *datap, bus_size_t count);

void

bus_space_read_region_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint32_t *datap, bus_size_t count);

void

bus_space_read_region_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint64_t *datap, bus_size_t count);

void

bus_space_read_region_stream_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



uint8_t *datap, bus_size_t count);

void

bus_space_read_region_stream_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint16_t *datap, bus_size_t count);

void

bus_space_read_region_stream_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint32_t *datap, bus_size_t count);

void

bus_space_read_region_stream_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint64_t *datap, bus_size_t count);

void

bus_space_write_region_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t *datap, bus_size_t count);

void

bus_space_write_region_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint16_t *datap, bus_size_t count);

void

bus_space_write_region_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint32_t *datap, bus_size_t count);

void

bus_space_write_region_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint64_t *datap, bus_size_t count);

void

bus_space_write_region_stream_1(bus_space_tag_t space, bus_space_handle_t handle,

bus_size_t offset, uint8_t *datap, bus_size_t count);

void

bus_space_write_region_stream_2(bus_space_tag_t space, bus_space_handle_t handle,

bus_size_t offset, uint16_t *datap, bus_size_t count);

void

bus_space_write_region_stream_4(bus_space_tag_t space, bus_space_handle_t handle,

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



bus_size_t offset, uint32_t *datap, bus_size_t count);

void

bus_space_write_region_stream_8(bus_space_tag_t space, bus_space_handle_t handle,

bus_size_t offset, uint64_t *datap, bus_size_t count);

void

bus_space_copy_region_1(bus_space_tag_t space, bus_space_handle_t srchandle, bus_size_t srcoffset,

bus_space_handle_t dsthandle, bus_size_t dstoffset, bus_size_t count);

void

bus_space_copy_region_2(bus_space_tag_t space, bus_space_handle_t srchandle, bus_size_t srcoffset,

bus_space_handle_t dsthandle, bus_size_t dstoffset, bus_size_t count);

void

bus_space_copy_region_4(bus_space_tag_t space, bus_space_handle_t srchandle, bus_size_t srcoffset,

bus_space_handle_t dsthandle, bus_size_t dstoffset, bus_size_t count);

void

bus_space_copy_region_8(bus_space_tag_t space, bus_space_handle_t srchandle, bus_size_t srcoffset,

bus_space_handle_t dsthandle, bus_size_t dstoffset, bus_size_t count);

void

bus_space_copy_region_stream_1(bus_space_tag_t space, bus_space_handle_t srchandle,

bus_size_t srcoffset, bus_space_handle_t dsthandle, bus_size_t dstoffset, bus_size_t count);

void

bus_space_copy_region_stream_2(bus_space_tag_t space, bus_space_handle_t srchandle,

bus_size_t srcoffset, bus_space_handle_t dsthandle, bus_size_t dstoffset, bus_size_t count);

void

bus_space_copy_region_stream_4(bus_space_tag_t space, bus_space_handle_t srchandle,

bus_size_t srcoffset, bus_space_handle_t dsthandle, bus_size_t dstoffset, bus_size_t count);

void

bus_space_copy_region_stream_8(bus_space_tag_t space, bus_space_handle_t srchandle,

bus_size_t srcoffset, bus_space_handle_t dsthandle, bus_size_t dstoffset, bus_size_t count);

void

bus_space_set_region_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



uint8_t value, bus_size_t count);

void

bus_space_set_region_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint16_t value, bus_size_t count);

void

bus_space_set_region_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint32_t value, bus_size_t count);

void

bus_space_set_region_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint64_t value, bus_size_t count);

void

bus_space_set_region_stream_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t value, bus_size_t count);

void

bus_space_set_region_stream_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint16_t value, bus_size_t count);

void

bus_space_set_region_stream_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint32_t value, bus_size_t count);

void

bus_space_set_region_stream_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint64_t value, bus_size_t count);

void

bus_space_read_multi_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t *datap, bus_size_t count);

void

bus_space_read_multi_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint16_t *datap, bus_size_t count);

void

bus_space_read_multi_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



uint32_t *datap, bus_size_t count);

void

bus_space_read_multi_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint64_t *datap, bus_size_t count);

void

bus_space_read_multi_stream_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t *datap, bus_size_t count);

void

bus_space_read_multi_stream_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint16_t *datap, bus_size_t count);

void

bus_space_read_multi_stream_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint32_t *datap, bus_size_t count);

void

bus_space_read_multi_stream_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint64_t *datap, bus_size_t count);

void

bus_space_write_multi_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t *datap, bus_size_t count);

void

bus_space_write_multi_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint16_t *datap, bus_size_t count);

void

bus_space_write_multi_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint32_t *datap, bus_size_t count);

