
NAME
certbot - Certbot Documentation

INTRODUCTION
NOTE:

To get started quickly, use the interactive installation guide.

Certbot is part of EFF’s effort to encrypt the entire Internet. Secure communication over the

Web relies on HTTPS, which requires the use of a digital certificate that lets browsers verify the

identity of web servers (e.g., is that really google.com?). Web servers obtain their certificates

from trusted third parties called certificate authorities (CAs). Certbot is an easy-to-use client that

fetches a certificate from Let’s Encrypt--an open certificate authority launched by the EFF,

Mozilla, and others--and deploys it to a web server.

Anyone who has gone through the trouble of setting up a secure website knows what a hassle

getting and maintaining a certificate is. Certbot and Let’s Encrypt can automate away the pain

and let you turn on and manage HTTPS with simple commands. Using Certbot and Let’s

Encrypt is free, so there’s no need to arrange payment.

How you use Certbot depends on the configuration of your web server. The best way to get

started is to use our interactive guide. It generates instructions based on your configuration

settings. In most cases, you’ll need root or administrator access to your web server to run

Certbot.

Certbot is meant to be run directly on your web server, not on your personal computer. If you’re

using a hosted service and don’t have direct access to your web server, you might not be able to

use Certbot. Check with your hosting provider for documentation about uploading certificates or

using certificates issued by Let’s Encrypt.

Certbot is a fully-featured, extensible client for the Let’s Encrypt CA (or any other CA that

speaks the ACME protocol) that can automate the tasks of obtaining certificates and configuring

webservers to use them. This client runs on Unix-based operating systems.

To see the changes made to Certbot between versions please refer to our changelog.

Contributing
If you’d like to contribute to this project please read Developer Guide.

This project is governed by EFF’s Public Projects Code of Conduct.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



How to run the client
The easiest way to install and run Certbot is by visiting certbot.eff.org, where you can find the correct

instructions for many web server and OS combinations. For more information, see Get Certbot.

Understanding the client in more depth
To understand what the client is doing in detail, it’s important to understand the way it uses plugins.

Please see the explanation of plugins in the User Guide.

Links
Documentation: https://certbot.eff.org/docs

Software project: https://github.com/certbot/certbot

Notes for developers: https://certbot.eff.org/docs/contributing.html

Main Website: https://certbot.eff.org

Let’s Encrypt Website: https://letsencrypt.org

Community: https://community.letsencrypt.org

ACME spec: RFC 8555

ACME working area in github (archived): https://github.com/ietf-wg-acme/acme

Azure Pipelines CI status

System Requirements
See https://certbot.eff.org/docs/install.html#system-requirements.

WHAT IS A CERTIFICATE?
A public key or digital certificate (formerly called an SSL certificate) uses a public key and a private

key to enable secure communication between a client program (web browser, email client, etc.) and a

server over an encrypted SSL (secure socket layer) or TLS (transport layer security) connection. The

certificate is used both to encrypt the initial stage of communication (secure key exchange) and to

identify the server. The certificate includes information about the key, information about the server

identity, and the digital signature of the certificate issuer. If the issuer is trusted by the software that

initiates the communication, and the signature is valid, then the key can be used to communicate

securely with the server identified by the certificate. Using a certificate is a good way to prevent

"man-in-the-middle" attacks, in which someone in between you and the server you think you are

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



talking to is able to insert their own (harmful) content.

You can use Certbot to easily obtain and configure a free certificate from Let’s Encrypt, a joint project

of EFF, Mozilla, and many other sponsors.

Certificates and Lineages
Certbot introduces the concept of a lineage, which is a collection of all the versions of a certificate plus

Certbot configuration information maintained for that certificate from renewal to renewal. Whenever

you renew a certificate, Certbot keeps the same configuration unless you explicitly change it, for

example by adding or removing domains. If you add domains, you can either add them to an existing

lineage or create a new one.

See also: Re-creating and Updating Existing Certificates

GET CERTBOT
Table of Contents

+o System Requirements

+o Installation

+o Snap (Recommended)

+o Alternative 1: Docker

+o Alternative 2: Pip

+o Alternative 3: Third Party Distributions

+o Certbot-Auto [Deprecated]

System Requirements

+o Linux, macOS, BSD and Windows

+o Recommended root access on Linux/BSD/Required Administrator access on Windows

+o Port 80 Open

NOTE:

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Certbot is most useful when run with root privileges, because it is then able to automatically

configure TLS/SSL for Apache and nginx.

Certbot is meant to be run directly on a web server, normally by a system administrator. In most

cases, running Certbot on your personal computer is not a useful option. The instructions below

relate to installing and running Certbot on a server.

Installation
Unless you have very specific requirements, we kindly suggest that you use the installation instructions

for your system found at https://certbot.eff.org/instructions.

Snap (Recommended)
Our instructions are the same across all systems that use Snap. You can find instructions for installing

Certbot through Snap can be found at https://certbot.eff.org/instructions by selecting your server

software and then choosing "snapd" in the "System" dropdown menu.

Most modern Linux distributions (basically any that use systemd) can install Certbot packaged as a

snap. Snaps are available for x86_64, ARMv7 and ARMv8 architectures. The Certbot snap provides an

easy way to ensure you have the latest version of Certbot with features like automated certificate

renewal preconfigured.

If you unable to use snaps, you can use an alternate method for installing certbot.

Alternative 1: Docker
Docker is an amazingly simple and quick way to obtain a certificate. However, this mode of operation

is unable to install certificates or configure your webserver, because our installer plugins cannot reach

your webserver from inside the Docker container.

Most users should use the instructions at certbot.eff.org. You should only use Docker if you are sure

you know what you are doing and have a good reason to do so.

You should definitely read the Where are my certificates? section, in order to know how to manage the

certificates manually. Our ciphersuites page provides some information about recommended

ciphersuites. If none of these make much sense to you, you should definitely use the installation

method recommended for your system at certbot.eff.org, which enables you to use installer plugins that

cover both of those hard topics.

If you’re still not convinced and have decided to use this method, from the server that the domain

you’re requesting a certificate for resolves to, install Docker, then issue a command like the one found

below. If you are using Certbot with the Standalone plugin, you will need to make the port it uses

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



accessible from outside of the container by including something like -p 80:80 or -p 443:443 on the

command line before certbot/certbot.

sudo docker run -it --rm --name certbot \

-v "/etc/letsencrypt:/etc/letsencrypt" \

-v "/var/lib/letsencrypt:/var/lib/letsencrypt" \

certbot/certbot certonly

Running Certbot with the certonly command will obtain a certificate and place it in the directory

/etc/letsencrypt/live on your system. Because Certonly cannot install the certificate from within

Docker, you must install the certificate manually according to the procedure recommended by

the provider of your webserver.

There are also Docker images for each of Certbot’s DNS plugins available at

https://hub.docker.com/u/certbot which automate doing domain validation over DNS for popular

providers. To use one, just replace certbot/certbot in the command above with the name of the

image you want to use. For example, to use Certbot’s plugin for Amazon Route 53, you’d use

certbot/dns-route53. You may also need to add flags to Certbot and/or mount additional

directories to provide access to your DNS API credentials as specified in the DNS plugin

documentation.

For more information about the layout of the /etc/letsencrypt directory, see Where are my

certificates?.

Alternative 2: Pip
Installing Certbot through pip is only supported on a best effort basis and when using a virtual

environment. Instructions for installing Certbot through pip can be found at

https://certbot.eff.org/instructions by selecting your server software and then choosing "pip" in the

"System" dropdown menu.

Alternative 3: Third Party Distributions
Third party distributions exist for other specific needs. They often are maintained by these parties

outside of Certbot and tend to rapidly fall out of date on LTS-style distributions.

Certbot-Auto [Deprecated]
We used to have a shell script named certbot-auto to help people install Certbot on UNIX operating

systems, however, this script is no longer supported.

Please remove certbot-auto. To do so, you need to do three things:

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



1. If you added a cron job or systemd timer to automatically run certbot-auto to renew your

certificates, you should delete it. If you did this by following our instructions, you can delete the

entry added to /etc/crontab by running a command like sudo sed -i ’/certbot-auto/d’ /etc/crontab.

2. Delete the certbot-auto script. If you placed it in /usr/local/bin‘ like we recommended, you can

delete it by running sudo rm /usr/local/bin/certbot-auto.

3. Delete the Certbot installation created by certbot-auto by running sudo rm -rf /opt/eff.org.

USER GUIDE
Table of Contents

+o Certbot Commands

+o Getting certificates (and choosing plugins)

+o Apache

+o Webroot

+o Nginx

+o Standalone

+o DNS Plugins

+o Manual

+o Combining plugins

+o Third-party plugins

+o Managing certificates

+o Re-creating and Updating Existing Certificates

+o Changing a Certificate’s Domains

+o RSA and ECDSA keys

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o Changing a certificate’s key type

+o Revoking certificates

+o Revoking by account key or certificate private key

+o Deleting certificates

+o Safely deleting certificates

+o Renewing certificates

+o Modifying the Renewal Configuration of Existing Certificates

+o Certbot v2.3.0 and newer

+o Certbot v2.2.0 and older

+o Automated Renewals

+o Setting up automated renewal

+o Where are my certificates?

+o Pre and Post Validation Hooks

+o Changing the ACME Server

+o Lock Files

+o Configuration file

+o Log Rotation

+o Certbot command-line options

+o Getting help

Certbot Commands
Certbot uses a number of different commands (also referred to as "subcommands") to request specific

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



actions such as obtaining, renewing, or revoking certificates. The most important and commonly-used

commands will be discussed throughout this document; an exhaustive list also appears near the end of

the document.

The certbot script on your web server might be named letsencrypt if your system uses an older

package. Throughout the docs, whenever you see certbot, swap in the correct name as needed.

Getting certificates (and choosing plugins)
Certbot helps you achieve two tasks:

1. Obtaining a certificate: automatically performing the required authentication steps to prove that you

control the domain(s), saving the certificate to /etc/letsencrypt/live/ and renewing it on a regular

schedule.

2. Optionally, installing that certificate to supported web servers (like Apache or nginx) and other

kinds of servers. This is done by automatically modifying the configuration of your server in order

to use the certificate.

To obtain a certificate and also install it, use the certbot run command (or certbot, which is the

same).

To just obtain the certificate without installing it anywhere, the certbot certonly ("certificate

only") command can be used.

Some example ways to use Certbot:

# Obtain and install a certificate:

certbot

# Obtain a certificate but don’t install it:

certbot certonly

# You may specify multiple domains with -d and obtain and

# install different certificates by running Certbot multiple times:

certbot certonly -d example.com -d www.example.com

certbot certonly -d app.example.com -d api.example.com

To perform these tasks, Certbot will ask you to choose from a selection of authenticator and

installer plugins. The appropriate choice of plugins will depend on what kind of server software

you are running and plan to use your certificates with.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Authenticators are plugins which automatically perform the required steps to prove that you

control the domain names you’re trying to request a certificate for. An authenticator is always

required to obtain a certificate.

Installers are plugins which can automatically modify your web server’s configuration to serve

your website over HTTPS, using the certificates obtained by Certbot. An installer is only

required if you want Certbot to install the certificate to your web server.

Some plugins are both authenticators and installers and it is possible to specify a distinct

combination of authenticator and plugin.

+---------------+--------+------+-----------------------+--------------------+

|Plugin  |Auth|Inst|Notes  |Challenge       |

|  |  |  |  |types (and       |

|  |  |  |  |port)                |

+---------------+--------+------+-----------------------+--------------------+

|apache  |Y  |Y  |Automates  |http-01            |

|  |  |  |obtaining and  |(80)                 |

|  |  |  |installing a  |                       |

|  |  |  |certificate with  |                       |

|  |  |  |Apache.  |                       |

+---------------+--------+------+-----------------------+--------------------+

|nginx  |Y  |Y  |Automates  |http-01            |

|  |  |  |obtaining and  |(80)                 |

|  |  |  |installing a  |                       |

|  |  |  |certificate with  |                       |

|  |  |  |Nginx.  |                       |

+---------------+--------+------+-----------------------+--------------------+

|webroot  |Y  |N  |Obtains a  |http-01            |

|  |  |  |certificate by  |(80)                 |

|  |  |  |writing to the  |                       |

|  |  |  |webroot  |                       |

|  |  |  |directory of an  |                       |

|  |  |  |already running  |                       |

|  |  |  |webserver.  |                       |

+---------------+--------+------+-----------------------+--------------------+

|standalone  |Y  |N  |Uses a  |http-01            |

|  |  |  |"standalone"  |(80)                 |

|  |  |  |webserver to  |                       |

|  |  |  |obtain a  |                       |

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



|  |  |  |certificate.  |                       |

|  |  |  |Requires port 80 |                       |

|  |  |  |to be available.  |                       |

|  |  |  |This is useful on  |                       |

|  |  |  |systems with no  |                       |

|  |  |  |webserver, or  |                       |

|  |  |  |when direct  |                       |

|  |  |  |integration with  |                       |

|  |  |  |the local  |                       |

|  |  |  |webserver is not  |                       |

|  |  |  |supported or not  |                       |

|  |  |  |desired.  |                       |

+---------------+--------+------+-----------------------+--------------------+

|DNS  |Y  |N  |This category of  |dns-01            |

|plugins  |  |  |plugins  |(53)                 |

|  |  |  |automates  |                       |

|  |  |  |obtaining a  |                       |

|  |  |  |certificate by  |                       |

|  |  |  |modifying DNS  |                       |

|  |  |  |records to prove  |                       |

|  |  |  |you have control |                       |

|  |  |  |over a domain.  |                       |

|  |  |  |Doing domain  |                       |

|  |  |  |validation in this |                       |

|  |  |  |way is the only  |                       |

|  |  |  |way to obtain  |                       |

|  |  |  |wildcard  |                       |

|  |  |  |certificates from  |                       |

|  |  |  |Let’s Encrypt.  |                       |

+---------------+--------+------+-----------------------+--------------------+

|manual  |Y  |N  |Obtain a  |http-01 (80)    |

|  |  |  |certificate by  |or dns-01        |

|  |  |  |manually  |(53)                 |

|  |  |  |following  |                       |

|  |  |  |instructions to  |                       |

|  |  |  |perform domain  |                       |

|  |  |  |validation  |                       |

|  |  |  |yourself.  |                       |

|  |  |  |Certificates  |                       |

|  |  |  |created this way  |                       |

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



|  |  |  |do not support  |                       |

|  |  |  |autorenewal.  |                       |

|  |  |  |Autorenewal  |                       |

|  |  |  |may be enabled  |                       |

|  |  |  |by providing an  |                       |

|  |  |  |authentication  |                       |

|  |  |  |hook script to  |                       |

|  |  |  |automate the  |                       |

|  |  |  |domain  |                       |

|  |  |  |validation steps.  |                       |

+---------------+--------+------+-----------------------+--------------------+

Under the hood, plugins use one of several ACME protocol challenges to prove you control a

domain. The options are http-01 (which uses port 80) and dns-01 (requiring configuration of a

DNS server on port 53, though that’s often not the same machine as your webserver). A few

plugins support more than one challenge type, in which case you can choose one with

--preferred-challenges.

There are also many third-party-plugins available. Below we describe in more detail the

circumstances in which each plugin can be used, and how to use it.

Apache
The Apache plugin currently supports modern OSes based on Debian, Fedora, SUSE, Gentoo, CentOS

and Darwin. This automates both obtaining and installing certificates on an Apache webserver. To

specify this plugin on the command line, simply include --apache.

Webroot
If you’re running a local webserver for which you have the ability to modify the content being served,

and you’d prefer not to stop the webserver during the certificate issuance process, you can use the

webroot plugin to obtain a certificate by including certonly and --webroot on the command line. In

addition, you’ll need to specify --webroot-path or -w with the top-level directory ("web root")

containing the files served by your webserver. For example, --webroot-path /var/www/html or

--webroot-path /usr/share/nginx/html are two common webroot paths.

If you’re getting a certificate for many domains at once, the plugin needs to know where each domain’s

files are served from, which could potentially be a separate directory for each domain. When requesting

a certificate for multiple domains, each domain will use the most recently specified --webroot-path. So,

for instance,

certbot certonly --webroot -w /var/www/example -d www.example.com -d example.com -w /var/www/other -d other.example.net

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



would obtain a single certificate for all of those names, using the /var/www/example webroot

directory for the first two, and /var/www/other for the second two.

The webroot plugin works by creating a temporary file for each of your requested domains in

${webroot-path}/.well-known/acme-challenge. Then the Let’s Encrypt validation server makes

HTTP requests to validate that the DNS for each requested domain resolves to the server

running certbot. An example request made to your web server would look like:

66.133.109.36 - - [05/Jan/2016:20:11:24 -0500] "GET /.well-known/acme-challenge/HGr8U1IeTW4kY_Z6UIyaakzOkyQgPr_7ArlLgtZE8SX

Note that to use the webroot plugin, your server must be configured to serve files from hidden

directories. If /.well-known is treated specially by your webserver configuration, you might need

to modify the configuration to ensure that files inside /.well-known/acme-challenge are served

by the webserver.

Under Windows, Certbot will generate a web.config file, if one does not already exist, in

/.well-known/acme-challenge in order to let IIS serve the challenge files even if they do not

have an extension.

Nginx
The Nginx plugin should work for most configurations. We recommend backing up Nginx

configurations before using it (though you can also revert changes to configurations with certbot
--nginx rollback). You can use it by providing the --nginx flag on the commandline.

certbot --nginx

Standalone
Use standalone mode to obtain a certificate if you don’t want to use (or don’t currently have) existing

server software. The standalone plugin does not rely on any other server software running on the

machine where you obtain the certificate.

To obtain a certificate using a "standalone" webserver, you can use the standalone plugin by including

certonly and --standalone on the command line. This plugin needs to bind to port 80 in order to perform

domain validation, so you may need to stop your existing webserver.

It must still be possible for your machine to accept inbound connections from the Internet on the

specified port using each requested domain name.

By default, Certbot first attempts to bind to the port for all interfaces using IPv6 and then bind to that

port using IPv4; Certbot continues so long as at least one bind succeeds. On most Linux systems, IPv4

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



traffic will be routed to the bound IPv6 port and the failure during the second bind is expected.

Use --<challenge-type>-address to explicitly tell Certbot which interface (and protocol) to bind.

DNS Plugins
If you’d like to obtain a wildcard certificate from Let’s Encrypt or run certbot on a machine other than

your target webserver, you can use one of Certbot’s DNS plugins.

These plugins are not included in a default Certbot installation and must be installed separately. They

are available in many OS package managers, as Docker images, and as snaps. Visit

https://certbot.eff.org to learn the best way to use the DNS plugins on your system.

