
NAME
callout_active, callout_deactivate, callout_async_drain, callout_drain, callout_init, callout_init_mtx,

callout_init_rm, callout_init_rw, callout_pending, callout_reset, callout_reset_curcpu, callout_reset_on,

callout_reset_sbt, callout_reset_sbt_curcpu, callout_reset_sbt_on, callout_schedule,

callout_schedule_curcpu, callout_schedule_on, callout_schedule_sbt, callout_schedule_sbt_curcpu,

callout_schedule_sbt_on, callout_stop, callout_when - execute a function after a specified length of time

SYNOPSIS
#include <sys/types.h>
#include <sys/callout.h>

typedef void callout_func_t (void *);

int

callout_active(struct callout *c);

void

callout_deactivate(struct callout *c);

int

callout_async_drain(struct callout *c, callout_func_t *drain);

int

callout_drain(struct callout *c);

void

callout_init(struct callout *c, int mpsafe);

void

callout_init_mtx(struct callout *c, struct mtx *mtx, int flags);

void

callout_init_rm(struct callout *c, struct rmlock *rm, int flags);

void

callout_init_rw(struct callout *c, struct rwlock *rw, int flags);

int

callout_pending(struct callout *c);

int

CALLOUT(9) FreeBSD Kernel Developer’s Manual CALLOUT(9)

FreeBSD 14.0-RELEASE-p6 September 1, 2021 FreeBSD 14.0-RELEASE-p6



callout_reset(struct callout *c, int ticks, callout_func_t *func, void *arg);

int

callout_reset_curcpu(struct callout *c, int ticks, callout_func_t *func, void *arg);

int

callout_reset_on(struct callout *c, int ticks, callout_func_t *func, void *arg, int cpu);

int

callout_reset_sbt(struct callout *c, sbintime_t sbt, sbintime_t pr, callout_func_t *func, void *arg,

int flags);

int

callout_reset_sbt_curcpu(struct callout *c, sbintime_t sbt, sbintime_t pr, callout_func_t *func, void *arg,

int flags);

int

callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t pr, callout_func_t *func, void *arg,

int cpu, int flags);

int

callout_schedule(struct callout *c, int ticks);

int

callout_schedule_curcpu(struct callout *c, int ticks);

int

callout_schedule_on(struct callout *c, int ticks, int cpu);

int

callout_schedule_sbt(struct callout *c, sbintime_t sbt, sbintime_t pr, int flags);

int

callout_schedule_sbt_curcpu(struct callout *c, sbintime_t sbt, sbintime_t pr, int flags);

int

callout_schedule_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t pr, int cpu, int flags);

int

callout_stop(struct callout *c);

CALLOUT(9) FreeBSD Kernel Developer’s Manual CALLOUT(9)

FreeBSD 14.0-RELEASE-p6 September 1, 2021 FreeBSD 14.0-RELEASE-p6



sbintime_t

callout_when(sbintime_t sbt, sbintime_t precision, int flags, sbintime_t *sbt_res,

sbintime_t *precision_res);

DESCRIPTION
The callout API is used to schedule a call to an arbitrary function at a specific time in the future.

Consumers of this API are required to allocate a callout structure (struct callout) for each pending

function invocation. This structure stores state about the pending function invocation including the

function to be called and the time at which the function should be invoked. Pending function calls can

be cancelled or rescheduled to a different time. In addition, a callout structure may be reused to

schedule a new function call after a scheduled call is completed.

Callouts only provide a single-shot mode. If a consumer requires a periodic timer, it must explicitly

reschedule each function call. This is normally done by rescheduling the subsequent call within the

called function.

Callout functions must not sleep. They may not acquire sleepable locks, wait on condition variables,

perform blocking allocation requests, or invoke any other action that might sleep.

Each callout structure must be initialized by callout_init(), callout_init_mtx(), callout_init_rm(), or

callout_init_rw() before it is passed to any of the other callout functions. The callout_init() function

initializes a callout structure in c that is not associated with a specific lock. If the mpsafe argument is

zero, the callout structure is not considered to be "multi-processor safe"; and the Giant lock will be

acquired before calling the callout function and released when the callout function returns.