void

bus_space_write_multi_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint64_t *datap, bus_size_t count);

void

bus_space_write_multi_stream_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



uint8_t *datap, bus_size_t count);

void

bus_space_write_multi_stream_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint16_t *datap, bus_size_t count);

void

bus_space_write_multi_stream_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint32_t *datap, bus_size_t count);

void

bus_space_write_multi_stream_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint64_t *datap, bus_size_t count);

void

bus_space_set_multi_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t value, bus_size_t count);

void

bus_space_set_multi_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint16_t value, bus_size_t count);

void

bus_space_set_multi_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint32_t value, bus_size_t count);

void

bus_space_set_multi_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint64_t value, bus_size_t count);

void

bus_space_set_multi_stream_1(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint8_t value, bus_size_t count);

void

bus_space_set_multi_stream_2(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint16_t value, bus_size_t count);

void

bus_space_set_multi_stream_4(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



uint32_t value, bus_size_t count);

void

bus_space_set_multi_stream_8(bus_space_tag_t space, bus_space_handle_t handle, bus_size_t offset,

uint64_t value, bus_size_t count);

DESCRIPTION
The bus_space functions exist to allow device drivers machine-independent access to bus memory and

register areas. All of the functions and types described in this document can be used by including the

<machine/bus.h> header file.

Many common devices are used on multiple architectures, but are accessed differently on each because

of architectural constraints. For instance, a device which is mapped in one system’s I/O space may be

mapped in memory space on a second system. On a third system, architectural limitations might change

the way registers need to be accessed (e.g. creating a non-linear register space). In some cases, a single

driver may need to access the same type of device in multiple ways in a single system or architecture.

The goal of the bus_space functions is to allow a single driver source file to manipulate a set of devices

on different system architectures, and to allow a single driver object file to manipulate a set of devices

on multiple bus types on a single architecture.

Not all buses have to implement all functions described in this document, though that is encouraged if

the operations are logically supported by the bus. Unimplemented functions should cause compile-time

errors if possible.

All of the interface definitions described in this document are shown as function prototypes and

discussed as if they were required to be functions. Implementations are encouraged to implement

prototyped (type-checked) versions of these interfaces, but may implement them as macros if

appropriate. Machine-dependent types, variables, and functions should be marked clearly in

<machine/bus.h> to avoid confusion with the machine-independent types and functions, and, if possible,

should be given names which make the machine-dependence clear.

CONCEPTS AND GUIDELINES
Bus spaces are described by bus space tags, which can be created only by machine-dependent code. A

given machine may have several different types of bus space (e.g. memory space and I/O space), and

thus may provide multiple different bus space tags. Individual buses or devices on a machine may use

more than one bus space tag. For instance, ISA devices are given an ISA memory space tag and an ISA

I/O space tag. Architectures may have several different tags which represent the same type of space, for

instance because of multiple different host bus interface chipsets.

A range in bus space is described by a bus address and a bus size. The bus address describes the start of

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



the range in bus space. The bus size describes the size of the range in bytes. Buses which are not byte

addressable may require use of bus space ranges with appropriately aligned addresses and properly

rounded sizes.

Access to regions of bus space is facilitated by use of bus space handles, which are usually created by

mapping a specific range of a bus space. Handles may also be created by allocating and mapping a

range of bus space, the actual location of which is picked by the implementation within bounds specified

by the caller of the allocation function.

All of the bus space access functions require one bus space tag argument, at least one handle argument,

and at least one offset argument (a bus size). The bus space tag specifies the space, each handle

specifies a region in the space, and each offset specifies the offset into the region of the actual

location(s) to be accessed. Offsets are given in bytes, though buses may impose alignment constraints.

The offset used to access data relative to a given handle must be such that all of the data being accessed

is in the mapped region that the handle describes. Trying to access data outside that region is an error.

Because some architectures’ memory systems use buffering to improve memory and device access

performance, there is a mechanism which can be used to create "barriers" in the bus space read and write

stream. There are three types of barriers: read, write, and read/write. All reads started to the region

before a read barrier must complete before any reads after the read barrier are started. (The analogous

requirement is true for write barriers.) Read/write barriers force all reads and writes started before the

barrier to complete before any reads or writes after the barrier are started. Correctly-written drivers will

include all appropriate barriers, and assume only the read/write ordering imposed by the barrier

operations.

People trying to write portable drivers with the bus_space functions should try to make minimal

assumptions about what the system allows. In particular, they should expect that the system requires bus

space addresses being accessed to be naturally aligned (i.e., base address of handle added to offset is a

multiple of the access size), and that the system does alignment checking on pointers (i.e., pointer to

objects being read and written must point to properly-aligned data).