Once installed, you can find documentation on how to use each plugin at:

+o certbot-dns-cloudflare

+o certbot-dns-digitalocean

+o certbot-dns-dnsimple

+o certbot-dns-dnsmadeeasy

+o certbot-dns-gehirn

+o certbot-dns-google

+o certbot-dns-linode

+o certbot-dns-luadns

+o certbot-dns-nsone

+o certbot-dns-ovh

+o certbot-dns-rfc2136

+o certbot-dns-route53

+o certbot-dns-sakuracloud

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Manual
If you’d like to obtain a certificate running certbot on a machine other than your target webserver or

perform the steps for domain validation yourself, you can use the manual plugin. While hidden from

the UI, you can use the plugin to obtain a certificate by specifying certonly and --manual on the

command line. This requires you to copy and paste commands into another terminal session, which

may be on a different computer.

The manual plugin can use either the http or the dns challenge. You can use the --preferred-challenges
option to choose the challenge of your preference.

The http challenge will ask you to place a file with a specific name and specific content in the

/.well-known/acme-challenge/ directory directly in the top-level directory ("web root") containing the

files served by your webserver. In essence it’s the same as the webroot plugin, but not automated.

When using the dns challenge, certbot will ask you to place a TXT DNS record with specific contents

under the domain name consisting of the hostname for which you want a certificate issued, prepended

by _acme-challenge.

For example, for the domain example.com, a zone file entry would look like:

_acme-challenge.example.com. 300 IN TXT "gfj9Xq...Rg85nM"

Renewal with the manual plugin

Certificates created using --manual do not support automatic renewal unless combined with an

authentication hook script via --manual-auth-hook to automatically set up the required HTTP

and/or TXT challenges.

If you can use one of the other plugins which support autorenewal to create your certificate,

doing so is highly recommended.

To manually renew a certificate using --manual without hooks, repeat the same certbot --manual
command you used to create the certificate originally. As this will require you to copy and paste

new HTTP files or DNS TXT records, the command cannot be automated with a cron job.

Combining plugins
Sometimes you may want to specify a combination of distinct authenticator and installer plugins. To do

so, specify the authenticator plugin with --authenticator or -a and the installer plugin with --installer or

-i.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



For instance, you could create a certificate using the webroot plugin for authentication and the apache

plugin for installation.

certbot run -a webroot -i apache -w /var/www/html -d example.com

Or you could create a certificate using the manual plugin for authentication and the nginx plugin

for installation. (Note that this certificate cannot be renewed automatically.)

certbot run -a manual -i nginx -d example.com

Third-party plugins
There are also a number of third-party plugins for the client, provided by other developers. Many are

beta/experimental, but some are already in widespread use:

+---------------------+--------+------+---------------------------+

|Plugin  |Auth|Inst|Notes                      |

+---------------------+--------+------+---------------------------+

|haproxy  |Y  |Y  |Integration with the |

|  |  |  |HAProxy load         |

|  |  |  |balancer                   |

+---------------------+--------+------+---------------------------+

|s3front  |Y  |Y  |Integration with       |

|  |  |  |Amazon                   |

|  |  |  |CloudFront              |

|  |  |  |distribution of S3     |

|  |  |  |buckets                    |

+---------------------+--------+------+---------------------------+

|gandi  |Y  |N  |Obtain certificates   |

|  |  |  |via the Gandi           |

|  |  |  |LiveDNS API          |

+---------------------+--------+------+---------------------------+

|varnish  |Y  |N  |Obtain certificates   |

|  |  |  |via a Varnish server |

+---------------------+--------+------+---------------------------+

|external-auth  |Y  |Y  |A plugin for             |

|  |  |  |convenient               |

|  |  |  |scripting                   |

+---------------------+--------+------+---------------------------+

|pritunl  |N  |Y  |Install certificates    |

|  |  |  |in pritunl                  |

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



|  |  |  |distributed                |

|  |  |  |OpenVPN servers    |

+---------------------+--------+------+---------------------------+

|proxmox  |N  |Y  |Install certificates    |

|  |  |  |in Proxmox              |

|  |  |  |Virtualization          |

|  |  |  |servers                     |

+---------------------+--------+------+---------------------------+

|dns-standalone  |Y  |N  |Obtain certificates   |

|  |  |  |via an integrated      |

|  |  |  |DNS server              |

+---------------------+--------+------+---------------------------+

|dns-ispconfig  |Y  |N  |DNS                         |

|  |  |  |Authentication         |

|  |  |  |using ISPConfig as  |

|  |  |  |DNS server              |

+---------------------+--------+------+---------------------------+

|dns-clouddns  |Y  |N  |DNS                         |

|  |  |  |Authentication         |

|  |  |  |using CloudDNS     |

|  |  |  |API                          |

+---------------------+--------+------+---------------------------+

|dns-lightsail  |Y  |N  |DNS                         |

|  |  |  |Authentication         |

|  |  |  |using Amazon         |

|  |  |  |Lightsail DNS API  |

+---------------------+--------+------+---------------------------+

|dns-inwx  |Y  |Y  |DNS                         |

|  |  |  |Authentication for   |

|  |  |  |INWX through the   |

|  |  |  |XML API                |

+---------------------+--------+------+---------------------------+

|dns-azure  |Y  |N  |DNS                         |

|  |  |  |Authentication         |

|  |  |  |using Azure DNS    |

+---------------------+--------+------+---------------------------+

|dns-godaddy  |Y  |N  |DNS                         |

|  |  |  |Authentication         |

|  |  |  |using Godaddy        |

|  |  |  |DNS                         |

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+---------------------+--------+------+---------------------------+

|dns-yandexcloud|Y  |N  |DNS                         |

|  |  |  |Authentication         |

|  |  |  |using Yandex           |

|  |  |  |Cloud DNS              |

+---------------------+--------+------+---------------------------+

|dns-bunny  |Y  |N  |DNS                         |

|  |  |  |Authentication         |

|  |  |  |using BunnyDNS    |

+---------------------+--------+------+---------------------------+

|njalla  |Y  |N  |DNS                         |

|  |  |  |Authentication for   |

|  |  |  |njalla                        |

+---------------------+--------+------+---------------------------+

|DuckDNS  |Y  |N  |DNS                         |

|  |  |  |Authentication for   |

|  |  |  |DuckDNS                |

+---------------------+--------+------+---------------------------+

|Porkbun  |Y  |N  |DNS                         |

|  |  |  |Authentication for   |

|  |  |  |Porkbun                   |

+---------------------+--------+------+---------------------------+

|Infomaniak  |Y  |N  |DNS                         |

|  |  |  |Authentication         |

|  |  |  |using Infomaniak     |

|  |  |  |Domains API           |

+---------------------+--------+------+---------------------------+

|dns-multi  |Y  |N  |DNS authentication |

|  |  |  |of 100+ providers    |

|  |  |  |using go-acme/lego |

+---------------------+--------+------+---------------------------+

|dns-dnsmanager  |Y  |N  |DNS                         |

|  |  |  |Authentication for   |

|  |  |  |dnsmanager.io         |

+---------------------+--------+------+---------------------------+

|standalone-nfq  |Y  |N  |HTTP                       |

|  |  |  |Authentication that  |

|  |  |  |works with any        |

|  |  |  |webserver (Linux    |

|  |  |  |only)                        |

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+---------------------+--------+------+---------------------------+

If you’re interested, you can also write your own plugin.

Managing certificates
To view a list of the certificates Certbot knows about, run the certificates subcommand:

certbot certificates

This returns information in the following format:

Found the following certificates:

Certificate Name: example.com

Domains: example.com, www.example.com

Expiry Date: 2017-02-19 19:53:00+00:00 (VALID: 30 days)

Certificate Path: /etc/letsencrypt/live/example.com/fullchain.pem

Key Type: RSA

Private Key Path: /etc/letsencrypt/live/example.com/privkey.pem

Certificate Name shows the name of the certificate. Pass this name using the --cert-name flag to

specify a particular certificate for the run, certonly, certificates, renew, and delete commands.

The certificate name cannot contain filepath separators (i.e. ’/’ or ’\’, depending on the

platform). Example:

certbot certonly --cert-name example.com

Re-creating and Updating Existing Certificates
You can use certonly or run subcommands to request the creation of a single new certificate even if

you already have an existing certificate with some of the same domain names.

If a certificate is requested with run or certonly specifying a certificate name that already exists,

Certbot updates the existing certificate. Otherwise a new certificate is created and assigned the

specified name.

The --force-renewal, --duplicate, and --expand options control Certbot’s behavior when re-creating a

certificate with the same name as an existing certificate. If you don’t specify a requested behavior,

Certbot may ask you what you intended.

--force-renewal tells Certbot to request a new certificate with the same domains as an existing

certificate. Each domain must be explicitly specified via -d. If successful, this certificate is saved

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



alongside the earlier one and symbolic links (the "live" reference) will be updated to point to the new

certificate. This is a valid method of renewing a specific individual certificate.

--duplicate tells Certbot to create a separate, unrelated certificate with the same domains as an existing

certificate. This certificate is saved completely separately from the prior one. Most users will not need

to issue this command in normal circumstances.

--expand tells Certbot to update an existing certificate with a new certificate that contains all of the old

domains and one or more additional new domains. With the --expand option, use the -d option to

specify all existing domains and one or more new domains.

Example:

certbot --expand -d existing.com,example.com,newdomain.com

If you prefer, you can specify the domains individually like this:

certbot --expand -d existing.com -d example.com -d newdomain.com

Consider using --cert-name instead of --expand, as it gives more control over which certificate is

modified and it lets you remove domains as well as adding them.

--allow-subset-of-names tells Certbot to continue with certificate generation if only some of the

specified domain authorizations can be obtained. This may be useful if some domains specified

in a certificate no longer point at this system.

Whenever you obtain a new certificate in any of these ways, the new certificate exists alongside

any previously obtained certificates, whether or not the previous certificates have expired. The

generation of a new certificate counts against several rate limits that are intended to prevent

abuse of the ACME protocol, as described here.

Changing a Certificate’s Domains
The --cert-name flag can also be used to modify the domains a certificate contains, by specifying new

domains using the -d or --domains flag. If certificate example.com previously contained example.com
and www.example.com, it can be modified to only contain example.com by specifying only

example.com with the -d or --domains flag. Example:

certbot certonly --cert-name example.com -d example.com

The same format can be used to expand the set of domains a certificate contains, or to replace

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



that set entirely:

certbot certonly --cert-name example.com -d example.org,www.example.org

RSA and ECDSA keys
Certbot supports two certificate private key algorithms: rsa and ecdsa.

As of version 2.0.0, Certbot defaults to ECDSA secp256r1 (P-256) certificate private keys for all new

certificates. Existing certificates will continue to renew using their existing key type, unless a key type

change is requested.

The type of key used by Certbot can be controlled through the --key-type option. You can use the

--elliptic-curve option to control the curve used in ECDSA certificates and the --rsa-key-size option to

control the size of RSA keys.

WARNING:
If you obtain certificates using ECDSA keys, you should be careful not to downgrade to a Certbot

version earlier than 1.10.0 where ECDSA keys were not supported. Downgrades like this are

possible if you switch from something like the snaps or pip to packages provided by your operating

system which often lag behind.

Changing a certificate’s key type
Unless you are aware that you need to support very old HTTPS clients that are not supported by most

sites, you can safely transition your site to use ECDSA keys instead of RSA keys.

If you want to change a single certificate to use ECDSA keys, you’ll need to create or renew a

certificate while setting --key-type ecdsa on the command line:

certbot renew --key-type ecdsa --cert-name example.com --force-renewal

If you want to use ECDSA keys for all certificates in the future (including renewals of existing

certificates), you can add the following line to Certbot’s configuration file:

key-type = ecdsa

which will take effect upon the next renewal of each certificate.

Revoking certificates
If you need to revoke a certificate, use the revoke subcommand to do so.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



A certificate may be revoked by providing its name (see certbot certificates) or by providing its path

directly:

certbot revoke --cert-name example.com

certbot revoke --cert-path /etc/letsencrypt/live/example.com/cert.pem

If the certificate being revoked was obtained via the --staging, --test-cert or a non-default

--server flag, that flag must be passed to the revoke subcommand.

NOTE:
After revocation, Certbot will (by default) ask whether you want to delete the certificate. Unless

deleted, Certbot will try to renew revoked certificates the next time certbot renew runs.

You can also specify the reason for revoking your certificate by using the reason flag. Reasons

include unspecified which is the default, as well as keycompromise, affiliationchanged,

superseded, and cessationofoperation:

certbot revoke --cert-name example.com --reason keycompromise

Revoking by account key or certificate private key
By default, Certbot will try revoke the certificate using your ACME account key. If the certificate was

created from the same ACME account, the revocation will be successful.

If you instead have the corresponding private key file to the certificate you wish to revoke, use

--key-path to perform the revocation from any ACME account:

certbot revoke --cert-path /etc/letsencrypt/live/example.com/cert.pem --key-path /etc/letsencrypt/live/example.com/privkey.pem

Deleting certificates
If you need to delete a certificate, use the delete subcommand.

NOTE:
Read this and the Safely deleting certificates sections carefully. This is an irreversible operation

and must be done with care.

Certbot does not automatically revoke a certificate before deleting it. If you’re no longer using a

certificate and don’t plan to use it anywhere else, you may want to follow the instructions in

Revoking certificates instead. Generally, there’s no need to revoke a certificate if its private key

has not been compromised, but you may still receive expiration emails from Let’s Encrypt

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



unless you revoke.

NOTE:
Do not manually delete certificate files from inside /etc/letsencrypt/. Always use the delete
subcommand.

A certificate may be deleted by providing its name with --cert-name. You may find its name

using certbot certificates.

Otherwise, you will be prompted to choose one or more certificates to delete:

certbot delete --cert-name example.com

# or to choose from a list:

certbot delete

Safely deleting certificates
Deleting a certificate without following the proper steps can result in a non-functioning server. To

safely delete a certificate, follow all the steps below to make sure that references to a certificate are

removed from the configuration of any installed server software (Apache, nginx, Postfix, etc) before

deleting the certificate.

To explain further, when installing a certificate, Certbot modifies Apache or nginx’s configuration to

load the certificate and its private key from the /etc/letsencrypt/live/ directory. Before deleting a

certificate, it is necessary to undo that modification, by removing any references to the certificate from

the webserver’s configuration files.

Follow these steps to safely delete a certificate:

1. Find all references to the certificate (substitute example.com in the command for the name of the

certificate you wish to delete):

sudo bash -c ’grep -R live/example.com /etc/{nginx,httpd,apache2}’

If there are no references found, skip directly to Step 4.

If some references are found, they will look something like:

/etc/apache2/sites-available/000-default-le-ssl.conf:SSLCertificateFile /etc/letsencrypt/live/example.com/fullchain.pem

/etc/apache2/sites-available/000-default-le-ssl.conf:SSLCertificateKeyFile /etc/letsencrypt/live/example.com/privkey.pem

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



2. You will need a self-signed certificate to replace the certificate you are deleting. The following

command will generate one for you, saving the certificate at /etc/letsencrypt/self-signed-cert.pem
and its private key at /etc/letsencrypt/self-signed-privkey.pem:

sudo openssl req -nodes -batch -x509 -newkey rsa:2048 -keyout /etc/letsencrypt/self-signed-privkey.pem -out /etc/letsencrypt/self-signed-cert.pem

3. For each reference found in Step 1, open the file in a text editor and replace the reference to the

existing certificate with a reference to the self-signed certificate.

Continuing from the previous example, you would open

/etc/apache2/sites-available/000-default-le-ssl.conf in a text editor and modify the two matching

lines of text to instead say:

SSLCertificateFile /etc/letsencrypt/self-signed-cert.pem

SSLCertificateKeyFile /etc/letsencrypt/self-signed-privkey.pem

4. It is now safe to delete the certificate. Do so by running:

sudo certbot delete --cert-name example.com

Renewing certificates
NOTE:

Let’s Encrypt CA issues short-lived certificates (90 days). Make sure you renew the certificates at

least once in 3 months.

SEE ALSO:
Most Certbot installations come with automatic renewal out of the box. See Automated Renewals

for more details.

SEE ALSO:
Users of the Manual plugin should note that --manual certificates will not renew automatically,

unless combined with authentication hook scripts. See Renewal with the manual plugin.

As of version 0.10.0, Certbot supports a renew action to check all installed certificates for

impending expiry and attempt to renew them. The simplest form is simply

certbot renew

This command attempts to renew any previously-obtained certificates that expire in less than 30

days. The same plugin and options that were used at the time the certificate was originally

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



issued will be used for the renewal attempt, unless you specify other plugins or options. Unlike

certonly, renew acts on multiple certificates and always takes into account whether each one is

near expiry. Because of this, renew is suitable (and designed) for automated use, to allow your

system to automatically renew each certificate when appropriate. Since renew only renews

certificates that are near expiry it can be run as frequently as you want - since it will usually take

no action.

The renew command includes hooks for running commands or scripts before or after a

certificate is renewed. For example, if you have a single certificate obtained using the

standalone plugin, you might need to stop the webserver before renewing so standalone can bind

to the necessary ports, and then restart it after the plugin is finished. Example:

certbot renew --pre-hook "service nginx stop" --post-hook "service nginx start"

If a hook exits with a non-zero exit code, the error will be printed to stderr but renewal will be

attempted anyway. A failing hook doesn’t directly cause Certbot to exit with a non-zero exit

code, but since Certbot exits with a non-zero exit code when renewals fail, a failed hook causing

renewal failures will indirectly result in a non-zero exit code. Hooks will only be run if a

certificate is due for renewal, so you can run the above command frequently without

unnecessarily stopping your webserver.

When Certbot detects that a certificate is due for renewal, --pre-hook and --post-hook hooks run

before and after each attempt to renew it. If you want your hook to run only after a successful

renewal, use --deploy-hook in a command like this.

certbot renew --deploy-hook /path/to/deploy-hook-script

You can also specify hooks by placing files in subdirectories of Certbot’s configuration

directory. Assuming your configuration directory is /etc/letsencrypt, any executable files found

in /etc/letsencrypt/renewal-hooks/pre, /etc/letsencrypt/renewal-hooks/deploy, and

/etc/letsencrypt/renewal-hooks/post will be run as pre, deploy, and post hooks respectively when

any certificate is renewed with the renew subcommand. These hooks are run in alphabetical

order and are not run for other subcommands. (The order the hooks are run is determined by the

byte value of the characters in their filenames and is not dependent on your locale.)

Hooks specified in the command line, configuration file, or renewal configuration files are run

as usual after running all hooks in these directories. One minor exception to this is if a hook

specified elsewhere is simply the path to an executable file in the hook directory of the same

type (e.g. your pre-hook is the path to an executable in /etc/letsencrypt/renewal-hooks/pre), the

file is not run a second time. You can stop Certbot from automatically running executables

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



found in these directories by including --no-directory-hooks on the command line.

More information about hooks can be found by running certbot --help renew.

If you’re sure that this command executes successfully without human intervention, you can add

the command to crontab (since certificates are only renewed when they’re determined to be near

expiry, the command can run on a regular basis, like every week or every day). In that case, you

are likely to want to use the -q or --quiet quiet flag to silence all output except errors.