The callout_init_mtx(), callout_init_rm(), and callout_init_rw() functions initialize a callout structure in

c that is associated with a specific lock. The lock is specified by the mtx, rm, or rw parameter. The

associated lock must be held while stopping or rescheduling the callout. The callout subsystem acquires

the associated lock before calling the callout function and releases it after the function returns. If the

callout was cancelled while the callout subsystem waited for the associated lock, the callout function is

not called, and the associated lock is released. This ensures that stopping or rescheduling the callout will

abort any previously scheduled invocation.

A sleepable read-mostly lock (one initialized with the RM_SLEEPABLE flag) may not be used with

callout_init_rm(). Similarly, other sleepable lock types such as sx(9) and lockmgr(9) cannot be used

with callouts because sleeping is not permitted in the callout subsystem.

These flags may be specified for callout_init_mtx(), callout_init_rm(), or callout_init_rw():

CALLOUT_RETURNUNLOCKED The callout function will release the associated lock itself, so the

CALLOUT(9) FreeBSD Kernel Developer’s Manual CALLOUT(9)

FreeBSD 14.0-RELEASE-p6 September 1, 2021 FreeBSD 14.0-RELEASE-p6



callout subsystem should not attempt to unlock it after the callout

function returns.

CALLOUT_SHAREDLOCK The lock is only acquired in read mode when running the callout

handler. This flag is ignored by callout_init_mtx().

The function callout_stop() cancels a callout c if it is currently pending. If the callout is pending and

successfully stopped, then callout_stop() returns a value of one. If the callout is not set, or has already

been serviced, then negative one is returned. If the callout is currently being serviced and cannot be

stopped, then zero will be returned. If the callout is currently being serviced and cannot be stopped, and

at the same time a next invocation of the same callout is also scheduled, then callout_stop() unschedules

the next run and returns zero. If the callout has an associated lock, then that lock must be held when this

function is called.

The function callout_async_drain() is identical to callout_stop() with one difference. When

callout_async_drain() returns zero it will arrange for the function drain to be called using the same

argument given to the callout_reset() function. callout_async_drain() If the callout has an associated

lock, then that lock must be held when this function is called. Note that when stopping multiple callouts

that use the same lock it is possible to get multiple return’s of zero and multiple calls to the drain

function, depending upon which CPU’s the callouts are running. The drain function itself is called from

the context of the completing callout i.e. softclock or hardclock, just like a callout itself.

The function callout_drain() is identical to callout_stop() except that it will wait for the callout c to

complete if it is already in progress. This function MUST NOT be called while holding any locks on

which the callout might block, or deadlock will result. Note that if the callout subsystem has already

begun processing this callout, then the callout function may be invoked before callout_drain() returns.

However, the callout subsystem does guarantee that the callout will be fully stopped before

callout_drain() returns.

The callout_reset() and callout_schedule() function families schedule a future function invocation for

callout c. If c already has a pending callout, it is cancelled before the new invocation is scheduled.

These functions return a value of one if a pending callout was cancelled and zero if there was no pending

callout. If the callout has an associated lock, then that lock must be held when any of these functions are

called.

The time at which the callout function will be invoked is determined by either the ticks argument or the

sbt, pr, and flags arguments. When ticks is used, the callout is scheduled to execute after ticks/hz

seconds. Non-positive values of ticks are silently converted to the value ‘1’.