The descriptions of the bus_space functions given below all assume that they are called with proper

arguments. If called with invalid arguments or arguments that are out of range (e.g. trying to access data

outside of the region mapped when a given handle was created), undefined behaviour results. In that

case, they may cause the system to halt, either intentionally (via panic) or unintentionally (by causing a

fatal trap of by some other means) or may cause improper operation which is not immediately fatal.

Functions which return void or which return data read from bus space (i.e., functions which do not

obviously return an error code) do not fail. They could only fail if given invalid arguments, and in that

case their behaviour is undefined. Functions which take a count of bytes have undefined results if the

specified count is zero.

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



TYPES
Several types are defined in <machine/bus.h> to facilitate use of the bus_space functions by drivers.

bus_addr_t

The bus_addr_t type is used to describe bus addresses. It must be an unsigned integral type capable of

holding the largest bus address usable by the architecture. This type is primarily used when mapping

and unmapping bus space.

bus_size_t

The bus_size_t type is used to describe sizes of ranges in bus space. It must be an unsigned integral type

capable of holding the size of the largest bus address range usable on the architecture. This type is used

by virtually all of the bus_space functions, describing sizes when mapping regions and offsets into

regions when performing space access operations.

bus_space_tag_t

The bus_space_tag_t type is used to describe a particular bus space on a machine. Its contents are

machine-dependent and should be considered opaque by machine-independent code. This type is used

by all bus_space functions to name the space on which they are operating.

bus_space_handle_t

The bus_space_handle_t type is used to describe a mapping of a range of bus space. Its contents are

machine-dependent and should be considered opaque by machine-independent code. This type is used

when performing bus space access operations.

MAPPING AND UNMAPPING BUS SPACE
This section is specific to the NetBSD version of these functions and may or may not apply to the

FreeBSD version.

Bus space must be mapped before it can be used, and should be unmapped when it is no longer needed.

The bus_space_map() and bus_space_unmap() functions provide these capabilities.

Some drivers need to be able to pass a subregion of already-mapped bus space to another driver or

module within a driver. The bus_space_subregion() function allows such subregions to be created.

bus_space_map(space, address, size, flags, handlep)
The bus_space_map() function maps the region of bus space named by the space, address, and size

arguments. If successful, it returns zero and fills in the bus space handle pointed to by handlep with the

handle that can be used to access the mapped region. If unsuccessful, it will return non-zero and leave

the bus space handle pointed to by handlep in an undefined state.

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



The flags argument controls how the space is to be mapped. Supported flags include:

BUS_SPACE_MAP_CACHEABLE Try to map the space so that accesses can be cached and/or

prefetched by the system. If this flag is not specified, the

implementation should map the space so that it will not be cached

or prefetched.

This flag must have a value of 1 on all implementations for

backward compatibility.

BUS_SPACE_MAP_LINEAR Try to map the space so that its contents can be accessed linearly

via normal memory access methods (e.g. pointer dereferencing

and structure accesses). This is useful when software wants to do

direct access to a memory device, e.g. a frame buffer. If this flag

is specified and linear mapping is not possible, the

bus_space_map() call should fail. If this flag is not specified, the

system may map the space in whatever way is most convenient.

BUS_SPACE_MAP_NONPOSTED Try to map the space using non-posted device memory. This is to

support buses and devices where mapping with posted device

memory is unsupported or broken. This flag is currently only

available on arm64.

Not all combinations of flags make sense or are supported with all spaces. For instance,

BUS_SPACE_MAP_CACHEABLE may be meaningless when used on many systems’ I/O port spaces,

and on some systems BUS_SPACE_MAP_LINEAR without BUS_SPACE_MAP_CACHEABLE may

never work. When the system hardware or firmware provides hints as to how spaces should be mapped

(e.g. the PCI memory mapping registers’ "prefetchable" bit), those hints should be followed for

maximum compatibility. On some systems, requesting a mapping that cannot be satisfied (e.g.

requesting a non-cacheable mapping when the system can only provide a cacheable one) will cause the

request to fail.

Some implementations may keep track of use of bus space for some or all bus spaces and refuse to allow

duplicate allocations. This is encouraged for bus spaces which have no notion of slot-specific space

addressing, such as ISA, and for spaces which coexist with those spaces (e.g. PCI memory and I/O

spaces co-existing with ISA memory and I/O spaces).

Mapped regions may contain areas for which there is no device on the bus. If space in those areas is

accessed, the results are bus-dependent.

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



bus_space_unmap(space, handle, size)
The bus_space_unmap() function unmaps a region of bus space mapped with bus_space_map(). When

unmapping a region, the size specified should be the same as the size given to bus_space_map() when

mapping that region.

After bus_space_unmap() is called on a handle, that handle is no longer valid. (If copies were made of

the handle they are no longer valid, either.)