If you are manually renewing all of your certificates, the --force-renewal flag may be helpful; it

causes the expiration time of the certificate(s) to be ignored when considering renewal, and

attempts to renew each and every installed certificate regardless of its age. (This form is not

appropriate to run daily because each certificate will be renewed every day, which will quickly

run into the certificate authority rate limit.)

Note that options provided to certbot renew will apply to every certificate for which renewal is

attempted; for example, certbot renew --rsa-key-size 4096 would try to replace every

near-expiry certificate with an equivalent certificate using a 4096-bit RSA public key. If a

certificate is successfully renewed using specified options, those options will be saved and used

for future renewals of that certificate.

An alternative form that provides for more fine-grained control over the renewal process (while

renewing specified certificates one at a time), is certbot certonly with the complete set of subject

domains of a specific certificate specified via -d flags. You may also want to include the -n or

--noninteractive flag to prevent blocking on user input (which is useful when running the

command from cron).

certbot certonly -n -d example.com -d www.example.com

All of the domains covered by the certificate must be specified in this case in order to renew and

replace the old certificate rather than obtaining a new one; don’t forget any www. domains!

Specifying a subset of the domains creates a new, separate certificate containing only those

domains, rather than replacing the original certificate. When run with a set of domains

corresponding to an existing certificate, the certonly command attempts to renew that specific

certificate.

Please note that the CA will send notification emails to the address you provide if you do not

renew certificates that are about to expire.

Certbot is working hard to improve the renewal process, and we apologize for any

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



inconvenience you encounter in integrating these commands into your individual environment.

NOTE:
certbot renew exit status will only be 1 if a renewal attempt failed. This means certbot renew exit

status will be 0 if no certificate needs to be updated. If you write a custom script and expect to run

a command only after a certificate was actually renewed you will need to use the --deploy-hook
since the exit status will be 0 both on successful renewal and when renewal is not necessary.

Modifying the Renewal Configuration of Existing Certificates
When creating a certificate, Certbot will keep track of all of the relevant options chosen by the user. At

renewal time, Certbot will remember these options and apply them once again.

Sometimes, you may encounter the need to change some of these options for future certificate

renewals. To achieve this, you will need to perform the following steps:

Certbot v2.3.0 and newer
The certbot reconfigure command can be used to change a certificate’s renewal options. This

command will use the new renewal options to perform a test renewal against the Let’s Encrypt staging

server. If this is successful, the new renewal options will be saved and will apply to future renewals.

You will need to specify the --cert-name, which can be found by running certbot certificates.

A list of common options that may be updated with the reconfigure command can be found by running

certbot help reconfigure.

As a practical example, if you were using the webroot authenticator and had relocated your website to

another directory, you can change the --webroot-path to the new directory using the following

command:

certbot reconfigure --cert-name example.com --webroot-path /path/to/new/location

Certbot v2.2.0 and older

1. Perform a dry run renewal with the amended options on the command line. This allows you to

confirm that the change is valid and will result in successful future renewals.

2. If the dry run is successful, perform a live renewal of the certificate. This will persist the change for

future renewals. If the certificate is not yet due to expire, you will need to force a renewal using

--force-renewal.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



NOTE:
Rate limits from the certificate authority may prevent you from performing multiple renewals in a

short period of time. It is strongly recommended to perform the second step only once, when you

have decided on what options should change.

As a practical example, if you were using the webroot authenticator and had relocated your

website to another directory, you would need to change the --webroot-path to the new directory.

Following the above advice:

1. Perform a dry-run renewal of the individual certificate with the amended options:

certbot renew --cert-name example.com --webroot-path /path/to/new/location --dry-run

2. If the dry-run was successful, make the change permanent by performing a live renewal of the

certificate with the amended options, including --force-renewal:

certbot renew --cert-name example.com --webroot-path /path/to/new/location --force-renewal

--cert-name selects the particular certificate to be modified. Without this option, all

certificates will be selected.

--webroot-path is the option intended to be changed. All other previously selected options

will be kept the same and do not need to be included in the command.

For advanced certificate management tasks, it is also possible to manually modify the

certificate’s renewal configuration file, but this is discouraged since it can easily break Certbot’s

ability to renew your certificates. These renewal configuration files are located at

/etc/letsencrypt/renewal/CERTNAME.conf. If you choose to modify the renewal configuration

file we advise you to make a backup of the file beforehand and test its validity with the certbot
renew --dry-run command.

WARNING:
Manually modifying files under /etc/letsencrypt/renewal/ can damage them if done improperly and

we do not recommend doing so.

Automated Renewals
Most Certbot installations come with automatic renewals preconfigured. This is done by means of a

scheduled task which runs certbot renew periodically.

If you are unsure whether you need to configure automated renewal:

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



1. Review the instructions for your system and installation method at

https://certbot.eff.org/instructions. They will describe how to set up a scheduled task, if necessary.

If no step is listed, your system comes with automated renewal pre-installed, and you should not

need to take any additional actions.

2. On Linux and BSD, you can check to see if your installation method has pre-installed a timer for

you. To do so, look for the certbot renew command in either your system’s crontab (typically

/etc/crontab or /etc/cron.*/*) or systemd timers (systemctl list-timers).

3. If you’re still not sure, you can configure automated renewal manually by following the steps in the

next section. Certbot has been carefully engineered to handle the case where both manual

automated renewal and pre-installed automated renewal are set up.

Setting up automated renewal
If you think you may need to set up automated renewal, follow these instructions to set up a scheduled

task to automatically renew your certificates in the background. If you are unsure whether your system

has a pre-installed scheduled task for Certbot, it is safe to follow these instructions to create one.

NOTE:
If you’re using Windows, these instructions are not neccessary as Certbot on Windows comes with

a scheduled task for automated renewal pre-installed.

If you are using macOS and installed Certbot using Homebrew, follow the instructions at

https://certbot.eff.org/instructions to set up automated renewal. The instructions below are not

applicable on macOS.

Run the following line, which will add a cron job to /etc/crontab:

SLEEPTIME=$(awk ’BEGIN{srand(); print int(rand()*(3600+1))}’); echo "0 0,12 * * * root sleep $SLEEPTIME &&

If you needed to stop your webserver to run Certbot, you’ll want to add pre and post hooks to

stop and start your webserver automatically. For example, if your webserver is HAProxy, run

the following commands to create the hook files in the appropriate directory:

sudo sh -c ’printf "#!/bin/sh\nservice haproxy stop\n" > /etc/letsencrypt/renewal-hooks/pre/haproxy.sh’

sudo sh -c ’printf "#!/bin/sh\nservice haproxy start\n" > /etc/letsencrypt/renewal-hooks/post/haproxy.sh’

sudo chmod 755 /etc/letsencrypt/renewal-hooks/pre/haproxy.sh

sudo chmod 755 /etc/letsencrypt/renewal-hooks/post/haproxy.sh

Congratulations, Certbot will now automatically renew your certificates in the background.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



If you are interested in learning more about how Certbot renews your certificates, see the

Renewing certificates section above.

Where are my certificates?
All generated keys and issued certificates can be found in /etc/letsencrypt/live/$domain, where

$domain is the certificate name (see the note below). Rather than copying, please point your (web)

server configuration directly to those files (or create symlinks). During the renewal,

/etc/letsencrypt/live is updated with the latest necessary files.

NOTE:
The certificate name $domain used in the path /etc/letsencrypt/live/$domain follows this

convention:

+o it is the name given to --cert-name,

+o if --cert-name is not set by the user it is the first domain given to --domains,

+o if the first domain is a wildcard domain (eg. *.example.com) the certificate name will be

example.com,

+o if a name collision would occur with a certificate already named example.com, the new

certificate name will be constructed using a numerical sequence as example.com-001.

For historical reasons, the containing directories are created with permissions of 0700 meaning

that certificates are accessible only to servers that run as the root user. If you will never
downgrade to an older version of Certbot, then you can safely fix this using chmod 0755
/etc/letsencrypt/{live,archive}.

For servers that drop root privileges before attempting to read the private key file, you will also

need to use chgrp and chmod 0640 to allow the server to read

/etc/letsencrypt/live/$domain/privkey.pem.

The following files are available:

privkey.pem
Private key for the certificate.

WARNING:
This must be kept secret at all times! Never share it with anyone, including Certbot

developers. You cannot put it into a safe, however - your server still needs to access this

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



file in order for SSL/TLS to work.

NOTE:
As of Certbot version 0.29.0, private keys for new certificate default to 0600. Any

changes to the group mode or group owner (gid) of this file will be preserved on renewals.

This is what Apache needs for SSLCertificateKeyFile, and Nginx for

ssl_certificate_key.

fullchain.pem
All certificates, including server certificate (aka leaf certificate or end-entity certificate). The

server certificate is the first one in this file, followed by any intermediates.

This is what Apache >= 2.4.8 needs for SSLCertificateFile, and what Nginx needs for

ssl_certificate.

cert.pem and chain.pem (less common)
cert.pem contains the server certificate by itself, and chain.pem contains the additional

intermediate certificate or certificates that web browsers will need in order to validate the server

certificate. If you provide one of these files to your web server, you must provide both of them, or

some browsers will show "This Connection is Untrusted" errors for your site, some of the time.

Apache < 2.4.8 needs these for SSLCertificateFile. and SSLCertificateChainFile, respectively.

If you’re using OCSP stapling with Nginx >= 1.3.7, chain.pem should be provided as the

ssl_trusted_certificate to validate OCSP responses.

NOTE:
All files are PEM-encoded. If you need other format, such as DER or PFX, then you could convert

using openssl. You can automate that with --deploy-hook if you’re using automatic renewal.

Pre and Post Validation Hooks
Certbot allows for the specification of pre and post validation hooks when run in manual mode. The

flags to specify these scripts are --manual-auth-hook and --manual-cleanup-hook respectively and can

be used as follows:

certbot certonly --manual --manual-auth-hook /path/to/http/authenticator.sh --manual-cleanup-hook /path/to/http/cleanup.sh

This will run the authenticator.sh script, attempt the validation, and then run the cleanup.sh
script. Additionally certbot will pass relevant environment variables to these scripts:

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o CERTBOT_DOMAIN: The domain being authenticated

+o CERTBOT_VALIDATION: The validation string

+o CERTBOT_TOKEN: Resource name part of the HTTP-01 challenge (HTTP-01 only)

+o CERTBOT_REMAINING_CHALLENGES: Number of challenges remaining after the current

challenge

+o CERTBOT_ALL_DOMAINS: A comma-separated list of all domains challenged for the current

certificate

Additionally for cleanup:

+o CERTBOT_AUTH_OUTPUT: Whatever the auth script wrote to stdout

Example usage for HTTP-01:

certbot certonly --manual --preferred-challenges=http --manual-auth-hook /path/to/http/authenticator.sh --manual-cleanup-hook

/path/to/http/authenticator.sh

#!/bin/bash

echo $CERTBOT_VALIDATION > /var/www/htdocs/.well-known/acme-challenge/$CERTBOT_TOKEN

/path/to/http/cleanup.sh

#!/bin/bash

rm -f /var/www/htdocs/.well-known/acme-challenge/$CERTBOT_TOKEN

Example usage for DNS-01 (Cloudflare API v4) (for example purposes only, do not use as-is)

certbot certonly --manual --preferred-challenges=dns --manual-auth-hook /path/to/dns/authenticator.sh --manual-cleanup-hook

/path/to/dns/authenticator.sh

#!/bin/bash

# Get your API key from https://www.cloudflare.com/a/account/my-account

API_KEY="your-api-key"

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



EMAIL="your.email@example.com"

# Strip only the top domain to get the zone id

DOMAIN=$(expr match "$CERTBOT_DOMAIN" ’.*\.\(.*\..*\)’)

# Get the Cloudflare zone id

ZONE_EXTRA_PARAMS="status=active&page=1&per_page=20&order=status&direction=desc&match=all"

ZONE_ID=$(curl -s -X GET "https://api.cloudflare.com/client/v4/zones?name=$DOMAIN&$ZONE_EXTRA_PARAMS"

-H "X-Auth-Email: $EMAIL" \

-H "X-Auth-Key: $API_KEY" \

-H "Content-Type: application/json" | python -c "import sys,json;print(json.load(sys.stdin)[’result’][0][’id’])")

# Create TXT record

CREATE_DOMAIN="_acme-challenge.$CERTBOT_DOMAIN"

RECORD_ID=$(curl -s -X POST "https://api.cloudflare.com/client/v4/zones/$ZONE_ID/dns_records" \

-H "X-Auth-Email: $EMAIL" \

-H "X-Auth-Key: $API_KEY" \

-H "Content-Type: application/json" \

--data ’{"type":"TXT","name":"’"$CREATE_DOMAIN"’","content":"’"$CERTBOT_VALIDATION"’","ttl":120}’

| python -c "import sys,json;print(json.load(sys.stdin)[’result’][’id’])")

# Save info for cleanup

if [ ! -d /tmp/CERTBOT_$CERTBOT_DOMAIN ];then

mkdir -m 0700 /tmp/CERTBOT_$CERTBOT_DOMAIN

fi

echo $ZONE_ID > /tmp/CERTBOT_$CERTBOT_DOMAIN/ZONE_ID

echo $RECORD_ID > /tmp/CERTBOT_$CERTBOT_DOMAIN/RECORD_ID

# Sleep to make sure the change has time to propagate over to DNS

sleep 25

/path/to/dns/cleanup.sh

#!/bin/bash

# Get your API key from https://www.cloudflare.com/a/account/my-account

API_KEY="your-api-key"

EMAIL="your.email@example.com"

if [ -f /tmp/CERTBOT_$CERTBOT_DOMAIN/ZONE_ID ]; then

ZONE_ID=$(cat /tmp/CERTBOT_$CERTBOT_DOMAIN/ZONE_ID)

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



rm -f /tmp/CERTBOT_$CERTBOT_DOMAIN/ZONE_ID

fi

if [ -f /tmp/CERTBOT_$CERTBOT_DOMAIN/RECORD_ID ]; then

RECORD_ID=$(cat /tmp/CERTBOT_$CERTBOT_DOMAIN/RECORD_ID)

rm -f /tmp/CERTBOT_$CERTBOT_DOMAIN/RECORD_ID

fi

# Remove the challenge TXT record from the zone

if [ -n "${ZONE_ID}" ]; then

if [ -n "${RECORD_ID}" ]; then

curl -s -X DELETE "https://api.cloudflare.com/client/v4/zones/$ZONE_ID/dns_records/$RECORD_ID" \

-H "X-Auth-Email: $EMAIL" \

-H "X-Auth-Key: $API_KEY" \

-H "Content-Type: application/json"

fi

fi

Changing the ACME Server
By default, Certbot uses Let’s Encrypt’s production server at

https://acme-v02.api.letsencrypt.org/directory. You can tell Certbot to use a different CA by providing

--server on the command line or in a configuration file with the URL of the server’s ACME directory.

For example, if you would like to use Let’s Encrypt’s staging server, you would add --server
https://acme-staging-v02.api.letsencrypt.org/directory to the command line.

NOTE:
--dry-run uses the Let’s Encrypt staging server, unless --server is specified on the CLI or in the

cli.ini configuration file. Take caution when using --dry-run with a custom server, as it may cause

real certificates to be issued and discarded.

If Certbot does not trust the SSL certificate used by the ACME server, you can use the

REQUESTS_CA_BUNDLE environment variable to override the root certificates trusted by

Certbot. Certbot uses the requests library, which does not use the operating system trusted root

store. Make sure that REQUESTS_CA_BUNDLE is set globally in the environment and not

only on the CLI, or scheduled renewal will not succeed.

Lock Files
When processing a validation Certbot writes a number of lock files on your system to prevent multiple

instances from overwriting each other’s changes. This means that by default two instances of Certbot

will not be able to run in parallel.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Since the directories used by Certbot are configurable, Certbot will write a lock file for all of the

directories it uses. This include Certbot’s --work-dir, --logs-dir, and --config-dir. By default these are

/var/lib/letsencrypt, /var/log/letsencrypt, and /etc/letsencrypt respectively. Additionally if you are using

Certbot with Apache or nginx it will lock the configuration folder for that program, which are typically

also in the /etc directory.

Note that these lock files will only prevent other instances of Certbot from using those directories, not

other processes. If you’d like to run multiple instances of Certbot simultaneously you should specify

different directories as the --work-dir, --logs-dir, and --config-dir for each instance of Certbot that you

would like to run.

Configuration file
Certbot accepts a global configuration file that applies its options to all invocations of Certbot.

Certificate specific configuration choices should be set in the .conf files that can be found in

/etc/letsencrypt/renewal.

By default no cli.ini file is created (though it may exist already if you installed Certbot via a package

manager, for instance). After creating one it is possible to specify the location of this configuration file

with certbot --config cli.ini (or shorter -c cli.ini). An example configuration file is shown below:

# This is an example of the kind of things you can do in a configuration file.

# All flags used by the client can be configured here. Run Certbot with

# "--help" to learn more about the available options.

#

# Note that these options apply automatically to all use of Certbot for

# obtaining or renewing certificates, so options specific to a single

# certificate on a system with several certificates should not be placed

# here.

# Use ECC for the private key

key-type = ecdsa

elliptic-curve = secp384r1

# Use a 4096 bit RSA key instead of 2048

rsa-key-size = 4096

# Uncomment and update to register with the specified e-mail address

# email = foo@example.com

# Uncomment to use the standalone authenticator on port 443

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



# authenticator = standalone

# Uncomment to use the webroot authenticator. Replace webroot-path with the

# path to the public_html / webroot folder being served by your web server.

# authenticator = webroot

# webroot-path = /usr/share/nginx/html

# Uncomment to automatically agree to the terms of service of the ACME server

# agree-tos = true

# An example of using an alternate ACME server that uses EAB credentials

# server = https://acme.sectigo.com/v2/InCommonRSAOV

# eab-kid = somestringofstuffwithoutquotes

# eab-hmac-key = yaddayaddahexhexnotquoted

By default, the following locations are searched:

+o /etc/letsencrypt/cli.ini

+o $XDG_CONFIG_HOME/letsencrypt/cli.ini (or ~/.config/letsencrypt/cli.ini if

$XDG_CONFIG_HOME is not set).

Since this configuration file applies to all invocations of certbot it is incorrect to list domains in

it. Listing domains in cli.ini may prevent renewal from working. Additionally due to how

arguments in cli.ini are parsed, options which wish to not be set should not be listed. Options set

to false will instead be read as being set to true by older versions of Certbot, since they have

been listed in the config file.

Log Rotation
By default certbot stores status logs in /var/log/letsencrypt. By default certbot will begin rotating logs

once there are 1000 logs in the log directory. Meaning that once 1000 files are in /var/log/letsencrypt
Certbot will delete the oldest one to make room for new logs. The number of subsequent logs can be

changed by passing the desired number to the command line flag --max-log-backups. Setting this flag

to 0 disables log rotation entirely, causing certbot to always append to the same log file.