The sbt, pr, and flags arguments provide more control over the scheduled time including support for

CALLOUT(9) FreeBSD Kernel Developer’s Manual CALLOUT(9)

FreeBSD 14.0-RELEASE-p6 September 1, 2021 FreeBSD 14.0-RELEASE-p6



higher resolution times, specifying the precision of the scheduled time, and setting an absolute deadline

instead of a relative timeout. The callout is scheduled to execute in a time window which begins at the

time specified in sbt and extends for the amount of time specified in pr. If sbt specifies a time in the

past, the window is adjusted to start at the current time. A non-zero value for pr allows the callout

subsystem to coalesce callouts scheduled close to each other into fewer timer interrupts, reducing

processing overhead and power consumption. These flags may be specified to adjust the interpretation

of sbt and pr:

C_ABSOLUTE Handle the sbt argument as an absolute time since boot. By default, sbt is treated as

a relative amount of time, similar to ticks.

C_DIRECT_EXEC Run the handler directly from hardware interrupt context instead of from the

softclock thread. This reduces latency and overhead, but puts more constraints on

the callout function. Callout functions run in this context may use only spin

mutexes for locking and should be as small as possible because they run with

absolute priority.

C_PREL() Specifies relative event time precision as binary logarithm of time interval divided

by acceptable time deviation: 1 -- 1/2, 2 -- 1/4, etc. Note that the larger of pr or this

value is used as the length of the time window. Smaller values (which result in

larger time intervals) allow the callout subsystem to aggregate more events in one

timer interrupt.

C_PRECALC The sbt argument specifies the absolute time at which the callout should be run, and

the pr argument specifies the requested precision, which will not be adjusted during

the scheduling process. The sbt and pr values should be calculated by an earlier

call to callout_when() which uses the user-supplied sbt, pr, and flags values.

C_HARDCLOCK Align the timeouts to hardclock() calls if possible.

The callout_reset() functions accept a func argument which identifies the function to be called when the

time expires. It must be a pointer to a function that takes a single void * argument. Upon invocation,

func will receive arg as its only argument. The callout_schedule() functions reuse the func and arg

arguments from the previous callout. Note that one of the callout_reset() functions must always be

called to initialize func and arg before one of the callout_schedule() functions can be used.

The callout subsystem provides a softclock thread for each CPU in the system. Callouts are assigned to

a single CPU and are executed by the softclock thread for that CPU. Initially, callouts are assigned to

CPU 0. The callout_reset_on(), callout_reset_sbt_on(), callout_schedule_on() and

callout_schedule_sbt_on() functions assign the callout to CPU cpu. The callout_reset_curcpu(),

CALLOUT(9) FreeBSD Kernel Developer’s Manual CALLOUT(9)

FreeBSD 14.0-RELEASE-p6 September 1, 2021 FreeBSD 14.0-RELEASE-p6



callout_reset_sbt_curpu(), callout_schedule_curcpu() and callout_schedule_sbt_curcpu() functions

assign the callout to the current CPU. The callout_reset(), callout_reset_sbt(), callout_schedule() and

callout_schedule_sbt() functions schedule the callout to execute in the softclock thread of the CPU to

which it is currently assigned.

Softclock threads are not pinned to their respective CPUs by default. The softclock thread for CPU 0

can be pinned to CPU 0 by setting the kern.pin_default_swi loader tunable to a non-zero value.

Softclock threads for CPUs other than zero can be pinned to their respective CPUs by setting the

kern.pin_pcpu_swi loader tunable to a non-zero value.

The macros callout_pending(), callout_active() and callout_deactivate() provide access to the current

state of the callout. The callout_pending() macro checks whether a callout is pending; a callout is

considered pending when a timeout has been set but the time has not yet arrived. Note that once the

timeout time arrives and the callout subsystem starts to process this callout, callout_pending() will return

FALSE even though the callout function may not have finished (or even begun) executing. The

callout_active() macro checks whether a callout is marked as active, and the callout_deactivate() macro

clears the callout’s active flag. The callout subsystem marks a callout as active when a timeout is set

and it clears the active flag in callout_stop() and callout_drain(), but it does not clear it when a callout

expires normally via the execution of the callout function.