This function will never fail. If it would fail (e.g. because of an argument error), that indicates a

software bug which should cause a panic. In that case, bus_space_unmap() will never return.

bus_space_subregion(space, handle, offset, size, nhandlep)
The bus_space_subregion() function is a convenience function which makes a new handle to some

subregion of an already-mapped region of bus space. The subregion described by the new handle starts

at byte offset offset into the region described by handle, with the size give by size, and must be wholly

contained within the original region.

If successful, bus_space_subregion() returns zero and fills in the bus space handle pointed to by

nhandlep. If unsuccessful, it returns non-zero and leaves the bus space handle pointed to by nhandlep in

an undefined state. In either case, the handle described by handle remains valid and is unmodified.

When done with a handle created by bus_space_subregion(), the handle should be thrown away. Under

no circumstances should bus_space_unmap() be used on the handle. Doing so may confuse any

resource management being done on the space, and will result in undefined behaviour. When

bus_space_unmap() or bus_space_free() is called on a handle, all subregions of that handle become

invalid.

ALLOCATING AND FREEING BUS SPACE
This section is specific to the NetBSD version of these functions and may or may not apply to the

FreeBSD version.

Some devices require or allow bus space to be allocated by the operating system for device use. When

the devices no longer need the space, the operating system should free it for use by other devices. The

bus_space_alloc() and bus_space_free() functions provide these capabilities.

bus_space_alloc(space, reg_start, reg_end, size, alignment, boundary, flags, addrp, handlep)
The bus_space_alloc() function allocates and maps a region of bus space with the size given by size,

corresponding to the given constraints. If successful, it returns zero, fills in the bus address pointed to

by addrp with the bus space address of the allocated region, and fills in the bus space handle pointed to

by handlep with the handle that can be used to access that region. If unsuccessful, it returns non-zero

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



and leaves the bus address pointed to by addrp and the bus space handle pointed to by handlep in an

undefined state.

Constraints on the allocation are given by the reg_start, reg_end, alignment, and boundary parameters.

The allocated region will start at or after reg_start and end before or at reg_end. The alignment

constraint must be a power of two, and the allocated region will start at an address that is an even

multiple of that power of two. The boundary constraint, if non-zero, ensures that the region is allocated

so that first address in region / boundary has the same value as last address in region / boundary. If the

constraints cannot be met, bus_space_alloc() will fail. It is an error to specify a set of constraints that

can never be met (for example, size greater than boundary).

The flags parameter is the same as the like-named parameter to bus_space_map(), the same flag values

should be used, and they have the same meanings.

Handles created by bus_space_alloc() should only be freed with bus_space_free(). Trying to use

bus_space_unmap() on them causes undefined behaviour. The bus_space_subregion() function can be

used on handles created by bus_space_alloc().

bus_space_free(space, handle, size)
The bus_space_free() function unmaps and frees a region of bus space mapped and allocated with

bus_space_alloc(). When unmapping a region, the size specified should be the same as the size given to

bus_space_alloc() when allocating the region.

After bus_space_free() is called on a handle, that handle is no longer valid. (If copies were made of the

handle, they are no longer valid, either.)

This function will never fail. If it would fail (e.g. because of an argument error), that indicates a

software bug which should cause a panic. In that case, bus_space_free() will never return.

READING AND WRITING SINGLE DATA ITEMS
The simplest way to access bus space is to read or write a single data item. The bus_space_read_N()

and bus_space_write_N() families of functions provide the ability to read and write 1, 2, 4, and 8 byte

data items on buses which support those access sizes.

bus_space_read_1(space, handle, offset)

bus_space_read_2(space, handle, offset)

bus_space_read_4(space, handle, offset)

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



bus_space_read_8(space, handle, offset)
The bus_space_read_N() family of functions reads a 1, 2, 4, or 8 byte data item from the offset specified

by offset into the region specified by handle of the bus space specified by space. The location being

read must lie within the bus space region specified by handle.

For portability, the starting address of the region specified by handle plus the offset should be a multiple

of the size of data item being read. On some systems, not obeying this requirement may cause incorrect

data to be read, on others it may cause a system crash.

Read operations done by the bus_space_read_N() functions may be executed out of order with respect to

other pending read and write operations unless order is enforced by use of the bus_space_barrier()

function.

These functions will never fail. If they would fail (e.g. because of an argument error), that indicates a

software bug which should cause a panic. In that case, they will never return.

bus_space_write_1(space, handle, offset, value)

bus_space_write_2(space, handle, offset, value)

bus_space_write_4(space, handle, offset, value)

bus_space_write_8(space, handle, offset, value)
The bus_space_write_N() family of functions writes a 1, 2, 4, or 8 byte data item to the offset specified

by offset into the region specified by handle of the bus space specified by space. The location being

written must lie within the bus space region specified by handle.