NOTE:
Some distributions, including Debian and Ubuntu, disable certbot’s internal log rotation in favor of

a more traditional logrotate script. If you are using a distribution’s packages and want to alter the

log rotation, check /etc/logrotate.d/ for a certbot rotation script.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Certbot command-line options
Certbot supports a lot of command line options. Here’s the full list, from certbot --help all:

usage:

certbot [SUBCOMMAND] [options] [-d DOMAIN] [-d DOMAIN] ...

Certbot can obtain and install HTTPS/TLS/SSL certificates. By default,

it will attempt to use a webserver both for obtaining and installing the

certificate. The most common SUBCOMMANDS and flags are:

obtain, install, and renew certificates:

(default) run Obtain & install a certificate in your current webserver

certonly Obtain or renew a certificate, but do not install it

renew Renew all previously obtained certificates that are near expiry

enhance Add security enhancements to your existing configuration

-d DOMAINS Comma-separated list of domains to obtain a certificate for

--apache Use the Apache plugin for authentication & installation

--standalone Run a standalone webserver for authentication

--nginx Use the Nginx plugin for authentication & installation

--webroot Place files in a server’s webroot folder for authentication

--manual Obtain certificates interactively, or using shell script hooks

-n Run non-interactively

--test-cert Obtain a test certificate from a staging server

--dry-run Test "renew" or "certonly" without saving any certificates to disk

manage certificates:

certificates Display information about certificates you have from Certbot

revoke Revoke a certificate (supply --cert-name or --cert-path)

delete Delete a certificate (supply --cert-name)

reconfigure Update a certificate’s configuration (supply --cert-name)

manage your account:

register Create an ACME account

unregister Deactivate an ACME account

update_account Update an ACME account

show_account Display account details

--agree-tos Agree to the ACME server’s Subscriber Agreement

-m EMAIL Email address for important account notifications

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



optional arguments:

-h, --help show this help message and exit

-c CONFIG_FILE, --config CONFIG_FILE

path to config file (default: /etc/letsencrypt/cli.ini

and ~/.config/letsencrypt/cli.ini)

-v, --verbose This flag can be used multiple times to incrementally

increase the verbosity of output, e.g. -vvv. (default:

0)

--max-log-backups MAX_LOG_BACKUPS

Specifies the maximum number of backup logs that

should be kept by Certbot’s built in log rotation.

Setting this flag to 0 disables log rotation entirely,

causing Certbot to always append to the same log file.

(default: 1000)

-n, --non-interactive, --noninteractive

Run without ever asking for user input. This may

require additional command line flags; the client will

try to explain which ones are required if it finds one

missing (default: False)

--force-interactive Force Certbot to be interactive even if it detects

it’s not being run in a terminal. This flag cannot be

used with the renew subcommand. (default: False)

-d DOMAIN, --domains DOMAIN, --domain DOMAIN

Domain names to include. For multiple domains you can

use multiple -d flags or enter a comma separated list

of domains as a parameter. All domains will be

included as Subject Alternative Names on the

certificate. The first domain will be used as the

certificate name, unless otherwise specified or if you

already have a certificate with the same name. In the

case of a name conflict, a number like -0001 will be

appended to the certificate name. (default: Ask)

--eab-kid EAB_KID Key Identifier for External Account Binding (default:

None)

--eab-hmac-key EAB_HMAC_KEY

HMAC key for External Account Binding (default: None)

--cert-name CERTNAME Certificate name to apply. This name is used by

Certbot for housekeeping and in file paths; it doesn’t

affect the content of the certificate itself. To see

certificate names, run ’certbot certificates’. When

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



creating a new certificate, specifies the new

certificate’s name. (default: the first provided

domain or the name of an existing certificate on your

system for the same domains)

--dry-run Perform a test run of the client, obtaining test

(invalid) certificates but not saving them to disk.

This can currently only be used with the ’certonly’

and ’renew’ subcommands. Note: Although --dry-run

tries to avoid making any persistent changes on a

system, it is not completely side-effect free: if used

with webserver authenticator plugins like apache and

nginx, it makes and then reverts temporary config

changes in order to obtain test certificates, and

reloads webservers to deploy and then roll back those

changes. It also calls --pre-hook and --post-hook

commands if they are defined because they may be

necessary to accurately simulate renewal. --deploy-

hook commands are not called. (default: False)

--debug-challenges After setting up challenges, wait for user input

before submitting to CA. When used in combination with

the ‘-v‘ option, the challenge URLs or FQDNs and their

expected return values are shown. (default: False)

--preferred-chain PREFERRED_CHAIN

Set the preferred certificate chain. If the CA offers

multiple certificate chains, prefer the chain whose

topmost certificate was issued from this Subject

Common Name. If no match, the default offered chain

will be used. (default: None)

--preferred-challenges PREF_CHALLS

A sorted, comma delimited list of the preferred

challenge to use during authorization with the most

preferred challenge listed first (Eg, "dns" or

"http,dns"). Not all plugins support all challenges.

See https://certbot.eff.org/docs/using.html#plugins

for details. ACME Challenges are versioned, but if you

pick "http" rather than "http-01", Certbot will select

the latest version automatically. (default: [])

--issuance-timeout ISSUANCE_TIMEOUT

This option specifies how long (in seconds) Certbot

will wait for the server to issue a certificate.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



(default: 90)

--user-agent USER_AGENT

Set a custom user agent string for the client. User

agent strings allow the CA to collect high level

statistics about success rates by OS, plugin and use

case, and to know when to deprecate support for past

Python versions and flags. If you wish to hide this

information from the Let’s Encrypt server, set this to

"". (default: CertbotACMEClient/2.5.0 (certbot;

OS_NAME OS_VERSION) Authenticator/XXX Installer/YYY

(SUBCOMMAND; flags: FLAGS) Py/major.minor.patchlevel).

The flags encoded in the user agent are: --duplicate,

--force-renew, --allow-subset-of-names, -n, and

whether any hooks are set.

--user-agent-comment USER_AGENT_COMMENT

Add a comment to the default user agent string. May be

used when repackaging Certbot or calling it from

another tool to allow additional statistical data to

be collected. Ignored if --user-agent is set.

(Example: Foo-Wrapper/1.0) (default: None)

automation:

Flags for automating execution & other tweaks

--keep-until-expiring, --keep, --reinstall

If the requested certificate matches an existing

certificate, always keep the existing one until it is

due for renewal (for the ’run’ subcommand this means

reinstall the existing certificate). (default: Ask)

--expand If an existing certificate is a strict subset of the

requested names, always expand and replace it with the

additional names. (default: Ask)

--version show program’s version number and exit

--force-renewal, --renew-by-default

If a certificate already exists for the requested

domains, renew it now, regardless of whether it is

near expiry. (Often --keep-until-expiring is more

appropriate). Also implies --expand. (default: False)

--renew-with-new-domains

If a certificate already exists for the requested

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



certificate name but does not match the requested

domains, renew it now, regardless of whether it is

near expiry. (default: False)

--reuse-key When renewing, use the same private key as the

existing certificate. (default: False)

--no-reuse-key When renewing, do not use the same private key as the

existing certificate. Not reusing private keys is the

default behavior of Certbot. This option may be used

to unset --reuse-key on an existing certificate.

(default: False)

--new-key When renewing or replacing a certificate, generate a

new private key, even if --reuse-key is set on the

existing certificate. Combining --new-key and --reuse-

key will result in the private key being replaced and

then reused in future renewals. (default: False)

--allow-subset-of-names

When performing domain validation, do not consider it

a failure if authorizations can not be obtained for a

strict subset of the requested domains. This may be

useful for allowing renewals for multiple domains to

succeed even if some domains no longer point at this

system. This option cannot be used with --csr.

(default: False)

--agree-tos Agree to the ACME Subscriber Agreement (default: Ask)

--duplicate Allow making a certificate lineage that duplicates an

existing one (both can be renewed in parallel)

(default: False)

-q, --quiet Silence all output except errors. Useful for

automation via cron. Implies --non-interactive.

(default: False)

security:

Security parameters & server settings

--rsa-key-size N Size of the RSA key. (default: 2048)

--key-type {rsa,ecdsa}

Type of generated private key. Only *ONE* per

invocation can be provided at this time. (default:

ecdsa)

--elliptic-curve N The SECG elliptic curve name to use. Please see RFC

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



8446 for supported values. (default: secp256r1)

--must-staple Adds the OCSP Must-Staple extension to the

certificate. Autoconfigures OCSP Stapling for

supported setups (Apache version >= 2.3.3 ). (default:

False)

--redirect Automatically redirect all HTTP traffic to HTTPS for

the newly authenticated vhost. (default: redirect

enabled for install and run, disabled for enhance)

--no-redirect Do not automatically redirect all HTTP traffic to

HTTPS for the newly authenticated vhost. (default:

redirect enabled for install and run, disabled for

enhance)

--hsts Add the Strict-Transport-Security header to every HTTP

response. Forcing browser to always use SSL for the

domain. Defends against SSL Stripping. (default: None)

--uir Add the "Content-Security-Policy: upgrade-insecure-

requests" header to every HTTP response. Forcing the

browser to use https:// for every http:// resource.

(default: None)

--staple-ocsp Enables OCSP Stapling. A valid OCSP response is

stapled to the certificate that the server offers

during TLS. (default: None)

--strict-permissions Require that all configuration files are owned by the

current user; only needed if your config is somewhere

unsafe like /tmp/ (default: False)

--auto-hsts Gradually increasing max-age value for HTTP Strict

Transport Security security header (default: False)

testing:

The following flags are meant for testing and integration purposes only.

--run-deploy-hooks When performing a test run using ‘--dry-run‘ or

‘reconfigure‘, run any applicable deploy hooks. This

includes hooks set on the command line, saved in the

certificate’s renewal configuration file, or present

in the renewal-hooks directory. To exclude directory

hooks, use --no-directory-hooks. The hook(s) will only

be run if the dry run succeeds, and will use the

current active certificate, not the temporary test

certificate acquired during the dry run. This flag is

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



recommended when modifying the deploy hook using

‘reconfigure‘. (default: False)

--test-cert, --staging

Use the staging server to obtain or revoke test

(invalid) certificates; equivalent to --server

https://acme-staging-v02.api.letsencrypt.org/directory

(default: False)

--debug Show tracebacks in case of errors (default: False)

--no-verify-ssl Disable verification of the ACME server’s certificate.

The root certificates trusted by Certbot can be

overriden by setting the REQUESTS_CA_BUNDLE

environment variable. (default: False)

--http-01-port HTTP01_PORT

Port used in the http-01 challenge. This only affects

the port Certbot listens on. A conforming ACME server

will still attempt to connect on port 80. (default:

80)

--http-01-address HTTP01_ADDRESS

The address the server listens to during http-01

challenge. (default: )

--https-port HTTPS_PORT

Port used to serve HTTPS. This affects which port

Nginx will listen on after a LE certificate is

installed. (default: 443)

--break-my-certs Be willing to replace or renew valid certificates with

invalid (testing/staging) certificates (default:

False)

paths:

Flags for changing execution paths & servers

--cert-path CERT_PATH

Path to where certificate is saved (with certonly

--csr), installed from, or revoked (default: None)

--key-path KEY_PATH Path to private key for certificate installation or

revocation (if account key is missing) (default: None)

--fullchain-path FULLCHAIN_PATH

Accompanying path to a full certificate chain

(certificate plus chain). (default: None)

--chain-path CHAIN_PATH

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Accompanying path to a certificate chain. (default:

None)

--config-dir CONFIG_DIR

Configuration directory. (default: /etc/letsencrypt)

--work-dir WORK_DIR Working directory. (default: /var/lib/letsencrypt)

--logs-dir LOGS_DIR Logs directory. (default: /var/log/letsencrypt)

--server SERVER ACME Directory Resource URI. (default:

https://acme-v02.api.letsencrypt.org/directory)

manage:

Various subcommands and flags are available for managing your

certificates:

certificates List certificates managed by Certbot

delete Clean up all files related to a certificate

renew Renew all certificates (or one specified with --cert-

name)

revoke Revoke a certificate specified with --cert-path or

--cert-name

reconfigure Update renewal configuration for a certificate

specified by --cert-name

run:

Options for obtaining & installing certificates

certonly:

Options for modifying how a certificate is obtained

--csr CSR Path to a Certificate Signing Request (CSR) in DER or

PEM format. Currently --csr only works with the

’certonly’ subcommand. (default: None)

renew:

The ’renew’ subcommand will attempt to renew any certificates previously

obtained if they are close to expiry, and print a summary of the results.

By default, ’renew’ will reuse the plugins and options used to obtain or

most recently renew each certificate. You can test whether future renewals

will succeed with ‘--dry-run‘. Individual certificates can be renewed with

the ‘--cert-name‘ option. Hooks are available to run commands before and

after renewal; see https://certbot.eff.org/docs/using.html#renewal for

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



more information on these.

--pre-hook PRE_HOOK Command to be run in a shell before obtaining any

certificates. Unless --disable-hook-validation is

used, the command’s first word must be the absolute

pathname of an executable or one found via the PATH

environment variable. Intended primarily for renewal,

where it can be used to temporarily shut down a

webserver that might conflict with the standalone

plugin. This will only be called if a certificate is

actually to be obtained/renewed. When renewing several

certificates that have identical pre-hooks, only the

first will be executed. (default: None)

--post-hook POST_HOOK

Command to be run in a shell after attempting to

obtain/renew certificates. Unless --disable-hook-

validation is used, the command’s first word must be

the absolute pathname of an executable or one found

via the PATH environment variable. Can be used to

deploy renewed certificates, or to restart any servers

that were stopped by --pre-hook. This is only run if

an attempt was made to obtain/renew a certificate. If

multiple renewed certificates have identical post-

hooks, only one will be run. (default: None)

--deploy-hook DEPLOY_HOOK

Command to be run in a shell once for each

successfully issued certificate. Unless --disable-

hook-validation is used, the command’s first word must

be the absolute pathname of an executable or one found

via the PATH environment variable. For this command,

the shell variable $RENEWED_LINEAGE will point to the

config live subdirectory (for example,

"/etc/letsencrypt/live/example.com") containing the

new certificates and keys; the shell variable

$RENEWED_DOMAINS will contain a space-delimited list

of renewed certificate domains (for example,

"example.com www.example.com") (default: None)

--disable-hook-validation

Ordinarily the commands specified for --pre-

hook/--post-hook/--deploy-hook will be checked for

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



validity, to see if the programs being run are in the

$PATH, so that mistakes can be caught early, even when

the hooks aren’t being run just yet. The validation is

rather simplistic and fails if you use more advanced

shell constructs, so you can use this switch to

disable it. (default: False)

--no-directory-hooks Disable running executables found in Certbot’s hook

directories during renewal. (default: False)

--disable-renew-updates

Disable automatic updates to your server configuration

that would otherwise be done by the selected installer

plugin, and triggered when the user executes "certbot

renew", regardless of if the certificate is renewed.

This setting does not apply to important TLS

configuration updates. (default: False)

--no-autorenew Disable auto renewal of certificates. (default: False)

certificates:

List certificates managed by Certbot

delete:

Options for deleting a certificate

revoke:

Options for revocation of certificates

--reason {unspecified,keycompromise,affiliationchanged,superseded,cessationofoperation}

Specify reason for revoking certificate. (default:

unspecified)

--delete-after-revoke

Delete certificates after revoking them, along with

all previous and later versions of those certificates.

(default: None)

--no-delete-after-revoke

Do not delete certificates after revoking them. This

option should be used with caution because the ’renew’

subcommand will attempt to renew undeleted revoked

certificates. (default: None)

register:

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Options for account registration

--register-unsafely-without-email

Specifying this flag enables registering an account

with no email address. This is strongly discouraged,

because you will be unable to receive notice about

impending expiration or revocation of your

certificates or problems with your Certbot

installation that will lead to failure to renew.

(default: False)

-m EMAIL, --email EMAIL

Email used for registration and recovery contact. Use

comma to register multiple emails, ex:

u1@example.com,u2@example.com. (default: Ask).

--eff-email Share your e-mail address with EFF (default: None)

--no-eff-email Don’t share your e-mail address with EFF (default:

None)

update_account:

Options for account modification

unregister:

Options for account deactivation.

--account ACCOUNT_ID Account ID to use (default: None)

install:

Options for modifying how a certificate is deployed

rollback:

Options for rolling back server configuration changes

--checkpoints N Revert configuration N number of checkpoints.

(default: 1)

plugins:

Options for the "plugins" subcommand

--init Initialize plugins. (default: False)

--prepare Initialize and prepare plugins. (default: False)

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



--authenticators Limit to authenticator plugins only. (default: None)

--installers Limit to installer plugins only. (default: None)

enhance:

Helps to harden the TLS configuration by adding security enhancements to

already existing configuration.

show_account:

Options useful for the "show_account" subcommand:

reconfigure:

Common options that may be updated with the "reconfigure" subcommand:

plugins:

Plugin Selection: Certbot client supports an extensible plugins

architecture. See ’certbot plugins’ for a list of all installed plugins

and their names. You can force a particular plugin by setting options

provided below. Running --help <plugin_name> will list flags specific to

that plugin.

--configurator CONFIGURATOR

Name of the plugin that is both an authenticator and

an installer. Should not be used together with

--authenticator or --installer. (default: Ask)

-a AUTHENTICATOR, --authenticator AUTHENTICATOR

Authenticator plugin name. (default: None)

-i INSTALLER, --installer INSTALLER

Installer plugin name (also used to find domains).

(default: None)

--apache Obtain and install certificates using Apache (default:

False)

--nginx Obtain and install certificates using Nginx (default:

False)

--standalone Obtain certificates using a "standalone" webserver.

(default: False)

--manual Provide laborious manual instructions for obtaining a

certificate (default: False)

--webroot Obtain certificates by placing files in a webroot

directory. (default: False)

--dns-cloudflare Obtain certificates using a DNS TXT record (if you are

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



using Cloudflare for DNS). (default: False)

--dns-digitalocean Obtain certificates using a DNS TXT record (if you are

using DigitalOcean for DNS). (default: False)

--dns-dnsimple Obtain certificates using a DNS TXT record (if you are

using DNSimple for DNS). (default: False)

--dns-dnsmadeeasy Obtain certificates using a DNS TXT record (if you are

using DNS Made Easy for DNS). (default: False)

--dns-gehirn Obtain certificates using a DNS TXT record (if you are

using Gehirn Infrastructure Service for DNS).