The callout_when() function may be used to pre-calculate the absolute time at which the timeout should

be run and the precision of the scheduled run time according to the required time sbt, precision

precision, and additional adjustments requested by the flags argument. Flags accepted by the

callout_when() function are the same as flags for the callout_reset() function. The resulting time is

assigned to the variable pointed to by the sbt_res argument, and the resulting precision is assigned to

*precision_res. When passing the results to callout_reset, add the C_PRECALC flag to flags, to avoid

incorrect re-adjustment. The function is intended for situations where precise time of the callout run

should be known in advance, since trying to read this time from the callout structure itself after a

callout_reset() call is racy.

Avoiding Race Conditions
The callout subsystem invokes callout functions from its own thread context. Without some kind of

synchronization, it is possible that a callout function will be invoked concurrently with an attempt to

stop or reset the callout by another thread. In particular, since callout functions typically acquire a lock

as their first action, the callout function may have already been invoked, but is blocked waiting for that

lock at the time that another thread tries to reset or stop the callout.

There are three main techniques for addressing these synchronization concerns. The first approach is

preferred as it is the simplest:

CALLOUT(9) FreeBSD Kernel Developer’s Manual CALLOUT(9)

FreeBSD 14.0-RELEASE-p6 September 1, 2021 FreeBSD 14.0-RELEASE-p6



1. Callouts can be associated with a specific lock when they are initialized by

callout_init_mtx(), callout_init_rm(), or callout_init_rw(). When a callout is associated with

a lock, the callout subsystem acquires the lock before the callout function is invoked. This

allows the callout subsystem to transparently handle races between callout cancellation,

scheduling, and execution. Note that the associated lock must be acquired before calling

callout_stop() or one of the callout_reset() or callout_schedule() functions to provide this

safety.

A callout initialized via callout_init() with mpsafe set to zero is implicitly associated with the

Giant mutex. If Giant is held when cancelling or rescheduling the callout, then its use will

prevent races with the callout function.

2. The return value from callout_stop() (or the callout_reset() and callout_schedule() function

families) indicates whether or not the callout was removed. If it is known that the callout

was set and the callout function has not yet executed, then a return value of FALSE indicates

that the callout function is about to be called. For example:

if (sc->sc_flags & SCFLG_CALLOUT_RUNNING) {

if (callout_stop(&sc->sc_callout)) {

sc->sc_flags &= ~SCFLG_CALLOUT_RUNNING;

/* successfully stopped */

} else {

/*

* callout has expired and callout

* function is about to be executed

*/

}

}

3. The callout_pending(), callout_active() and callout_deactivate() macros can be used together

to work around the race conditions. When a callout’s timeout is set, the callout subsystem

marks the callout as both active and pending. When the timeout time arrives, the callout

subsystem begins processing the callout by first clearing the pending flag. It then invokes the

callout function without changing the active flag, and does not clear the active flag even after

the callout function returns. The mechanism described here requires the callout function

itself to clear the active flag using the callout_deactivate() macro. The callout_stop() and

callout_drain() functions always clear both the active and pending flags before returning.

The callout function should first check the pending flag and return without action if

callout_pending() returns TRUE. This indicates that the callout was rescheduled using

CALLOUT(9) FreeBSD Kernel Developer’s Manual CALLOUT(9)

FreeBSD 14.0-RELEASE-p6 September 1, 2021 FreeBSD 14.0-RELEASE-p6



callout_reset() just before the callout function was invoked. If callout_active() returns

FALSE then the callout function should also return without action. This indicates that the

callout has been stopped. Finally, the callout function should call callout_deactivate() to

clear the active flag. For example:

mtx_lock(&sc->sc_mtx);

if (callout_pending(&sc->sc_callout)) {

/* callout was reset */

mtx_unlock(&sc->sc_mtx);

return;

}

if (!callout_active(&sc->sc_callout)) {

/* callout was stopped */

mtx_unlock(&sc->sc_mtx);

return;

}

callout_deactivate(&sc->sc_callout);

/* rest of callout function */

Together with appropriate synchronization, such as the mutex used above, this approach

permits the callout_stop() and callout_reset() functions to be used at any time without races.