For portability, the starting address of the region specified by handle plus the offset should be a multiple

of the size of data item being written. On some systems, not obeying this requirement may cause

incorrect data to be written, on others it may cause a system crash.

Write operations done by the bus_space_write_N() functions may be executed out of order with respect

to other pending read and write operations unless order is enforced by use of the bus_space_barrier()

function.

These functions will never fail. If they would fail (e.g. because of an argument error), that indicates a

software bug which should cause a panic. In that case, they will never return.

PROBING BUS SPACE FOR HARDWARE WHICH MAY NOT RESPOND
One problem with the bus_space_read_N() and bus_space_write_N() family of functions is that they

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



provide no protection against exceptions which can occur when no physical hardware or device responds

to the read or write cycles. In such a situation, the system typically would panic due to a kernel-mode

bus error. The bus_space_peek_N() and bus_space_poke_N() family of functions provide a mechanism

to handle these exceptions gracefully without the risk of crashing the system.

As with bus_space_read_N() and bus_space_write_N(), the peek and poke functions provide the ability

to read and write 1, 2, 4, and 8 byte data items on busses which support those access sizes. All of the

constraints specified in the descriptions of the bus_space_read_N() and bus_space_write_N() functions

also apply to bus_space_peek_N() and bus_space_poke_N().

In addition, explicit calls to the bus_space_barrier() function are not required as the implementation will

ensure all pending operations complete before the peek or poke operation starts. The implementation

will also ensure that the peek or poke operations complete before returning.

The return value indicates the outcome of the peek or poke operation. A return value of zero implies

that a hardware device is responding to the operation at the specified offset in the bus space. A non-zero

return value indicates that the kernel intercepted a hardware exception (e.g., bus error) when the peek or

poke operation was attempted. Note that some busses are incapable of generating exceptions when non-

existent hardware is accessed. In such cases, these functions will always return zero and the value of the

data read by bus_space_peek_N() will be unspecified.

Finally, it should be noted that at this time the bus_space_peek_N() and bus_space_poke_N() functions

are not re-entrant and should not, therefore, be used from within an interrupt service routine. This

constraint may be removed at some point in the future.

bus_space_peek_1(space, handle, offset, datap)

bus_space_peek_2(space, handle, offset, datap)

bus_space_peek_4(space, handle, offset, datap)

bus_space_peek_8(space, handle, offset, datap)

The bus_space_peek_N() family of functions cautiously read a 1, 2, 4, or 8 byte data item from the

offset specified by offset in the region specified by handle of the bus space specified by space. The data

item read is stored in the location pointed to by datap. It is permissible for datap to be NULL, in which

case the data item will be discarded after being read.

bus_space_poke_1(space, handle, offset, value)

bus_space_poke_2(space, handle, offset, value)

bus_space_poke_4(space, handle, offset, value)

bus_space_poke_8(space, handle, offset, value)

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



The bus_space_poke_N() family of functions cautiously write a 1, 2, 4, or 8 byte data item specified by

value to the offset specified by offset in the region specified by handle of the bus space specified by

space.

BARRIERS
In order to allow high-performance buffering implementations to avoid bus activity on every operation,

read and write ordering should be specified explicitly by drivers when necessary. The

bus_space_barrier() function provides that ability.

bus_space_barrier(space, handle, offset, length, flags)
The bus_space_barrier() function enforces ordering of bus space read and write operations for the

specified subregion (described by the offset and length parameters) of the region named by handle in the

space named by space.

The flags argument controls what types of operations are to be ordered. Supported flags are:

BUS_SPACE_BARRIER_READ Synchronize read operations.

BUS_SPACE_BARRIER_WRITE Synchronize write operations.

Those flags can be combined (or-ed together) to enforce ordering on both read and write operations.

All of the specified type(s) of operation which are done to the region before the barrier operation are

guaranteed to complete before any of the specified type(s) of operation done after the barrier.

Example: Consider a hypothetical device with two single-byte ports, one write-only input port (at offset

0) and a read-only output port (at offset 1). Operation of the device is as follows: data bytes are written

to the input port, and are placed by the device on a stack, the top of which is read by reading from the

output port. The sequence to correctly write two data bytes to the device then read those two data bytes

back would be:

/*

* t and h are the tag and handle for the mapped device’s

* space.