(default: False)

--dns-google Obtain certificates using a DNS TXT record (if you are

using Google Cloud DNS). (default: False)

--dns-linode Obtain certificates using a DNS TXT record (if you are

using Linode for DNS). (default: False)

--dns-luadns Obtain certificates using a DNS TXT record (if you are

using LuaDNS for DNS). (default: False)

--dns-nsone Obtain certificates using a DNS TXT record (if you are

using NS1 for DNS). (default: False)

--dns-ovh Obtain certificates using a DNS TXT record (if you are

using OVH for DNS). (default: False)

--dns-rfc2136 Obtain certificates using a DNS TXT record (if you are

using BIND for DNS). (default: False)

--dns-route53 Obtain certificates using a DNS TXT record (if you are

using Route53 for DNS). (default: False)

--dns-sakuracloud Obtain certificates using a DNS TXT record (if you are

using Sakura Cloud for DNS). (default: False)

apache:

Apache Web Server plugin (Please note that the default values of the

Apache plugin options change depending on the operating system Certbot is

run on.)

--apache-enmod APACHE_ENMOD

Path to the Apache ’a2enmod’ binary (default: None)

--apache-dismod APACHE_DISMOD

Path to the Apache ’a2dismod’ binary (default: None)

--apache-le-vhost-ext APACHE_LE_VHOST_EXT

SSL vhost configuration extension (default: -le-

ssl.conf)

--apache-server-root APACHE_SERVER_ROOT

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Apache server root directory (default: /etc/apache2)

--apache-vhost-root APACHE_VHOST_ROOT

Apache server VirtualHost configuration root (default:

None)

--apache-logs-root APACHE_LOGS_ROOT

Apache server logs directory (default:

/var/log/apache2)

--apache-challenge-location APACHE_CHALLENGE_LOCATION

Directory path for challenge configuration (default:

/etc/apache2)

--apache-handle-modules APACHE_HANDLE_MODULES

Let installer handle enabling required modules for you

(Only Ubuntu/Debian currently) (default: False)

--apache-handle-sites APACHE_HANDLE_SITES

Let installer handle enabling sites for you (Only

Ubuntu/Debian currently) (default: False)

--apache-ctl APACHE_CTL

Full path to Apache control script (default:

apache2ctl)

--apache-bin APACHE_BIN

Full path to apache2/httpd binary (default: None)

dns-cloudflare:

Obtain certificates using a DNS TXT record (if you are using Cloudflare

for DNS).

--dns-cloudflare-propagation-seconds DNS_CLOUDFLARE_PROPAGATION_SECONDS

The number of seconds to wait for DNS to propagate

before asking the ACME server to verify the DNS

record. (default: 10)

--dns-cloudflare-credentials DNS_CLOUDFLARE_CREDENTIALS

Cloudflare credentials INI file. (default: None)

dns-digitalocean:

Obtain certificates using a DNS TXT record (if you are using DigitalOcean

for DNS).

--dns-digitalocean-propagation-seconds DNS_DIGITALOCEAN_PROPAGATION_SECONDS

The number of seconds to wait for DNS to propagate

before asking the ACME server to verify the DNS

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



record. (default: 10)

--dns-digitalocean-credentials DNS_DIGITALOCEAN_CREDENTIALS

DigitalOcean credentials INI file. (default: None)

dns-dnsimple:

Obtain certificates using a DNS TXT record (if you are using DNSimple for

DNS).

--dns-dnsimple-propagation-seconds DNS_DNSIMPLE_PROPAGATION_SECONDS

The number of seconds to wait for DNS to propagate

before asking the ACME server to verify the DNS

record. (default: 30)

--dns-dnsimple-credentials DNS_DNSIMPLE_CREDENTIALS

DNSimple credentials INI file. (default: None)

dns-dnsmadeeasy:

Obtain certificates using a DNS TXT record (if you are using DNS Made Easy

for DNS).

--dns-dnsmadeeasy-propagation-seconds DNS_DNSMADEEASY_PROPAGATION_SECONDS

The number of seconds to wait for DNS to propagate

before asking the ACME server to verify the DNS

record. (default: 60)

--dns-dnsmadeeasy-credentials DNS_DNSMADEEASY_CREDENTIALS

DNS Made Easy credentials INI file. (default: None)

dns-gehirn:

Obtain certificates using a DNS TXT record (if you are using Gehirn

Infrastructure Service for DNS).

--dns-gehirn-propagation-seconds DNS_GEHIRN_PROPAGATION_SECONDS

The number of seconds to wait for DNS to propagate

before asking the ACME server to verify the DNS

record. (default: 30)

--dns-gehirn-credentials DNS_GEHIRN_CREDENTIALS

Gehirn Infrastructure Service credentials file.

(default: None)

dns-google:

Obtain certificates using a DNS TXT record (if you are using Google Cloud

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



DNS for DNS).

--dns-google-propagation-seconds DNS_GOOGLE_PROPAGATION_SECONDS

The number of seconds to wait for DNS to propagate

before asking the ACME server to verify the DNS

record. (default: 60)

--dns-google-credentials DNS_GOOGLE_CREDENTIALS

Path to Google Cloud DNS service account JSON file.

(See https://developers.google.com/identity/protocols/

OAuth2ServiceAccount#creatinganaccount forinformation

about creating a service account and

https://cloud.google.com/dns/access-

control#permissions_and_roles for information about

therequired permissions.) (default: None)

dns-linode:

Obtain certificates using a DNS TXT record (if you are using Linode for

DNS).

--dns-linode-propagation-seconds DNS_LINODE_PROPAGATION_SECONDS

The number of seconds to wait for DNS to propagate

before asking the ACME server to verify the DNS

record. (default: 120)

--dns-linode-credentials DNS_LINODE_CREDENTIALS

Linode credentials INI file. (default: None)

dns-luadns:

Obtain certificates using a DNS TXT record (if you are using LuaDNS for

DNS).

--dns-luadns-propagation-seconds DNS_LUADNS_PROPAGATION_SECONDS

The number of seconds to wait for DNS to propagate

before asking the ACME server to verify the DNS

record. (default: 30)

--dns-luadns-credentials DNS_LUADNS_CREDENTIALS

LuaDNS credentials INI file. (default: None)

dns-nsone:

Obtain certificates using a DNS TXT record (if you are using NS1 for DNS).

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



--dns-nsone-propagation-seconds DNS_NSONE_PROPAGATION_SECONDS

The number of seconds to wait for DNS to propagate

before asking the ACME server to verify the DNS

record. (default: 30)

--dns-nsone-credentials DNS_NSONE_CREDENTIALS

NS1 credentials file. (default: None)

dns-ovh:

Obtain certificates using a DNS TXT record (if you are using OVH for DNS).

--dns-ovh-propagation-seconds DNS_OVH_PROPAGATION_SECONDS

The number of seconds to wait for DNS to propagate

before asking the ACME server to verify the DNS

record. (default: 120)

--dns-ovh-credentials DNS_OVH_CREDENTIALS

OVH credentials INI file. (default: None)

dns-rfc2136:

Obtain certificates using a DNS TXT record (if you are using BIND for

DNS).

--dns-rfc2136-propagation-seconds DNS_RFC2136_PROPAGATION_SECONDS

The number of seconds to wait for DNS to propagate

before asking the ACME server to verify the DNS

record. (default: 60)

--dns-rfc2136-credentials DNS_RFC2136_CREDENTIALS

RFC 2136 credentials INI file. (default: None)

dns-route53:

Obtain certificates using a DNS TXT record (if you are using AWS Route53

for DNS).

dns-sakuracloud:

Obtain certificates using a DNS TXT record (if you are using Sakura Cloud

for DNS).

--dns-sakuracloud-propagation-seconds DNS_SAKURACLOUD_PROPAGATION_SECONDS

The number of seconds to wait for DNS to propagate

before asking the ACME server to verify the DNS

record. (default: 90)

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



--dns-sakuracloud-credentials DNS_SAKURACLOUD_CREDENTIALS

Sakura Cloud credentials file. (default: None)

manual:

Authenticate through manual configuration or custom shell scripts. When

using shell scripts, an authenticator script must be provided. The

environment variables available to this script depend on the type of

challenge. $CERTBOT_DOMAIN will always contain the domain being

authenticated. For HTTP-01 and DNS-01, $CERTBOT_VALIDATION is the

validation string, and $CERTBOT_TOKEN is the filename of the resource

requested when performing an HTTP-01 challenge. An additional cleanup

script can also be provided and can use the additional variable

$CERTBOT_AUTH_OUTPUT which contains the stdout output from the auth

script. For both authenticator and cleanup script, on HTTP-01 and DNS-01

challenges, $CERTBOT_REMAINING_CHALLENGES will be equal to the number of

challenges that remain after the current one, and $CERTBOT_ALL_DOMAINS

contains a comma-separated list of all domains that are challenged for the

current certificate.

--manual-auth-hook MANUAL_AUTH_HOOK

Path or command to execute for the authentication

script (default: None)

--manual-cleanup-hook MANUAL_CLEANUP_HOOK

Path or command to execute for the cleanup script

(default: None)

nginx:

Nginx Web Server plugin

--nginx-server-root NGINX_SERVER_ROOT

Nginx server root directory. (default: /etc/nginx or

/usr/local/etc/nginx)

--nginx-ctl NGINX_CTL

Path to the ’nginx’ binary, used for ’configtest’ and

retrieving nginx version number. (default: nginx)

--nginx-sleep-seconds NGINX_SLEEP_SECONDS

Number of seconds to wait for nginx configuration

changes to apply when reloading. (default: 1)

null:

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Null Installer

standalone:

Runs an HTTP server locally which serves the necessary validation files

under the /.well-known/acme-challenge/ request path. Suitable if there is

no HTTP server already running. HTTP challenge only (wildcards not

supported).

webroot:

Saves the necessary validation files to a .well-known/acme-challenge/

directory within the nominated webroot path. A seperate HTTP server must

be running and serving files from the webroot path. HTTP challenge only

(wildcards not supported).

--webroot-path WEBROOT_PATH, -w WEBROOT_PATH

public_html / webroot path. This can be specified

multiple times to handle different domains; each

domain will have the webroot path that preceded it.

For instance: ‘-w /var/www/example -d example.com -d

www.example.com -w /var/www/thing -d thing.net -d

m.thing.net‘ (default: Ask)

--webroot-map WEBROOT_MAP

JSON dictionary mapping domains to webroot paths; this

implies -d for each entry. You may need to escape this

from your shell. E.g.: --webroot-map

’{"eg1.is,m.eg1.is":"/www/eg1/", "eg2.is":"/www/eg2"}’

This option is merged with, but takes precedence over,

-w / -d entries. At present, if you put webroot-map in

a config file, it needs to be on a single line, like:

webroot-map = {"example.com":"/var/www"}. (default:

{})

Getting help
If you’re having problems, we recommend posting on the Let’s Encrypt Community Forum.

If you find a bug in the software, please do report it in our issue tracker. Remember to give us as much

information as possible:

+o copy and paste exact command line used and the output (though mind that the latter might include

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



some personally identifiable information, including your email and domains)

+o copy and paste logs from /var/log/letsencrypt (though mind they also might contain personally

identifiable information)

+o copy and paste certbot --version output

+o your operating system, including specific version

+o specify which installation method you’ve chosen

DEVELOPER GUIDE
Table of Contents

+o Getting Started

+o Running a local copy of the client

+o Find issues to work on

+o Testing

+o Running automated unit tests

+o Running automated integration tests

+o Running manual integration tests

+o Running tests in CI

+o Code components and layout

+o Plugin-architecture

+o Authenticators

+o Installer

+o Installer Development

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o Writing your own plugin

+o Writing your own plugin snap

+o Coding style

+o Use certbot.compat.os instead of os

+o Mypy type annotations

+o Submitting a pull request

+o Asking for help

+o Building the Certbot and DNS plugin snaps

+o Updating the documentation

+o Certbot’s dependencies

+o Updating dependency versions

Getting Started
Certbot has the same system requirements when set up for development. While the section below will

help you install Certbot and its dependencies, Certbot needs to be run on a UNIX-like OS so if you’re

using Windows, you’ll need to set up a (virtual) machine running an OS such as Linux and continue

with these instructions on that UNIX-like OS.

Running a local copy of the client
Running the client in developer mode from your local tree is a little different than running Certbot as a

user. To get set up, clone our git repository by running:

git clone https://github.com/certbot/certbot

If you’re running on a UNIX-like OS, you can run the following commands to install

dependencies and set up a virtual environment where you can run Certbot.

Install and configure the OS system dependencies required to run Certbot.

# For APT-based distributions (e.g. Debian, Ubuntu ...)

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



sudo apt update

sudo apt install python3-venv libaugeas0

# For RPM-based distributions (e.g. Fedora, CentOS ...)

# NB1: old distributions will use yum instead of dnf

# NB2: RHEL-based distributions use python3X instead of python3 (e.g. python38)

sudo dnf install python3 augeas-libs

# For macOS installations with Homebrew already installed and configured

# NB: If you also run ‘brew install python‘ you don’t need the ~/lib

# directory created below, however, Certbot’s Apache plugin won’t work

# if you use Python installed from other sources such as pyenv or the

# version provided by Apple.

brew install augeas

mkdir ~/lib

ln -s $(brew --prefix)/lib/libaugeas* ~/lib

NOTE:
If you have trouble creating the virtual environment below, you may need to install additional

dependencies. See the cryptography project’s site for more information.

Set up the Python virtual environment that will host your Certbot local instance.

cd certbot

python tools/venv.py

NOTE:
You may need to repeat this when Certbot’s dependencies change or when a new plugin is

introduced.

You can now run the copy of Certbot from git either by executing venv/bin/certbot, or by

activating the virtual environment. You can do the latter by running:

source venv/bin/activate

After running this command, certbot and development tools like ipdb3, ipython, pytest, and tox
are available in the shell where you ran the command. These tools are installed in the virtual

environment and are kept separate from your global Python installation. This works by setting

environment variables so the right executables are found and Python can pull in the versions of

various packages needed by Certbot. More information can be found in the virtualenv docs.

Find issues to work on

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



You can find the open issues in the github issue tracker. Comparatively easy ones are marked good

first issue. If you’re starting work on something, post a comment to let others know and seek feedback

on your plan where appropriate.

Once you’ve got a working branch, you can open a pull request. All changes in your pull request must

have thorough unit test coverage, pass our tests, and be compliant with the coding style.

Testing
You can test your code in several ways:

+o running the automated unit tests,

+o running the automated integration tests

+o running an ad hoc manual integration test

NOTE:
Running integration tests does not currently work on macOS. See

https://github.com/certbot/certbot/issues/6959. In the meantime, we recommend developers on

macOS open a PR to run integration tests.

Running automated unit tests
When you are working in a file foo.py, there should also be a file foo_test.py either in the same

directory as foo.py or in the tests subdirectory (if there isn’t, make one). While you are working on

your code and tests, run python foo_test.py to run the relevant tests.

For debugging, we recommend putting import ipdb; ipdb.set_trace() statements inside the source code.

Once you are done with your code changes, and the tests in foo_test.py pass, run all of the unit tests for

Certbot and check for coverage with tox -e cover. You should then check for code style with tox -e lint
(all files) or pylint --rcfile=.pylintrc path/to/file.py (single file at a time).

Once all of the above is successful, you may run the full test suite using tox --skip-missing-interpreters.

We recommend running the commands above first, because running all tests like this is very slow, and

the large amount of output can make it hard to find specific failures when they happen.

WARNING:
The full test suite may attempt to modify your system’s Apache config if your user has sudo

permissions, so it should not be run on a production Apache server.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Running automated integration tests
Generally it is sufficient to open a pull request and let Github and Azure Pipelines run integration tests

for you. However, you may want to run them locally before submitting your pull request. You need

Docker and docker-compose installed and working.

The tox environment integration will setup Pebble, the Let’s Encrypt ACME CA server for integration

testing, then launch the Certbot integration tests.

With a user allowed to access your local Docker daemon, run:

tox -e integration

Tests will be run using pytest. A test report and a code coverage report will be displayed at the

end of the integration tests execution.

Running manual integration tests
You can also manually execute Certbot against a local instance of the Pebble ACME server. This is

useful to verify that the modifications done to the code makes Certbot behave as expected.

To do so you need:

+o Docker installed, and a user with access to the Docker client,

+o an available local copy of Certbot.

The virtual environment set up with python tools/venv.py contains two CLI tools that can be

used once the virtual environment is activated:

run_acme_server

+o Starts a local instance of Pebble and runs in the foreground printing its logs.

+o Press CTRL+C to stop this instance.

+o This instance is configured to validate challenges against certbot executed locally.

NOTE:
Some options are available to tweak the local ACME server. You can execute run_acme_server
--help to see the inline help of the run_acme_server tool.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



certbot_test [ARGS...]

+o Execute certbot with the provided arguments and other arguments useful for testing purposes, such

as: verbose output, full tracebacks in case Certbot crashes, etc.

+o Execution is preconfigured to interact with the Pebble CA started with run_acme_server.

+o Any arguments can be passed as they would be to Certbot (eg. certbot_test certonly -d
test.example.com).

Here is a typical workflow to verify that Certbot successfully issued a certificate using an

HTTP-01 challenge on a machine with Python 3:

python tools/venv.py

source venv/bin/activate

run_acme_server &

certbot_test certonly --standalone -d test.example.com

# To stop Pebble, launch ‘fg‘ to get back the background job, then press CTRL+C

Running tests in CI
Certbot uses Azure Pipelines to run continuous integration tests. If you are using our Azure setup, a

branch whose name starts with test- will run all tests on that branch.

Code components and layout
The following components of the Certbot repository are distributed to users:

acme
contains all protocol specific code

certbot
main client code

certbot-apache and certbot-nginx
client code to configure specific web servers

certbot-dns-*
client code to configure DNS providers

windows installer
Installs Certbot on Windows and is built using the files in windows-installer/

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Plugin-architecture
Certbot has a plugin architecture to facilitate support for different webservers, other TLS servers, and

operating systems. The interfaces available for plugins to implement are defined in interfaces.py and

plugins/common.py.

The main two plugin interfaces are Authenticator, which implements various ways of proving domain

control to a certificate authority, and Installer, which configures a server to use a certificate once it is

issued. Some plugins, like the built-in Apache and Nginx plugins, implement both interfaces and

perform both tasks. Others, like the built-in Standalone authenticator, implement just one interface.

Authenticators
Authenticators are plugins that prove control of a domain name by solving a challenge provided by the

ACME server. ACME currently defines several types of challenges: HTTP, TLS-ALPN, and DNS,

represented by classes in acme.challenges. An authenticator plugin should implement support for at

least one challenge type.

An Authenticator indicates which challenges it supports by implementing get_chall_pref(domain) to

return a sorted list of challenge types in preference order.

An Authenticator must also implement perform(achalls), which "performs" a list of challenges by, for

instance, provisioning a file on an HTTP server, or setting a TXT record in DNS. Once all challenges

have succeeded or failed, Certbot will call the plugin’s cleanup(achalls) method to remove any files or

DNS records that were needed only during authentication.