For example:

mtx_lock(&sc->sc_mtx);

callout_stop(&sc->sc_callout);

/* The callout is effectively stopped now. */

If the callout is still pending then these functions operate normally, but if processing of the

callout has already begun then the tests in the callout function cause it to return without

further action. Synchronization between the callout function and other code ensures that

stopping or resetting the callout will never be attempted while the callout function is past the

callout_deactivate() call.

The above technique additionally ensures that the active flag always reflects whether the

callout is effectively enabled or disabled. If callout_active() returns false, then the callout is

effectively disabled, since even if the callout subsystem is actually just about to invoke the

callout function, the callout function will return without action.

There is one final race condition that must be considered when a callout is being stopped for the last

time. In this case it may not be safe to let the callout function itself detect that the callout was stopped,

CALLOUT(9) FreeBSD Kernel Developer’s Manual CALLOUT(9)

FreeBSD 14.0-RELEASE-p6 September 1, 2021 FreeBSD 14.0-RELEASE-p6



since it may need to access data objects that have already been destroyed or recycled. To ensure that the

callout is completely finished, a call to callout_drain() should be used. In particular, a callout should

always be drained prior to destroying its associated lock or releasing the storage for the callout structure.

RETURN VALUES
The callout_active() macro returns the state of a callout’s active flag.

The callout_pending() macro returns the state of a callout’s pending flag.

The callout_reset() and callout_schedule() function families return a value of one if the callout was

pending before the new function invocation was scheduled.

The callout_stop() and callout_drain() functions return a value of one if the callout was still pending

when it was called, a zero if the callout could not be stopped and a negative one is it was either not

running or has already completed.

HISTORY
FreeBSD initially used the long standing BSD linked list callout mechanism which offered O(n)

insertion and removal running time but did not generate or require handles for untimeout operations.

FreeBSD 3.0 introduced a new set of timeout and untimeout routines from NetBSD based on the work

of Adam M. Costello and George Varghese, published in a technical report entitled Redesigning the

BSD Callout and Timer Facilities and modified for inclusion in FreeBSD by Justin T. Gibbs. The

original work on the data structures used in that implementation was published by G. Varghese and A.

Lauck in the paper Hashed and Hierarchical Timing Wheels: Data Structures for the Efficient

Implementation of a Timer Facility in the Proceedings of the 11th ACM Annual Symposium on

Operating Systems Principles.

FreeBSD 3.3 introduced the first implementations of callout_init(), callout_reset(), and callout_stop()

which permitted callers to allocate dedicated storage for callouts. This ensured that a callout would

always fire unlike timeout() which would silently fail if it was unable to allocate a callout.

FreeBSD 5.0 permitted callout handlers to be tagged as MPSAFE via callout_init().

FreeBSD 5.3 introduced callout_drain().

FreeBSD 6.0 introduced callout_init_mtx().

FreeBSD 8.0 introduced per-CPU callout wheels, callout_init_rw(), and callout_schedule().

CALLOUT(9) FreeBSD Kernel Developer’s Manual CALLOUT(9)

FreeBSD 14.0-RELEASE-p6 September 1, 2021 FreeBSD 14.0-RELEASE-p6



FreeBSD 9.0 changed the underlying timer interrupts used to drive callouts to prefer one-shot event

timers instead of a periodic timer interrupt.

FreeBSD 10.0 switched the callout wheel to support tickless operation. These changes introduced

sbintime_t and the callout_reset_sbt*() family of functions. FreeBSD 10.0 also added

C_DIRECT_EXEC and callout_init_rm().

FreeBSD 10.2 introduced the callout_schedule_sbt*() family of functions.

FreeBSD 11.0 introduced callout_async_drain(). FreeBSD 11.1 introduced callout_when().

FreeBSD 13.0 removed timeout_t, timeout(), and untimeout().

CALLOUT(9) FreeBSD Kernel Developer’s Manual CALLOUT(9)

FreeBSD 14.0-RELEASE-p6 September 1, 2021 FreeBSD 14.0-RELEASE-p6