*/

bus_space_write_1(t, h, 0, data0);

bus_space_barrier(t, h, 0, 1, BUS_SPACE_BARRIER_WRITE); /* 1 */

bus_space_write_1(t, h, 0, data1);

bus_space_barrier(t, h, 0, 2,

BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE); /* 2 */

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



ndata1 = bus_space_read_1(t, h, 1);

bus_space_barrier(t, h, 1, 1, BUS_SPACE_BARRIER_READ); /* 3 */

ndata0 = bus_space_read_1(t, h, 1);

/* data0 == ndata0, data1 == ndata1 */

The first barrier makes sure that the first write finishes before the second write is issued, so that two

writes to the input port are done in order and are not collapsed into a single write. This ensures that the

data bytes are written to the device correctly and in order.

The second barrier makes sure that the writes to the output port finish before any of the reads to the

input port are issued, thereby making sure that all of the writes are finished before data is read. This

ensures that the first byte read from the device really is the last one that was written.

The third barrier makes sure that the first read finishes before the second read is issued, ensuring that

data is read correctly and in order.

The barriers in the example above are specified to cover the absolute minimum number of bus space

locations. It is correct (and often easier) to make barrier operations cover the device’s whole range of

bus space, that is, to specify an offset of zero and the size of the whole region.

REGION OPERATIONS
Some devices use buffers which are mapped as regions in bus space. Often, drivers want to copy the

contents of those buffers to or from memory, e.g. into mbufs which can be passed to higher levels of the

system or from mbufs to be output to a network. In order to allow drivers to do this as efficiently as

possible, the bus_space_read_region_N() and bus_space_write_region_N() families of functions are

provided.

Drivers occasionally need to copy one region of a bus space to another, or to set all locations in a region

of bus space to contain a single value. The bus_space_copy_region_N() family of functions and the

bus_space_set_region_N() family of functions allow drivers to perform these operations.

bus_space_read_region_1(space, handle, offset, datap, count)

bus_space_read_region_2(space, handle, offset, datap, count)

bus_space_read_region_4(space, handle, offset, datap, count)

bus_space_read_region_8(space, handle, offset, datap, count)
The bus_space_read_region_N() family of functions reads count 1, 2, 4, or 8 byte data items from bus

space starting at byte offset offset in the region specified by handle of the bus space specified by space

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



and writes them into the array specified by datap. Each successive data item is read from an offset 1, 2,

4, or 8 bytes after the previous data item (depending on which function is used). All locations being

read must lie within the bus space region specified by handle.

For portability, the starting address of the region specified by handle plus the offset should be a multiple

of the size of data items being read and the data array pointer should be properly aligned. On some

systems, not obeying these requirements may cause incorrect data to be read, on others it may cause a

system crash.

Read operations done by the bus_space_read_region_N() functions may be executed in any order. They

may also be executed out of order with respect to other pending read and write operations unless order is

enforced by use of the bus_space_barrier() function. There is no way to insert barriers between reads of

individual bus space locations executed by the bus_space_read_region_N() functions.

These functions will never fail. If they would fail (e.g. because of an argument error), that indicates a

software bug which should cause a panic. In that case, they will never return.

bus_space_write_region_1(space, handle, offset, datap, count)

bus_space_write_region_2(space, handle, offset, datap, count)

bus_space_write_region_4(space, handle, offset, datap, count)

bus_space_write_region_8(space, handle, offset, datap, count)
The bus_space_write_region_N() family of functions reads count 1, 2, 4, or 8 byte data items from the

array specified by datap and writes them to bus space starting at byte offset offset in the region specified

by handle of the bus space specified by space. Each successive data item is written to an offset 1, 2, 4,

or 8 bytes after the previous data item (depending on which function is used). All locations being

written must lie within the bus space region specified by handle.

For portability, the starting address of the region specified by handle plus the offset should be a multiple

of the size of data items being written and the data array pointer should be properly aligned. On some

systems, not obeying these requirements may cause incorrect data to be written, on others it may cause a

system crash.

Write operations done by the bus_space_write_region_N() functions may be executed in any order.

They may also be executed out of order with respect to other pending read and write operations unless

order is enforced by use of the bus_space_barrier() function. There is no way to insert barriers between

writes of individual bus space locations executed by the bus_space_write_region_N() functions.

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



These functions will never fail. If they would fail (e.g. because of an argument error), that indicates a

software bug which should cause a panic. In that case, they will never return.

bus_space_copy_region_1(space, srchandle, srcoffset, dsthandle, dstoffset, count)

bus_space_copy_region_2(space, srchandle, srcoffset, dsthandle, dstoffset, count)

bus_space_copy_region_4(space, srchandle, srcoffset, dsthandle, dstoffset, count)

bus_space_copy_region_8(space, srchandle, srcoffset, dsthandle, dstoffset, count)
The bus_space_copy_region_N() family of functions copies count 1, 2, 4, or 8 byte data items in bus

space from the area starting at byte offset srcoffset in the region specified by srchandle of the bus space

specified by space to the area starting at byte offset dstoffset in the region specified by dsthandle in the

same bus space. Each successive data item read or written has an offset 1, 2, 4, or 8 bytes after the

previous data item (depending on which function is used). All locations being read and written must lie

within the bus space region specified by their respective handles.