Installer
Installers plugins exist to actually setup the certificate in a server, possibly tweak the security

configuration to make it more correct and secure (Fix some mixed content problems, turn on HSTS,

redirect to HTTPS, etc). Installer plugins tell the main client about their abilities to do the latter via the

supported_enhancements() call. We currently have two Installers in the tree, the ApacheConfigurator.

and the NginxConfigurator. External projects have made some progress toward support for IIS, Icecast

and Plesk.

Installers and Authenticators will oftentimes be the same class/object (because for instance both tasks

can be performed by a webserver like nginx) though this is not always the case (the standalone plugin

is an authenticator that listens on port 80, but it cannot install certificates; a postfix plugin would be an

installer but not an authenticator).

Installers and Authenticators are kept separate because it should be possible to use the

StandaloneAuthenticator (it sets up its own Python server to perform challenges) with a program that

cannot solve challenges itself (Such as MTA installers).

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Installer Development
There are a few existing classes that may be beneficial while developing a new Installer. Installers

aimed to reconfigure UNIX servers may use Augeas for configuration parsing and can inherit from

AugeasConfigurator class to handle much of the interface. Installers that are unable to use Augeas may

still find the Reverter class helpful in handling configuration checkpoints and rollback.

Writing your own plugin
NOTE:

The Certbot team is not currently accepting any new plugins because we want to rethink our

approach to the challenge and resolve some issues like #6464, #6503, and #6504 first.

In the meantime, you’re welcome to release it as a third-party plugin. See certbot-dns-ispconfig for

one example of that.

Certbot client supports dynamic discovery of plugins through the setuptools entry points using

the certbot.plugins group. This way you can, for example, create a custom implementation of

Authenticator or the Installer without having to merge it with the core upstream source code. An

example is provided in examples/plugins/ directory.

While developing, you can install your plugin into a Certbot development virtualenv like this:

. venv/bin/activate

pip install -e examples/plugins/

certbot_test plugins

Your plugin should show up in the output of the last command. If not, it was not installed

properly.

Once you’ve finished your plugin and published it, you can have your users install it

system-wide with pip install. Note that this will only work for users who have Certbot installed

from OS packages or via pip.

Writing your own plugin snap
If you’d like your plugin to be used alongside the Certbot snap, you will also have to publish your

plugin as a snap. Plugin snaps are regular confined snaps, but normally do not provide any "apps"

themselves. Plugin snaps export loadable Python modules to the Certbot snap.

When the Certbot snap runs, it will use its version of Python and prefer Python modules contained in

its own snap over modules contained in external snaps. This means that your snap doesn’t have to

contain things like an extra copy of Python, Certbot, or their dependencies, but also that if you need a

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



different version of a dependency than is already installed in the Certbot snap, the Certbot snap will

have to be updated.

Certbot plugin snaps expose their Python modules to the Certbot snap via a snap content interface

where certbot-1 is the value for the content attribute. The Certbot snap only uses this to find the names

of connected plugin snaps and it expects to find the Python modules to be loaded under

lib/python3.8/site-packages/ in the plugin snap. This location is the default when using the core20 base

snap and the python snapcraft plugin.

The Certbot snap also provides a separate content interface which you can use to get metadata about

the Certbot snap using the content identifier metadata-1.

The script used to generate the snapcraft.yaml files for our own externally snapped plugins can be

found at https://github.com/certbot/certbot/blob/master/tools/snap/generate_dnsplugins_snapcraft.sh.

For more information on building externally snapped plugins, see the section on Building the Certbot

and DNS plugin snaps.

Once you have created your own snap, if you have the snap file locally, it can be installed for use with

Certbot by running:

snap install --classic certbot

snap set certbot trust-plugin-with-root=ok

snap install --dangerous your-snap-filename.snap

sudo snap connect certbot:plugin your-snap-name

sudo /snap/bin/certbot plugins

If everything worked, the last command should list your plugin in the list of plugins found by

Certbot. Once your snap is published to the snap store, it will be installable through the name of

the snap on the snap store without the --dangerous flag. If you are also using Certbot’s metadata

interface, you can run sudo snap connect your-snap-name:your-plug-name-for-metadata
certbot:certbot-metadata to connect your snap to it.

Coding style
Please:

1. Be consistent with the rest of the code.

2. Read PEP 8 - Style Guide for Python Code.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



3. Follow the Google Python Style Guide, with the exception that we use Sphinx-style documentation:

def foo(arg):

"""Short description.

:param int arg: Some number.

:returns: Argument

:rtype: int

"""

return arg

4. Remember to use pylint.

5. You may consider installing a plugin for editorconfig in your editor to prevent some linting

warnings.

6. Please avoid unittest.assertTrue or unittest.assertFalse when possible, and use assertEqual or more

specific assert. They give better messages when it’s failing, and are generally more correct.

Use certbot.compat.os instead of os
Python’s standard library os module lacks full support for several Windows security features about file

permissions (eg. DACLs). However several files handled by Certbot (eg. private keys) need strongly

restricted access on both Linux and Windows.

To help with this, the certbot.compat.os module wraps the standard os module, and forbids usage of

methods that lack support for these Windows security features.

As a developer, when working on Certbot or its plugins, you must use certbot.compat.os in every place

you would need os (eg. from certbot.compat import os instead of import os). Otherwise the tests will

fail when your PR is submitted.

Mypy type annotations
Certbot uses the mypy static type checker. Python 3 natively supports official type annotations, which

can then be tested for consistency using mypy. Mypy does some type checks even without type

annotations; we can find bugs in Certbot even without a fully annotated codebase.

Zulip wrote a great guide to using mypy. It’s useful, but you don’t have to read the whole thing to start

contributing to Certbot.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



To run mypy on Certbot, use tox -e mypy on a machine that has Python 3 installed.

Also note that OpenSSL, which we rely on, has type definitions for crypto but not SSL. We use both.

Those imports should look like this:

from OpenSSL import crypto

from OpenSSL import SSL

Submitting a pull request
Steps:

0. We recommend you talk with us in a GitHub issue or Mattermost before writing a pull request to

ensure the changes you’re making is something we have the time and interest to review.

1. Write your code! When doing this, you should add mypy type annotations for any functions you

add or modify. You can check that you’ve done this correctly by running tox -e mypy on a

machine that has Python 3 installed.

2. Make sure your environment is set up properly and that you’re in your virtualenv. You can do this

by following the instructions in the Getting Started section.

3. Run tox -e lint to check for pylint errors. Fix any errors.

4. Run tox --skip-missing-interpreters to run all the tests we recommend developers run locally. The

--skip-missing-interpreters argument ignores missing versions of Python needed for running the

tests. Fix any errors.

5. If any documentation should be added or updated as part of the changes you have made, please

include the documentation changes in your PR.

6. Submit the PR. Once your PR is open, please do not force push to the branch containing your pull

request to squash or amend commits. We use squash merges on PRs and rewriting commits makes

changes harder to track between reviews.

7. Did your tests pass on Azure Pipelines? If they didn’t, fix any errors.

Asking for help
If you have any questions while working on a Certbot issue, don’t hesitate to ask for help! You can do

this in the Certbot channel in EFF’s Mattermost instance for its open source projects as described

below.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



You can get involved with several of EFF’s software projects such as Certbot at the EFF Open Source

Contributor Chat Platform. By signing up for the EFF Open Source Contributor Chat Platform, you

consent to share your personal information with the Electronic Frontier Foundation, which is the

operator and data controller for this platform. The channels will be available both to EFF, and to other

users of EFFOSCCP, who may use or disclose information in these channels outside of EFFOSCCP.

EFF will use your information, according to the Privacy Policy, to further the mission of EFF,

including hosting and moderating the discussions on this platform.

Use of EFFOSCCP is subject to the EFF Code of Conduct. When investigating an alleged Code of

Conduct violation, EFF may review discussion channels or direct messages.

Building the Certbot and DNS plugin snaps
Instructions for how to manually build and run the Certbot snap and the externally snapped DNS

plugins that the Certbot project supplies are located in the README file at

https://github.com/certbot/certbot/tree/master/tools/snap.

Updating the documentation
Many of the packages in the Certbot repository have documentation in a docs/ directory. This directory

is located under the top level directory for the package. For instance, Certbot’s documentation is under

certbot/docs.

To build the documentation of a package, make sure you have followed the instructions to set up a

local copy of Certbot including activating the virtual environment. After that, cd to the docs directory

you want to build and run the command:

make clean html

This would generate the HTML documentation in _build/html in your current docs/ directory.

Certbot’s dependencies
We attempt to pin all of Certbot’s dependencies whenever we can for reliability and consistency. Some

of the places we have Certbot’s dependencies pinned include our snaps, Docker images, Windows

installer, CI, and our development environments.

In most cases, the file where dependency versions are specified is tools/requirements.txt. The one

exception to this is our "oldest" tests where tools/oldest_constraints.txt is used instead. The purpose of

the "oldest" tests is to ensure Certbot continues to work with the oldest versions of our dependencies

which we claim to support. The oldest versions of the dependencies we support should also be declared

in our setup.py files to communicate this information to our users.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



The choices of whether Certbot’s dependencies are pinned and what file is used if they are should be

automatically handled for you most of the time by Certbot’s tooling. The way it works though is

tools/pip_install.py (which many of our other tools build on) checks for the presence of environment

variables. If CERTBOT_OLDEST is set to 1, tools/oldest_constraints.txt will be used as constraints for

pip, otherwise, tools/requirements.txt is used as constraints.

Updating dependency versions
tools/requirements.txt and tools/oldest_constraints.txt can be updated using

tools/pinning/current/repin.sh and tools/pinning/oldest/repin.sh respectively. This works by using

poetry to generate pinnings based on a Poetry project defined by the pyproject.toml file in the same

directory as the script. In many cases, you can just run the script to generate updated dependencies,

however, if you need to pin back packages or unpin packages that were previously restricted to an older

version, you will need to modify the pyproject.toml file. The syntax used by this file is described at

https://python-poetry.org/docs/pyproject/ and how dependencies are specified in this file is further

described at https://python-poetry.org/docs/dependency-specification/.

If you want to learn more about the design used here, see tools/pinning/DESIGN.md in the Certbot

repo.

PACKAGING GUIDE
Releases

We release packages and upload them to PyPI (wheels and source tarballs).

+o https://pypi.python.org/pypi/acme

+o https://pypi.python.org/pypi/certbot

+o https://pypi.python.org/pypi/certbot-apache

+o https://pypi.python.org/pypi/certbot-nginx

+o https://pypi.python.org/pypi/certbot-dns-cloudflare

+o https://pypi.python.org/pypi/certbot-dns-digitalocean

+o https://pypi.python.org/pypi/certbot-dns-dnsimple

+o https://pypi.python.org/pypi/certbot-dns-dnsmadeeasy

+o https://pypi.python.org/pypi/certbot-dns-google

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o https://pypi.python.org/pypi/certbot-dns-linode

+o https://pypi.python.org/pypi/certbot-dns-luadns

+o https://pypi.python.org/pypi/certbot-dns-nsone

+o https://pypi.python.org/pypi/certbot-dns-ovh

+o https://pypi.python.org/pypi/certbot-dns-rfc2136

+o https://pypi.python.org/pypi/certbot-dns-route53

The following scripts are used in the process:

+o https://github.com/certbot/certbot/blob/master/tools/release.sh

We use git tags to identify releases, using Semantic Versioning. For example: v0.11.1.

Since version 1.21.0, our packages are cryptographically signed by one of four PGP keys:

+o BF6BCFC89E90747B9A680FD7B6029E8500F7DB16

+o 86379B4F0AF371B50CD9E5FF3402831161D1D280

+o 20F201346BF8F3F455A73F9A780CC99432A28621

+o F2871B4152AE13C49519111F447BF683AA3B26C3‘

These keys can be found on major key servers and at https://dl.eff.org/certbot.pub.

Releases before 1.21.0 were signed by the PGP key

A2CFB51FA275A7286234E7B24D17C995CD9775F2 which can still be found on major key

servers.

Notes for package maintainers

0. Please use our tagged releases, not master!

1. Do not package certbot-compatibility-test as it’s only used internally.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



2. To run tests on our packages, you should use pytest by running the command python -m pytest.
Running pytest directly may not work because PYTHONPATH is not handled the same way and

local modules may not be found by the test runner.

3. If you’d like to include automated renewal in your package:

+o certbot renew -q should be added to crontab or systemd timer.

+o A random per-machine time offset should be included to avoid having a large number of your

clients hit Let’s Encrypt’s servers simultaneously.

+o --preconfigured-renewal should be included on the CLI or in cli.ini for all invocations of

Certbot, so that it can adjust its interactive output regarding automated renewal (Certbot >=

1.9.0).

4. jws is an internal script for acme module and it doesn’t have to be packaged - it’s mostly for

debugging: you can use it as echo foo | jws sign | jws verify.

5. Do get in touch with us. We are happy to make any changes that will make packaging easier. If you

need to apply some patches don’t do it downstream - make a PR here.

BACKWARDS COMPATIBILITY
All Certbot components including acme, Certbot, and non-third party plugins follow Semantic

Versioning both for its Python API and for the application itself. This means that we will not change

behavior in a backwards incompatible way except in a new major version of the project.

NOTE:
None of this applies to the behavior of Certbot distribution mechanisms such as our snaps or OS

packages whose behavior may change at any time. Semantic versioning only applies to the

common Certbot components that are installed by various distribution methods.

For Certbot as an application, the command line interface and non-interactive behavior can be

considered stable with two exceptions. The first is that no aspects of Certbot’s console or log

output should be considered stable and it may change at any time. The second is that Certbot’s

behavior should only be considered stable with certain files but not all. Files with which users

should expect Certbot to maintain its current behavior with are:

+o /etc/letsencrypt/live/$domain/{cert,chain,fullchain,privkey}.pem, where $domain is the certificate

name (see Where are my certificates? for more details)

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o CLI configuration files

+o Hook directories in /etc/letsencrypt/renewal-hooks

Certbot’s behavior with other files may change at any point.

Another area where Certbot should not be considered stable is its behavior when not run in

non-interactive mode which also may change at any point.

In general, if we’re making a change that we expect will break some users, we will bump the

major version and will have warned about it in a prior release when possible. For our Python

API, we will issue warnings using Python’s warning module. For application level changes, we

will print and log warning messages.

RESOURCES
Documentation: https://certbot.eff.org/docs

Software project: https://github.com/certbot/certbot

Notes for developers: https://certbot.eff.org/docs/contributing.html

Main Website: https://certbot.eff.org

Let’s Encrypt Website: https://letsencrypt.org

Community: https://community.letsencrypt.org

ACME spec: RFC 8555

ACME working area in github (archived): https://github.com/ietf-wg-acme/acme

Azure Pipelines CI status

API DOCUMENTATION
certbot package

Certbot client.

Subpackages
certbot.compat package

Compatibility layer to run certbot both on Linux and Windows.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



This package contains all logic that needs to be implemented specifically for Linux and for Windows.

Then the rest of certbot code relies on this module to be platform agnostic.

Submodules
certbot.compat.filesystem module

Compat module to handle files security on Windows and Linux

certbot.compat.filesystem.chmod(file_path: str, mode: int) -> None
Apply a POSIX mode on given file_path:

+o for Linux, the POSIX mode will be directly applied using chmod,

+o for Windows, the POSIX mode will be translated into a Windows DACL that make

sense for Certbot context, and applied to the file using kernel calls.

The definition of the Windows DACL that correspond to a POSIX mode, in the

context of Certbot, is explained at https://github.com/certbot/certbot/issues/6356 and

is implemented by the method _generate_windows_flags().

Parameters

+o file_path (str) -- Path of the file

+o mode (int) -- POSIX mode to apply

certbot.compat.filesystem.umask(mask: int) -> int
Set the current numeric umask and return the previous umask. On Linux, the built-in umask

method is used. On Windows, our Certbot-side implementation is used.

Parameters
mask (int) -- The user file-creation mode mask to apply.

Return type
int

Returns
The previous umask value.

certbot.compat.filesystem.temp_umask(mask: int) -> Generator[None, None, None]
Apply a umask temporarily, meant to be used in a with block. Uses the Certbot implementation of

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



umask.

Parameters
mask (int) -- The user file-creation mode mask to apply temporarily

certbot.compat.filesystem.copy_ownership_and_apply_mode(src: str, dst: str, mode: int, copy_user:
bool, copy_group: bool) -> None

Copy ownership (user and optionally group on Linux) from the source to the destination, then

apply given mode in compatible way for Linux and Windows. This replaces the os.chown

command.

Parameters

+o src (str) -- Path of the source file

+o dst (str) -- Path of the destination file

+o mode (int) -- Permission mode to apply on the destination file

+o copy_user (bool) -- Copy user if True

+o copy_group (bool) -- Copy group if True on Linux (has no effect on Windows)

certbot.compat.filesystem.copy_ownership_and_mode(src: str, dst: str, copy_user: bool = True,
copy_group: bool = True) -> None

Copy ownership (user and optionally group on Linux) and mode/DACL from the source to the

destination.

Parameters

+o src (str) -- Path of the source file

+o dst (str) -- Path of the destination file

+o copy_user (bool) -- Copy user if True

+o copy_group (bool) -- Copy group if True on Linux (has no effect on Windows)

certbot.compat.filesystem.check_mode(file_path: str, mode: int) -> bool
Check if the given mode matches the permissions of the given file. On Linux, will make a direct

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



comparison, on Windows, mode will be compared against the security model.

Parameters

+o file_path (str) -- Path of the file

+o mode (int) -- POSIX mode to test

Return type
bool

Returns
True if the POSIX mode matches the file permissions

certbot.compat.filesystem.check_owner(file_path: str) -> bool
Check if given file is owned by current user.

Parameters
file_path (str) -- File path to check

Return type
bool

Returns
True if given file is owned by current user, False otherwise.

certbot.compat.filesystem.check_permissions(file_path: str, mode: int) -> bool
Check if given file has the given mode and is owned by current user.

Parameters

+o file_path (str) -- File path to check

+o mode (int) -- POSIX mode to check

Return type
bool

Returns
True if file has correct mode and owner, False otherwise.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



certbot.compat.filesystem.open(file_path: str, flags: int, mode: int = 511) -> int
Wrapper of original os.open function, that will ensure on Windows that given mode is correctly

applied.

Parameters

+o file_path (str) -- The file path to open

+o flags (int) -- Flags to apply on file while opened

+o mode (int) -- POSIX mode to apply on file when opened, Python defaults will be

applied if None

Returns
the file descriptor to the opened file

Return type
int

Raise
OSError(errno.EEXIST) if the file already exists and os.O_CREAT & os.O_EXCL are

set, OSError(errno.EACCES) on Windows if the file already exists and is a directory, and

os.O_CREAT is set.

certbot.compat.filesystem.makedirs(file_path: str, mode: int = 511) -> None
Rewrite of original os.makedirs function, that will ensure on Windows that given mode is correctly

applied.

