
NAME
bus_map_resource, bus_unmap_resource, resource_init_map_request - map or unmap an active resource

SYNOPSIS
#include <sys/param.h>
#include <sys/bus.h>

#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>

int

bus_map_resource(device_t dev, int type, struct resource *r, struct resource_map_request *args,

struct resource_map *map);

int

bus_unmap_resource(device_t dev, int type, struct resource *r, struct resource_map *map);

void

resource_init_map_request(struct resource_map_request *args);

DESCRIPTION
These functions create or destroy a mapping of a previously activated resource. Mappings permit CPU

access to the resource via the bus_space(9) API.

The arguments are as follows:

dev The device that owns the resource.

type The type of resource to map. It is one of:

SYS_RES_IOPORT for I/O ports

SYS_RES_MEMORY for I/O memory

r A pointer to the struct resource returned by bus_alloc_resource(9).

args A set of optional properties to apply when creating a mapping. This argument can be set to

NULL to request a mapping of the entire resource with the default properties.

map The resource mapping to create or destroy.

BUS_MAP_RESOURCE(9) FreeBSD Kernel Developer’s Manual BUS_MAP_RESOURCE(9)

FreeBSD 14.0-RELEASE-p11 February 5, 2018 FreeBSD 14.0-RELEASE-p11



Resource Mappings
Resource mappings are described by a struct resource_map object. This structure contains a

bus_space(9) tag and handle in the r_bustag and r_bushandle members that can be used for CPU access

to the mapping. The structure also contains a r_vaddr member which contains the virtual address of the

mapping if one exists.

The wrapper API for struct resource objects described in bus_activate_resource(9) can also be used with

struct resource_map. For example, a pointer to a mapping object can be passed as the first argument to

bus_read_4(). This wrapper API is preferred over using the r_bustag and r_bushandle members directly.

Optional Mapping Properties
The struct resource_map_request object passed in args can be used to specify optional properties of a

mapping. The structure must be initialized by invoking resource_init_map_request(). Properties are

then specified by setting one or more of these members:

offset, length

These two members specify a region of the resource to map. By default a mapping is created for

the entire resource. The offset is relative to the start of the resource.

memattr

Specifies a memory attribute to use when mapping the resource. By default memory mappings

use the VM_MEMATTR_UNCACHEABLE attribute.

RETURN VALUES
Zero is returned on success, otherwise an error is returned.

EXAMPLES
This maps a PCI memory BAR with the write-combining memory attribute and reads the first 32-bit

word:

struct resource *r;

struct resource_map map;

struct resource_map_request req;

uint32_t val;

int rid;

rid = PCIR_BAR(0);

r = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE |

RF_UNMAPPED);

resource_init_map_request(&req);

BUS_MAP_RESOURCE(9) FreeBSD Kernel Developer’s Manual BUS_MAP_RESOURCE(9)

FreeBSD 14.0-RELEASE-p11 February 5, 2018 FreeBSD 14.0-RELEASE-p11



req.memattr = VM_MEMATTR_WRITE_COMBINING;

bus_map_resource(dev, SYS_RES_MEMORY, r, &req, &map);

val = bus_read_4(&map, 0);

SEE ALSO
bus_activate_resource(9), bus_alloc_resource(9), bus_space(9), device(9), driver(9)

AUTHORS
This manual page was written by John Baldwin <jhb@FreeBSD.org>.

BUS_MAP_RESOURCE(9) FreeBSD Kernel Developer’s Manual BUS_MAP_RESOURCE(9)

FreeBSD 14.0-RELEASE-p11 February 5, 2018 FreeBSD 14.0-RELEASE-p11