For portability, the starting addresses of the regions specified by the each handle plus its respective

offset should be a multiple of the size of data items being copied. On some systems, not obeying this

requirement may cause incorrect data to be copied, on others it may cause a system crash.

Read and write operations done by the bus_space_copy_region_N() functions may be executed in any

order. They may also be executed out of order with respect to other pending read and write operations

unless order is enforced by use of the bus_space_barrier() function. There is no way to insert barriers

between reads or writes of individual bus space locations executed by the bus_space_copy_region_N()

functions.

Overlapping copies between different subregions of a single region of bus space are handled correctly by

the bus_space_copy_region_N() functions.

These functions will never fail. If they would fail (e.g. because of an argument error), that indicates a

software bug which should cause a panic. In that case, they will never return.

bus_space_set_region_1(space, handle, offset, value, count)

bus_space_set_region_2(space, handle, offset, value, count)

bus_space_set_region_4(space, handle, offset, value, count)

bus_space_set_region_8(space, handle, offset, value, count)

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



The bus_space_set_region_N() family of functions writes the given value to count 1, 2, 4, or 8 byte data

items in bus space starting at byte offset offset in the region specified by handle of the bus space

specified by space. Each successive data item has an offset 1, 2, 4, or 8 bytes after the previous data

item (depending on which function is used). All locations being written must lie within the bus space

region specified by handle.

For portability, the starting address of the region specified by handle plus the offset should be a multiple

of the size of data items being written. On some systems, not obeying this requirement may cause

incorrect data to be written, on others it may cause a system crash.

Write operations done by the bus_space_set_region_N() functions may be executed in any order. They

may also be executed out of order with respect to other pending read and write operations unless order is

enforced by use of the bus_space_barrier() function. There is no way to insert barriers between writes of

individual bus space locations executed by the bus_space_set_region_N() functions.

These functions will never fail. If they would fail (e.g. because of an argument error), that indicates a

software bug which should cause a panic. In that case, they will never return.

READING AND WRITING A SINGLE LOCATION MULTIPLE TIMES
Some devices implement single locations in bus space which are to be read or written multiple times to

communicate data, e.g. some ethernet devices’ packet buffer FIFOs. In order to allow drivers to

manipulate these types of devices as efficiently as possible, the bus_space_read_multi_N(),

bus_space_set_multi_N(), and bus_space_write_multi_N() families of functions are provided.

bus_space_read_multi_1(space, handle, offset, datap, count)

bus_space_read_multi_2(space, handle, offset, datap, count)

bus_space_read_multi_4(space, handle, offset, datap, count)

bus_space_read_multi_8(space, handle, offset, datap, count)
The bus_space_read_multi_N() family of functions reads count 1, 2, 4, or 8 byte data items from bus

space at byte offset offset in the region specified by handle of the bus space specified by space and

writes them into the array specified by datap. Each successive data item is read from the same location

in bus space. The location being read must lie within the bus space region specified by handle.

For portability, the starting address of the region specified by handle plus the offset should be a multiple

of the size of data items being read and the data array pointer should be properly aligned. On some

systems, not obeying these requirements may cause incorrect data to be read, on others it may cause a

system crash.

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



Read operations done by the bus_space_read_multi_N() functions may be executed out of order with

respect to other pending read and write operations unless order is enforced by use of the

bus_space_barrier() function. Because the bus_space_read_multi_N() functions read the same bus space

location multiple times, they place an implicit read barrier between each successive read of that bus

space location.

These functions will never fail. If they would fail (e.g. because of an argument error), that indicates a

software bug which should cause a panic. In that case, they will never return.

bus_space_write_multi_1(space, handle, offset, datap, count)

bus_space_write_multi_2(space, handle, offset, datap, count)

bus_space_write_multi_4(space, handle, offset, datap, count)

bus_space_write_multi_8(space, handle, offset, datap, count)
The bus_space_write_multi_N() family of functions reads count 1, 2, 4, or 8 byte data items from the

array specified by datap and writes them into bus space at byte offset offset in the region specified by

handle of the bus space specified by space. Each successive data item is written to the same location in

bus space. The location being written must lie within the bus space region specified by handle.

For portability, the starting address of the region specified by handle plus the offset should be a multiple

of the size of data items being written and the data array pointer should be properly aligned. On some

systems, not obeying these requirements may cause incorrect data to be written, on others it may cause a

system crash.