Parameters

+o file_path (str) -- The file path to open

+o mode (int) -- POSIX mode to apply on leaf directory when created, Python defaults

will be applied if None

certbot.compat.filesystem.mkdir(file_path: str, mode: int = 511) -> None
Rewrite of original os.mkdir function, that will ensure on Windows that given mode is correctly

applied.

Parameters

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o file_path (str) -- The file path to open

+o mode (int) -- POSIX mode to apply on directory when created, Python defaults will

be applied if None

certbot.compat.filesystem.replace(src: str, dst: str) -> None
Rename a file to a destination path and handles situations where the destination exists.

Parameters

+o src (str) -- The current file path.

+o dst (str) -- The new file path.

certbot.compat.filesystem.realpath(file_path: str) -> str
Find the real path for the given path. This method resolves symlinks, including recursive symlinks,

and is protected against symlinks that creates an infinite loop.

Parameters
file_path (str) -- The path to resolve

Returns
The real path for the given path

Return type
str

certbot.compat.filesystem.readlink(link_path: str) -> str
Return a string representing the path to which the symbolic link points.

Parameters
link_path (str) -- The symlink path to resolve

Returns
The path the symlink points to

Returns
str

Raise

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



ValueError if a long path (260> characters) is encountered on Windows

certbot.compat.filesystem.is_executable(path: str) -> bool
Is path an executable file?

Parameters
path (str) -- path to test

Returns
True if path is an executable file

Return type
bool

certbot.compat.filesystem.has_world_permissions(path: str) -> bool
Check if everybody/world has any right (read/write/execute) on a file given its path.

Parameters
path (str) -- path to test

Returns
True if everybody/world has any right to the file

Return type
bool

certbot.compat.filesystem.compute_private_key_mode(old_key: str, base_mode: int) -> int
Calculate the POSIX mode to apply to a private key given the previous private key.

Parameters

+o old_key (str) -- path to the previous private key

+o base_mode (int) -- the minimum modes to apply to a private key

Returns
the POSIX mode to apply

Return type
int

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



certbot.compat.filesystem.has_same_ownership(path1: str, path2: str) -> bool
Return True if the ownership of two files given their respective path is the same. On Windows,

ownership is checked against owner only, since files do not have a group owner.

Parameters

+o path1 (str) -- path to the first file

+o path2 (str) -- path to the second file

Returns
True if both files have the same ownership, False otherwise

Return type
bool

certbot.compat.filesystem.has_min_permissions(path: str, min_mode: int) -> bool
Check if a file given its path has at least the permissions defined by the given minimal mode. On

Windows, group permissions are ignored since files do not have a group owner.

Parameters

+o path (str) -- path to the file to check

+o min_mode (int) -- the minimal permissions expected

Returns
True if the file matches the minimal permissions expectations, False otherwise

Return type
bool

certbot.compat.misc module
This compat module handles various platform specific calls that do not fall into one particular category.

certbot.compat.misc.raise_for_non_administrative_windows_rights() -> None
On Windows, raise if current shell does not have the administrative rights. Do nothing on Linux.

Raises
.errors.Error -- If the current shell does not have administrative rights on Windows.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



certbot.compat.misc.prepare_virtual_console() -> None
On Windows, ensure that Console Virtual Terminal Sequences are enabled.

certbot.compat.misc.readline_with_timeout(timeout: float, prompt: Optional[str]) -> str
Read user input to return the first line entered, or raise after specified timeout.

Parameters

+o timeout (float) -- The timeout in seconds given to the user.

+o prompt (str) -- The prompt message to display to the user.

Returns
The first line entered by the user.

Return type
str

certbot.compat.misc.get_default_folder(folder_type: str) -> str
Return the relevant default folder for the current OS

Parameters
folder_type (str) -- The type of folder to retrieve (config, work or logs)

Returns
The relevant default folder.

Return type
str

certbot.compat.misc.underscores_for_unsupported_characters_in_path(path: str) -> str
Replace unsupported characters in path for current OS by underscores. :param str path: the path to

normalize :return: the normalized path :rtype: str

certbot.compat.misc.execute_command_status(cmd_name: str, shell_cmd: str, env: Optional[dict] =
None) -> Tuple[int, str, str]

Run a command:

+o on Linux command will be run by the standard shell selected with

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



subprocess.run(shell=True)

+o on Windows command will be run in a Powershell shell

This function returns the exit code, and does not log the result and output of the

command.

Parameters

+o cmd_name (str) -- the user facing name of the hook being run

+o shell_cmd (str) -- shell command to execute

+o env (dict) -- environ to pass into subprocess.run

Returns
tuple (int returncode, str stderr, str stdout)

certbot.compat.os module
This compat modules is a wrapper of the core os module that forbids usage of specific operations (e.g.

chown, chmod, getuid) that would be harmful to the Windows file security model of Certbot. This

module is intended to replace standard os module throughout certbot projects (except acme).

This module has the same API as the os module in the Python standard library except for the functions

defined below.

isort:skip_file

certbot.compat.os.access(*unused_args, **unused_kwargs)
Method os.access() is forbidden

certbot.compat.os.chmod(*unused_args, **unused_kwargs)
Method os.chmod() is forbidden

certbot.compat.os.chown(*unused_args, **unused_kwargs)
Method os.chown() is forbidden

certbot.compat.os.fstat(*unused_args, **unused_kwargs)
Method os.stat() is forbidden

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



certbot.compat.os.mkdir(*unused_args, **unused_kwargs)
Method os.mkdir() is forbidden

certbot.compat.os.open(*unused_args, **unused_kwargs)
Method os.open() is forbidden

certbot.compat.os.rename(*unused_args, **unused_kwargs)
Method os.rename() is forbidden

certbot.compat.os.replace(*unused_args, **unused_kwargs)
Method os.replace() is forbidden

certbot.compat.os.stat(*unused_args, **unused_kwargs)
Method os.stat() is forbidden

certbot.compat.os.umask(*unused_args, **unused_kwargs)
Method os.chmod() is forbidden

certbot.compat.os.makedirs(*unused_args, **unused_kwargs)
Method os.makedirs() is forbidden

certbot.display package
Certbot display utilities.

Submodules
certbot.display.ops module

Contains UI methods for LE user operations.

certbot.display.ops.get_email(invalid: bool = False, optional: bool = True) -> str
Prompt for valid email address.

Parameters

+o invalid (bool) -- True if an invalid address was provided by the user

+o optional (bool) -- True if the user can use --register-unsafely-without-email to

avoid providing an e-mail

Returns
e-mail address

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Return type
str

Raises
errors.Error -- if the user cancels

certbot.display.ops.choose_account(accounts: List[Account]) -> Optional[Account]
Choose an account.

Parameters
accounts (list) -- Containing at least one Account

certbot.display.ops.choose_values(values: List[str], question: Optional[str] = None) -> List[str]
Display screen to let user pick one or multiple values from the provided list.

Parameters

+o values (list) -- Values to select from

+o question (str) -- Question to ask to user while choosing values

Returns
List of selected values

Return type
list

certbot.display.ops.choose_names(installer: Optional[Installer], question: Optional[str] = None) ->
List[str]

Display screen to select domains to validate.

Parameters

+o installer (certbot.interfaces.Installer) -- An installer object

+o question (str) -- Overriding default question to ask the user if asked to choose from

domain names.

Returns
List of selected names

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Return type
list of str

certbot.display.ops.get_valid_domains(domains: Iterable[str]) -> List[str]

Helper method for choose_names that implements basic checks
on domain names

Parameters
domains (list) -- Domain names to validate

Returns
List of valid domains

Return type
list

certbot.display.ops.success_installation(domains: List[str]) -> None
Display a box confirming the installation of HTTPS.

Parameters
domains (list) -- domain names which were enabled

certbot.display.ops.success_renewal(unused_domains: List[str]) -> None
Display a box confirming the renewal of an existing certificate.

Parameters
domains (list) -- domain names which were renewed

certbot.display.ops.success_revocation(cert_path: str) -> None
Display a message confirming a certificate has been revoked.

Parameters
cert_path (list) -- path to certificate which was revoked.

certbot.display.ops.report_executed_command(command_name: str, returncode: int, stdout: str, stderr:
str) -> None

Display a message describing the success or failure of an executed process (e.g. hook).

Parameters

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o command_name (str) -- Human-readable description of the executed command

+o returncode (int) -- The exit code of the executed command

+o stdout (str) -- The stdout output of the executed command

+o stderr (str) -- The stderr output of the executed command

certbot.display.ops.validated_input(validator: Callable[[str], Any], *args: Any, **kwargs: Any) ->
Tuple[str, str]

Like input_text, but with validation.

Parameters

+o validator (callable) -- A method which will be called on the supplied input. If the

method raises an errors.Error, its text will be displayed and the user will be

re-prompted.

+o *args (list) -- Arguments to be passed to input_text.

+o **kwargs (dict) -- Arguments to be passed to input_text.

Returns
as input_text

Return type
tuple

certbot.display.ops.validated_directory(validator: Callable[[str], Any], *args: Any, **kwargs: Any) ->
Tuple[str, str]

Like directory_select, but with validation.

Parameters

+o validator (callable) -- A method which will be called on the supplied input. If the

method raises an errors.Error, its text will be displayed and the user will be

re-prompted.

+o *args (list) -- Arguments to be passed to directory_select.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o **kwargs (dict) -- Arguments to be passed to directory_select.

Returns
as directory_select

Return type
tuple

certbot.display.util module
Certbot display.

This module (certbot.display.util) or its companion certbot.display.ops should be used whenever:

+o Displaying status information to the user on the terminal

+o Collecting information from the user via prompts

Other messages can use the logging module. See log.py.

certbot.display.util.OK = ’ok’
Display exit code indicating user acceptance.

certbot.display.util.CANCEL = ’cancel’
Display exit code for a user canceling the display.

certbot.display.util.notify(msg: str) -> None
Display a basic status message.

Parameters
msg (str) -- message to display

certbot.display.util.notification(message: str, pause: bool = True, wrap: bool = True, force_interactive:
bool = False, decorate: bool = True) -> None

Displays a notification and waits for user acceptance.

Parameters

+o message (str) -- Message to display

+o pause (bool) -- Whether or not the program should pause for the user’s

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



confirmation

+o wrap (bool) -- Whether or not the application should wrap text

+o force_interactive (bool) -- True if it’s safe to prompt the user because it won’t

cause any workflow regressions

+o decorate (bool) -- Whether to surround the message with a decorated frame

certbot.display.util.menu(message: str, choices: Union[List[str], List[Tuple[str, str]]], default:
Optional[int] = None, cli_flag: Optional[str] = None, force_interactive: bool = False) -> Tuple[str, int]

Display a menu.

Parameters

+o message (str) -- title of menu

+o choices (list of tuples (tag, item) or list of descriptions (tags will be enumerated)) --

Menu lines, len must be > 0

+o default -- default value to return, if interaction is not possible

+o cli_flag (str) -- option used to set this value with the CLI

+o force_interactive (bool) -- True if it’s safe to prompt the user because it won’t

cause any workflow regressions

Returns
tuple of (code, index) where code - str display exit code index - int index of the user’s

selection

Return type
tuple

certbot.display.util.input_text(message: str, default: Optional[str] = None, cli_flag: Optional[str] =
None, force_interactive: bool = False) -> Tuple[str, str]

Accept input from the user.

Parameters

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o message (str) -- message to display to the user

+o default -- default value to return, if interaction is not possible

+o cli_flag (str) -- option used to set this value with the CLI

+o force_interactive (bool) -- True if it’s safe to prompt the user because it won’t

cause any workflow regressions

Returns
tuple of (code, input) where code - str display exit code input - str of the user’s input

Return type
tuple

certbot.display.util.yesno(message: str, yes_label: str = ’Yes’, no_label: str = ’No’, default:
Optional[bool] = None, cli_flag: Optional[str] = None, force_interactive: bool = False) -> bool

Query the user with a yes/no question.

Yes and No label must begin with different letters, and must contain at least one letter each.

Parameters

+o message (str) -- question for the user

+o yes_label (str) -- Label of the "Yes" parameter

+o no_label (str) -- Label of the "No" parameter

+o default -- default value to return, if interaction is not possible

+o cli_flag (str) -- option used to set this value with the CLI

+o force_interactive (bool) -- True if it’s safe to prompt the user because it won’t

cause any workflow regressions

Returns
True for "Yes", False for "No"

Return type

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



bool

certbot.display.util.checklist(message: str, tags: List[str], default: Optional[List[str]] = None, cli_flag:
Optional[str] = None, force_interactive: bool = False) -> Tuple[str, List[str]]

Display a checklist.

Parameters

+o message (str) -- Message to display to user

+o tags (list) -- str tags to select, len(tags) > 0

+o default -- default value to return, if interaction is not possible

+o cli_flag (str) -- option used to set this value with the CLI

+o force_interactive (bool) -- True if it’s safe to prompt the user because it won’t

cause any workflow regressions

Returns
tuple of (code, tags) where code - str display exit code tags - list of selected tags

Return type
tuple

certbot.display.util.directory_select(message: str, default: Optional[str] = None, cli_flag: Optional[str]
= None, force_interactive: bool = False) -> Tuple[str, str]

Display a directory selection screen.

Parameters

+o message (str) -- prompt to give the user

+o default -- default value to return, if interaction is not possible

+o cli_flag (str) -- option used to set this value with the CLI

+o force_interactive (bool) -- True if it’s safe to prompt the user because it won’t

cause any workflow regressions

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Returns
tuple of the form (code, string) where code - display exit code string - input entered by the

user

certbot.display.util.assert_valid_call(prompt: str, default: str, cli_flag: str, force_interactive: bool) ->
None

Verify that provided arguments is a valid display call.

Parameters

+o prompt (str) -- prompt for the user

+o default -- default answer to prompt

+o cli_flag (str) -- command line option for setting an answer to this question

+o force_interactive (bool) -- if interactivity is forced

certbot.plugins package
Certbot plugins.

Submodules
certbot.plugins.common module

Plugin common functions.

certbot.plugins.common.option_namespace(name: str) -> str
ArgumentParser options namespace (prefix of all options).

certbot.plugins.common.dest_namespace(name: str) -> str
ArgumentParser dest namespace (prefix of all destinations).

class certbot.plugins.common.Plugin(config: NamespaceConfig, name: str)
Bases: Plugin

Generic plugin.

abstract classmethod add_parser_arguments(add: Callable[[...], None]) -> None
Add plugin arguments to the CLI argument parser.

Parameters

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



add (callable) -- Function that proxies calls to

argparse.ArgumentParser.add_argument prepending options with unique plugin

name prefix.

classmethod inject_parser_options(parser: ArgumentParser, name: str) -> None
Inject parser options.

See inject_parser_options for docs.

property option_namespace: str
ArgumentParser options namespace (prefix of all options).

option_name(name: str) -> str
Option name (include plugin namespace).

property dest_namespace: str
ArgumentParser dest namespace (prefix of all destinations).

dest(var: str) -> str
Find a destination for given variable var.

conf(var: str) -> Any
Find a configuration value for variable var.

auth_hint(failed_achalls: List[AnnotatedChallenge]) -> str
Human-readable string to help the user troubleshoot the authenticator.

Shown to the user if one or more of the attempted challenges were not a success.

Should describe, in simple language, what the authenticator tried to do, what went wrong

and what the user should try as their "next steps".

TODO: auth_hint belongs in Authenticator but can’t be added until the next major version

of Certbot. For now, it lives in .Plugin and auth_handler will only call it on authenticators

that subclass .Plugin. For now, inherit from Plugin to implement and/or override the

method.

Parameters
failed_achalls (list) -- List of one or more failed challenges

(achallenges.AnnotatedChallenge subclasses).

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Rtype str

class certbot.plugins.common.Installer(*args: Any, **kwargs: Any)
Bases: Installer, Plugin

An installer base class with reverter and ssl_dhparam methods defined.

Installer plugins do not have to inherit from this class.

add_to_checkpoint(save_files: Set[str], save_notes: str, temporary: bool = False) -> None
Add files to a checkpoint.

Parameters

+o save_files (set) -- set of filepaths to save

+o save_notes (str) -- notes about changes during the save

+o temporary (bool) -- True if the files should be added to a temporary

checkpoint rather than a permanent one. This is usually used for changes

that will soon be reverted.

Raises
.errors.PluginError -- when unable to add to checkpoint

finalize_checkpoint(title: str) -> None
Timestamp and save changes made through the reverter.

Parameters
title (str) -- Title describing checkpoint

Raises
.errors.PluginError -- when an error occurs

recovery_routine() -> None
Revert all previously modified files.

Reverts all modified files that have not been saved as a checkpoint

Raises

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



.errors.PluginError -- If unable to recover the configuration

revert_temporary_config() -> None
Rollback temporary checkpoint.

Raises
.errors.PluginError -- when unable to revert config

rollback_checkpoints(rollback: int = 1) -> None
Rollback saved checkpoints.

Parameters
rollback (int) -- Number of checkpoints to revert

Raises
.errors.PluginError -- If there is a problem with the input or the function is unable

to correctly revert the configuration

property ssl_dhparams: str
Full absolute path to ssl_dhparams file.

property updated_ssl_dhparams_digest: str
Full absolute path to digest of updated ssl_dhparams file.

install_ssl_dhparams() -> None
Copy Certbot’s ssl_dhparams file into the system’s config dir if required.

class certbot.plugins.common.Configurator(*args: Any, **kwargs: Any)
Bases: Installer, Authenticator

A plugin that extends certbot.plugins.common.Installer and implements

certbot.interfaces.Authenticator

class certbot.plugins.common.Addr(tup: Tuple[str, str], ipv6: bool = False)
Bases: object

Represents an virtual host address.

Parameters

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o addr (str) -- addr part of vhost address

+o port (str) -- port number or *, or ""

classmethod fromstring(str_addr: str) -> Optional[GenericAddr]
Initialize Addr from string.

normalized_tuple() -> Tuple[str, str]
Normalized representation of addr/port tuple

get_addr() -> str
Return addr part of Addr object.

get_port() -> str
Return port.

get_addr_obj(port: str) -> GenericAddr
Return new address object with same addr and new port.

get_ipv6_exploded() -> str
Return IPv6 in normalized form

class certbot.plugins.common.ChallengePerformer(configurator: Configurator)
Bases: object

Abstract base for challenge performers.

Variables

+o configurator -- Authenticator and installer plugin

+o achalls (list of KeyAuthorizationAnnotatedChallenge) -- Annotated challenges

+o indices (list of int) -- Holds the indices of challenges from a larger array so the user

of the class doesn’t have to.

add_chall(achall: KeyAuthorizationAnnotatedChallenge, idx: Optional[int] = None) -> None
Store challenge to be performed when perform() is called.

Parameters

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o achall (.KeyAuthorizationAnnotatedChallenge) -- Annotated challenge.

+o idx (int) -- index to challenge in a larger array

perform() -> List[KeyAuthorizationChallengeResponse]
Perform all added challenges.

