
NAME
cap_enter, cap_getmode - Capability mode system calls

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/capsicum.h>

int

cap_enter(void);

int

cap_getmode(u_int *modep);

DESCRIPTION
cap_enter() places the current process into capability mode, a mode of execution in which processes may

only issue system calls operating on file descriptors or reading limited global system state. Access to

global name spaces, such as file system or IPC name spaces, is prevented. If the process is already in a

capability mode sandbox, the system call is a no-op. Future process descendants created with fork(2) or

pdfork(2) will be placed in capability mode from inception.

When combined with cap_rights_limit(2), cap_ioctls_limit(2), cap_fcntls_limit(2), cap_enter() may be

used to create kernel-enforced sandboxes in which appropriately-crafted applications or application

components may be run.

cap_getmode() returns a flag indicating whether or not the process is in a capability mode sandbox.

RUN-TIME SETTINGS
If the kern.trap_enotcap sysctl MIB is set to a non-zero value, then for any process executing in a

capability mode sandbox, any syscall which results in either an ENOTCAPABLE or ECAPMODE error

also generates the synchronous SIGTRAP signal to the thread on the syscall return. On signal delivery,

the si_errno member of the siginfo signal handler parameter is set to the syscall error value, and the

si_code member is set to TRAP_CAP.

See also the PROC_TRAPCAP_CTL and PROC_TRAPCAP_STATUS operations of the procctl(2)

function for similar per-process functionality.

RETURN VALUES
The cap_enter() and cap_getmode() functions return the value 0 if successful; otherwise the value -1 is

CAP_ENTER(2) FreeBSD System Calls Manual CAP_ENTER(2)

FreeBSD 14.0-RELEASE-p6 March 9, 2023 FreeBSD 14.0-RELEASE-p6



returned and the global variable errno is set to indicate the error.

When the process is in capability mode, cap_getmode() sets the flag to a non-zero value. A zero value

means the process is not in capability mode.

ERRORS
The cap_enter() and cap_getmode() system calls will fail if:

[ENOSYS] The running kernel was compiled without options CAPABILITY_MODE.

The cap_getmode() system call may also return the following error:

[EFAULT] Pointer modep points outside the process’s allocated address space.

SEE ALSO
cap_fcntls_limit(2), cap_ioctls_limit(2), cap_rights_limit(2), fexecve(2), procctl(2), cap_sandboxed(3),

capsicum(4), sysctl(9)

HISTORY
The cap_getmode() system call first appeared in FreeBSD 8.3. Support for capabilities and capabilities

mode was developed as part of the TrustedBSD Project.

AUTHORS
These functions and the capability facility were created by Robert N. M. Watson at the University of

Cambridge Computer Laboratory with support from a grant from Google, Inc.

CAVEATS
Creating effective process sandboxes is a tricky process that involves identifying the least possible rights

required by the process and then passing those rights into the process in a safe manner. Consumers of

cap_enter() should also be aware of other inherited rights, such as access to VM resources, memory

contents, and other process properties that should be considered. It is advisable to use fexecve(2) to

create a runtime environment inside the sandbox that has as few implicitly acquired rights as possible.

CAP_ENTER(2) FreeBSD System Calls Manual CAP_ENTER(2)

FreeBSD 14.0-RELEASE-p6 March 9, 2023 FreeBSD 14.0-RELEASE-p6