Write operations done by the bus_space_write_multi_N() functions may be executed out of order with

respect to other pending read and write operations unless order is enforced by use of the

bus_space_barrier() function. Because the bus_space_write_multi_N() functions write the same bus

space location multiple times, they place an implicit write barrier between each successive write of that

bus space location.

These functions will never fail. If they would fail (e.g. because of an argument error), that indicates a

software bug which should cause a panic. In that case, they will never return.

bus_space_set_multi_1(space, handle, offset, value, count)

bus_space_set_multi_2(space, handle, offset, value, count)

bus_space_set_multi_4(space, handle, offset, value, count)

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



bus_space_set_multi_8(space, handle, offset, value, count)
The bus_space_set_multi_N() writes value into bus space at byte offset offset in the region specified by

handle of the bus space specified by space, count times. The location being written must lie within the

bus space region specified by handle.

For portability, the starting address of the region specified by handle plus the offset should be a multiple

of the size of data items being written and the data array pointer should be properly aligned. On some

systems, not obeying these requirements may cause incorrect data to be written, on others it may cause a

system crash.

Write operations done by the bus_space_set_multi_N() functions may be executed out of order with

respect to other pending read and write operations unless order is enforced by use of the

bus_space_barrier() function. Because the bus_space_set_multi_N() functions write the same bus space

location multiple times, they place an implicit write barrier between each successive write of that bus

space location.

These functions will never fail. If they would fail (e.g. because of an argument error), that indicates a

software bug which should cause a panic. In that case, they will never return.

STREAM FUNCTIONS
Most of the bus_space functions imply a host byte-order and a bus byte-order and take care of any

translation for the caller. In some cases, however, hardware may map a FIFO or some other memory

region for which the caller may want to use multi-word, yet untranslated access. Access to these types

of memory regions should be with the bus_space_*_stream_N() functions.

bus_space_read_stream_1()

bus_space_read_stream_2()

bus_space_read_stream_4()

bus_space_read_stream_8()

bus_space_read_multi_stream_1()

bus_space_read_multi_stream_2()

bus_space_read_multi_stream_4()

bus_space_read_multi_stream_8()

bus_space_read_region_stream_1()

bus_space_read_region_stream_2()

bus_space_read_region_stream_4()

bus_space_read_region_stream_8()

bus_space_write_stream_1()

bus_space_write_stream_2()

bus_space_write_stream_4()

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



bus_space_write_stream_8()

bus_space_write_multi_stream_1()

bus_space_write_multi_stream_2()

bus_space_write_multi_stream_4()

bus_space_write_multi_stream_8()

bus_space_write_region_stream_1()

bus_space_write_region_stream_2()

bus_space_write_region_stream_4()

bus_space_write_region_stream_8()

bus_space_copy_region_stream_1()

bus_space_copy_region_stream_2()

bus_space_copy_region_stream_4()

bus_space_copy_region_stream_8()

bus_space_set_multi_stream_1()

bus_space_set_multi_stream_2()

bus_space_set_multi_stream_4()

bus_space_set_multi_stream_8()

bus_space_set_region_stream_1()

bus_space_set_region_stream_2()

bus_space_set_region_stream_4()

bus_space_set_region_stream_8()

These functions are defined just as their non-stream counterparts, except that they provide no byte-order

translation.

COMPATIBILITY
The current NetBSD version of the bus_space interface specification differs slightly from the original

specification that came into wide use and FreeBSD adopted. A few of the function names and

arguments have changed for consistency and increased functionality.

SEE ALSO
bus_dma(9)

HISTORY
The bus_space functions were introduced in a different form (memory and I/O spaces were accessed via

different sets of functions) in NetBSD 1.2. The functions were merged to work on generic "spaces"

early in the NetBSD 1.3 development cycle, and many drivers were converted to use them. This

document was written later during the NetBSD 1.3 development cycle, and the specification was

updated to fix some consistency problems and to add some missing functionality.

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6



The manual page was then adapted to the version of the interface that FreeBSD imported for the CAM

SCSI drivers, plus subsequent evolution. The FreeBSD bus_space version was imported in

FreeBSD 3.0.

AUTHORS
The bus_space interfaces were designed and implemented by the NetBSD developer community.

Primary contributors and implementors were Chris Demetriou, Jason Thorpe, and Charles Hannum, but

the rest of the NetBSD developers and the user community played a significant role in development.

Justin Gibbs ported these interfaces to FreeBSD.

Chris Demetriou wrote this manual page.

Warner Losh modified it for the FreeBSD implementation.

BUGS
This manual may not completely and accurately document the interface, and many parts of the interface

are unspecified.

BUS_SPACE(9) FreeBSD Kernel Developer’s Manual BUS_SPACE(9)

FreeBSD 14.0-RELEASE-p6 May 1, 2021 FreeBSD 14.0-RELEASE-p6