Returns
challenge responses

Return type
list of acme.challenges.KeyAuthorizationChallengeResponse

certbot.plugins.common.install_version_controlled_file(dest_path: str, digest_path: str, src_path: str,
all_hashes: Iterable[str]) -> None

Copy a file into an active location (likely the system’s config dir) if required.

Parameters

+o dest_path (str) -- destination path for version controlled file

+o digest_path (str) -- path to save a digest of the file in

+o src_path (str) -- path to version controlled file found in distribution

+o all_hashes (list) -- hashes of every released version of the file

certbot.plugins.common.dir_setup(test_dir: str, pkg: str) -> Tuple[str, str, str]
Setup the directories necessary for the configurator.

certbot.plugins.dns_common module
Common code for DNS Authenticator Plugins.

class certbot.plugins.dns_common.DNSAuthenticator(config: NamespaceConfig, name: str)
Bases: Plugin, Authenticator

Base class for DNS Authenticators

classmethod add_parser_arguments(add: Callable[[...], None], default_propagation_seconds:
int = 10) -> None

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Add plugin arguments to the CLI argument parser.

Parameters
add (callable) -- Function that proxies calls to

argparse.ArgumentParser.add_argument prepending options with unique plugin

name prefix.

auth_hint(failed_achalls: List[AnnotatedChallenge]) -> str
See certbot.plugins.common.Plugin.auth_hint.

get_chall_pref(unused_domain: str) -> Iterable[Type[Challenge]]
Return collections.Iterable of challenge preferences.

Parameters
domain (str) -- Domain for which challenge preferences are sought.

Returns
collections.Iterable of challenge types (subclasses of acme.challenges.Challenge)

with the most preferred challenges first. If a type is not specified, it means the

Authenticator cannot perform the challenge.

Return type
collections.Iterable

prepare() -> None
Prepare the plugin.

Finish up any additional initialization.

Raises

+o .PluginError -- when full initialization cannot be completed.

+o .MisconfigurationError -- when full initialization cannot be completed.

Plugin will be displayed on a list of available plugins.

+o .NoInstallationError -- when the necessary programs/files cannot be

located. Plugin will NOT be displayed on a list of available plugins.

+o .NotSupportedError -- when the installation is recognized, but the version

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



is not currently supported.

more_info() -> str
Human-readable string to help the user.

Should describe the steps taken and any relevant info to help the user decide which plugin

to use.

Rtype str

perform(achalls: List[AnnotatedChallenge]) -> List[ChallengeResponse]
Perform the given challenge.

Parameters
achalls (list) -- Non-empty (guaranteed) list of AnnotatedChallenge instances,

such that it contains types found within get_chall_pref() only.

Returns
list of ACME ChallengeResponse instances corresponding to each provided

Challenge.

Return type
collections.List of acme.challenges.ChallengeResponse, where responses are

required to be returned in the same order as corresponding input challenges

Raises
.PluginError -- If some or all challenges cannot be performed

cleanup(achalls: List[AnnotatedChallenge]) -> None
Revert changes and shutdown after challenges complete.

This method should be able to revert all changes made by perform, even if perform exited

abnormally.

Parameters
achalls (list) -- Non-empty (guaranteed) list of AnnotatedChallenge instances, a

subset of those previously passed to perform().

Raises
PluginError -- if original configuration cannot be restored

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



class certbot.plugins.dns_common.CredentialsConfiguration(filename: str, mapper:
~typing.Callable[[str], str] = <function CredentialsConfiguration.<lambda>>)

Bases: object

Represents a user-supplied filed which stores API credentials.

require(required_variables: Mapping[str, str]) -> None
Ensures that the supplied set of variables are all present in the file.

Parameters
required_variables (dict) -- Map of variable which must be present to error to

display.

Raises
errors.PluginError -- If one or more are missing.

conf(var: str) -> Optional[str]
Find a configuration value for variable var, as transformed by mapper.

Parameters
var (str) -- The variable to get.

Returns
The value of the variable, if it exists.

Return type
str or None

certbot.plugins.dns_common.validate_file(filename: str) -> None
Ensure that the specified file exists.

certbot.plugins.dns_common.validate_file_permissions(filename: str) -> None
Ensure that the specified file exists and warn about unsafe permissions.

certbot.plugins.dns_common.base_domain_name_guesses(domain: str) -> List[str]
Return a list of progressively less-specific domain names.

One of these will probably be the domain name known to the DNS provider.

Example

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



>>> base_domain_name_guesses(’foo.bar.baz.example.com’)

[’foo.bar.baz.example.com’, ’bar.baz.example.com’, ’baz.example.com’, ’example.com’, ’com’]

Parameters
domain (str) -- The domain for which to return guesses.

Returns
The a list of less specific domain names.

Return type
list

certbot.plugins.dns_common_lexicon module
Common code for DNS Authenticator Plugins built on Lexicon.

class certbot.plugins.dns_common_lexicon.LexiconClient
Bases: object

Encapsulates all communication with a DNS provider via Lexicon.

add_txt_record(domain: str, record_name: str, record_content: str) -> None
Add a TXT record using the supplied information.

Parameters

+o domain (str) -- The domain to use to look up the managed zone.

+o record_name (str) -- The record name (typically beginning with

’_acme-challenge.’).

+o record_content (str) -- The record content (typically the challenge

validation).

Raises
errors.PluginError -- if an error occurs communicating with the DNS Provider

API

del_txt_record(domain: str, record_name: str, record_content: str) -> None
Delete a TXT record using the supplied information.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Parameters

+o domain (str) -- The domain to use to look up the managed zone.

+o record_name (str) -- The record name (typically beginning with

’_acme-challenge.’).

+o record_content (str) -- The record content (typically the challenge

validation).

Raises
errors.PluginError -- if an error occurs communicating with the DNS Provider

API

certbot.plugins.dns_common_lexicon.build_lexicon_config(lexicon_provider_name: str,
lexicon_options: Mapping[str, Any], provider_options: Mapping[str, Any]) -> Union[None, Dict[str,
Any]]

Convenient function to build a Lexicon 2.x/3.x config object. :param str lexicon_provider_name:

the name of the lexicon provider to use :param dict lexicon_options: options specific to lexicon

:param dict provider_options: options specific to provider :return: configuration to apply to the

provider :rtype: ConfigurationResolver or dict

certbot.plugins.dns_test_common module
Base test class for DNS authenticators.

class certbot.plugins.dns_test_common.BaseAuthenticatorTest
Bases: object

A base test class to reduce duplication between test code for DNS Authenticator Plugins.

Assumes:

+o That subclasses also subclass unittest.TestCase

+o That the authenticator is stored as self.auth

achall =
KeyAuthorizationAnnotatedChallenge(challb=DNS01(token=b’17817c66b60ce2e4012dfad92657527a’),
domain=’example.com’,
account_key=JWKRSA(key=<ComparableRSAKey(<cryptography.hazmat.backends.openssl.rsa._RSAPrivateKey

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



object>)>))

test_more_info() -> None

test_get_chall_pref() -> None

test_parser_arguments() -> None

certbot.plugins.dns_test_common.write(values: Mapping[str, Any], path: str) -> None
Write the specified values to a config file.

Parameters

+o values (dict) -- A map of values to write.

+o path (str) -- Where to write the values.

certbot.plugins.dns_test_common_lexicon module
Base test class for DNS authenticators built on Lexicon.

class certbot.plugins.dns_test_common_lexicon.BaseLexiconAuthenticatorTest
Bases: BaseAuthenticatorTest

test_perform(unused_mock_get_utility: Any) -> None

test_cleanup() -> None

class certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest
Bases: object

DOMAIN_NOT_FOUND = Exception(’No domain found’)

GENERIC_ERROR
alias of RequestException

LOGIN_ERROR = HTTPError(’400 Client Error: ...’)

UNKNOWN_LOGIN_ERROR = HTTPError(’500 Surprise! Error: ...’)

record_prefix = ’_acme-challenge’

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



record_name = ’_acme-challenge.example.com’

record_content = ’bar’

test_add_txt_record() -> None

test_add_txt_record_try_twice_to_find_domain() -> None

test_add_txt_record_fail_to_find_domain() -> None

test_add_txt_record_fail_to_authenticate() -> None

test_add_txt_record_fail_to_authenticate_with_unknown_error() -> None

test_add_txt_record_error_finding_domain() -> None

test_add_txt_record_error_adding_record() -> None

test_del_txt_record() -> None

test_del_txt_record_fail_to_find_domain() -> None

test_del_txt_record_fail_to_authenticate() -> None

test_del_txt_record_fail_to_authenticate_with_unknown_error() -> None

test_del_txt_record_error_finding_domain() -> None

test_del_txt_record_error_deleting_record() -> None

certbot.plugins.enhancements module
New interface style Certbot enhancements

certbot.plugins.enhancements.ENHANCEMENTS = [’redirect’, ’ensure-http-header’, ’ocsp-stapling’]
List of possible certbot.interfaces.Installer enhancements.

List of expected options parameters: - redirect: None - ensure-http-header: name of header (i.e.

Strict-Transport-Security) - ocsp-stapling: certificate chain file path

certbot.plugins.enhancements.enabled_enhancements(config: NamespaceConfig) ->

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Generator[Dict[str, Any], None, None]
Generator to yield the enabled new style enhancements.

Parameters
config (certbot.configuration.NamespaceConfig) -- Configuration.

certbot.plugins.enhancements.are_requested(config: NamespaceConfig) -> bool
Checks if one or more of the requested enhancements are those of the new enhancement interfaces.

Parameters
config (certbot.configuration.NamespaceConfig) -- Configuration.

certbot.plugins.enhancements.are_supported(config: NamespaceConfig, installer: Optional[Installer])
-> bool

Checks that all of the requested enhancements are supported by the installer.

Parameters

+o config (certbot.configuration.NamespaceConfig) -- Configuration.

+o installer (interfaces.Installer) -- Installer object

Returns
If all the requested enhancements are supported by the installer

Return type
bool

certbot.plugins.enhancements.enable(lineage: Optional[RenewableCert], domains: Iterable[str],
installer: Optional[Installer], config: NamespaceConfig) -> None

Run enable method for each requested enhancement that is supported.

Parameters

+o lineage (certbot.interfaces.RenewableCert) -- Certificate lineage object

+o domains (str) -- List of domains in certificate to enhance

+o installer (interfaces.Installer) -- Installer object

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o config (certbot.configuration.NamespaceConfig) -- Configuration.

certbot.plugins.enhancements.populate_cli(add: Callable[[...], None]) -> None
Populates the command line flags for certbot._internal.cli.HelpfulParser

Parameters
add (func) -- Add function of certbot._internal.cli.HelpfulParser

class certbot.plugins.enhancements.AutoHSTSEnhancement
Bases: object

Enhancement interface that installer plugins can implement in order to provide functionality that

configures the software to have a ’Strict-Transport-Security’ with initially low max-age value that

will increase over time.

The plugins implementing new style enhancements are responsible of handling the saving of

configuration checkpoints as well as calling possible restarts of managed software themselves. For

update_autohsts method, the installer may have to call prepare() to finalize the plugin initialization.

Methods:
enable_autohsts is called when the header is initially installed using a low max-age value.

update_autohsts is called every time when Certbot is run using ’renew’ verb. The max-age

value should be increased over time using this method.

deploy_autohsts is called for every lineage that has had its certificate renewed. A long

HSTS max-age value should be set here, as we should be confident that the user is able to

automatically renew their certificates.

abstract update_autohsts(lineage: RenewableCert, *args: Any, **kwargs: Any) -> None
Gets called for each lineage every time Certbot is run with ’renew’ verb. Implementation

of this method should increase the max-age value.

Parameters
lineage (certbot.interfaces.RenewableCert) -- Certificate lineage object

NOTE:
prepare() method inherited from interfaces.Plugin might need to be called

manually within implementation of this interface method to finalize the plugin

initialization.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



abstract deploy_autohsts(lineage: RenewableCert, *args: Any, **kwargs: Any) -> None
Gets called for a lineage when its certificate is successfully renewed. Long max-age value

should be set in implementation of this method.

Parameters
lineage (certbot.interfaces.RenewableCert) -- Certificate lineage object

abstract enable_autohsts(lineage: Optional[RenewableCert], domains: Iterable[str], *args:
Any, **kwargs: Any) -> None

Enables the AutoHSTS enhancement, installing Strict-Transport-Security header with a

low initial value to be increased over the subsequent runs of Certbot renew.

Parameters

+o lineage (certbot.interfaces.RenewableCert) -- Certificate lineage object

+o domains (list of str) -- List of domains in certificate to enhance

certbot.plugins.storage module
Plugin storage class.

class certbot.plugins.storage.PluginStorage(config: NamespaceConfig, classkey: str)
Bases: object

Class implementing storage functionality for plugins

save() -> None
Saves PluginStorage content to disk

Raises
.errors.PluginStorageError -- when unable to serialize the data or write it to the

filesystem

put(key: str, value: Any) -> None
Put configuration value to PluginStorage

Parameters

+o key (str) -- Key to store the value to

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o value -- Data to store

fetch(key: str) -> Any
Get configuration value from PluginStorage

Parameters
key (str) -- Key to get value from the storage

Raises
KeyError -- If the key doesn’t exist in the storage

certbot.plugins.util module
Plugin utilities.

certbot.plugins.util.get_prefixes(path: str) -> List[str]
Retrieves all possible path prefixes of a path, in descending order of length. For instance:

+o (Linux) /a/b/c returns [’/a/b/c’, ’/a/b’, ’/a’, ’/’]

+o (Windows) C:abc returns [’C:abc’, ’C:ab’, ’C:a’, ’C:’]

Parameters
path (str) -- the path to break into prefixes

Returns
all possible path prefixes of given path in descending order

Return type
list of str

certbot.plugins.util.path_surgery(cmd: str) -> bool
Attempt to perform PATH surgery to find cmd

Mitigates https://github.com/certbot/certbot/issues/1833

Parameters
cmd (str) -- the command that is being searched for in the PATH

Returns
True if the operation succeeded, False otherwise

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



certbot.tests package
Utilities for running Certbot tests

Submodules
certbot.tests.acme_util module

ACME utilities for testing.

certbot.tests.acme_util.chall_to_challb(chall: Challenge, status: Status) -> ChallengeBody
Return ChallengeBody from Challenge.

certbot.tests.acme_util.gen_authzr(authz_status: Status, domain: str, challs: Iterable[Challenge],
statuses: Iterable[Status]) -> AuthorizationResource

Generate an authorization resource.

Parameters

+o authz_status (acme.messages.Status) -- Status object

+o challs (list) -- Challenge objects

+o statuses (list) -- status of each challenge object

certbot.tests.util module
Test utilities.

class certbot.tests.util.DummyInstaller(*args: Any, **kwargs: Any)
Bases: Installer

Dummy installer plugin for test purpose.

get_all_names() -> Iterable[str]
Returns all names that may be authenticated.

Return type
collections.Iterable of str

deploy_cert(domain: str, cert_path: str, key_path: str, chain_path: str, fullchain_path: str) ->
None

Deploy certificate.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Parameters

+o domain (str) -- domain to deploy certificate file

+o cert_path (str) -- absolute path to the certificate file

+o key_path (str) -- absolute path to the private key file

+o chain_path (str) -- absolute path to the certificate chain file

+o fullchain_path (str) -- absolute path to the certificate fullchain file (cert

plus chain)

Raises
.PluginError -- when cert cannot be deployed

enhance(domain: str, enhancement: str, options: Optional[Union[List[str], str]] = None) ->
None

Perform a configuration enhancement.

Parameters

+o domain (str) -- domain for which to provide enhancement

+o enhancement (str) -- An enhancement as defined in ENHANCEMENTS

+o options -- Flexible options parameter for enhancement. Check

documentation of ENHANCEMENTS for expected options for each

enhancement.

Raises
.PluginError -- If Enhancement is not supported, or if an error occurs during the

enhancement.

supported_enhancements() -> List[str]
Returns a collections.Iterable of supported enhancements.

Returns
supported enhancements which should be a subset of ENHANCEMENTS

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Return type
collections.Iterable of str

save(title: Optional[str] = None, temporary: bool = False) -> None
Saves all changes to the configuration files.

Both title and temporary are needed because a save may be intended to be permanent, but

the save is not ready to be a full checkpoint.

It is assumed that at most one checkpoint is finalized by this method. Additionally, if an

exception is raised, it is assumed a new checkpoint was not finalized.

Parameters

+o title (str) -- The title of the save. If a title is given, the configuration will be

saved as a new checkpoint and put in a timestamped directory. title has no

effect if temporary is true.

+o temporary (bool) -- Indicates whether the changes made will be quickly

reversed in the future (challenges)

Raises
.PluginError -- when save is unsuccessful

config_test() -> None
Make sure the configuration is valid.

Raises
.MisconfigurationError -- when the config is not in a usable state

restart() -> None
Restart or refresh the server content.

Raises
.PluginError -- when server cannot be restarted

classmethod add_parser_arguments(add: Callable[[...], None]) -> None
Add plugin arguments to the CLI argument parser.

Parameters

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



add (callable) -- Function that proxies calls to

argparse.ArgumentParser.add_argument prepending options with unique plugin

name prefix.

prepare() -> None
Prepare the plugin.

Finish up any additional initialization.

Raises

+o .PluginError -- when full initialization cannot be completed.

+o .MisconfigurationError -- when full initialization cannot be completed.

Plugin will be displayed on a list of available plugins.

+o .NoInstallationError -- when the necessary programs/files cannot be

located. Plugin will NOT be displayed on a list of available plugins.

+o .NotSupportedError -- when the installation is recognized, but the version

is not currently supported.

more_info() -> str
Human-readable string to help the user.

Should describe the steps taken and any relevant info to help the user decide which plugin

to use.

Rtype str

certbot.tests.util.vector_path(*names: str) -> str
Path to a test vector.

certbot.tests.util.load_vector(*names: str) -> bytes
Load contents of a test vector.

certbot.tests.util.load_cert(*names: str) -> X509
Load certificate.

certbot.tests.util.load_csr(*names: str) -> X509Req

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Load certificate request.

certbot.tests.util.load_comparable_csr(*names: str) -> ComparableX509
Load ComparableX509 certificate request.

certbot.tests.util.load_rsa_private_key(*names: str) -> ComparableRSAKey
Load RSA private key.

certbot.tests.util.load_pyopenssl_private_key(*names: str) -> PKey
Load pyOpenSSL private key.

certbot.tests.util.make_lineage(config_dir: str, testfile: str, ec: bool = True) -> str
Creates a lineage defined by testfile.

This creates the archive, live, and renewal directories if necessary and creates a simple lineage.

Parameters

+o config_dir (str) -- path to the configuration directory

+o testfile (str) -- configuration file to base the lineage on

+o ec (bool) -- True if we generate the lineage with an ECDSA key

Returns
path to the renewal conf file for the created lineage

Return type
str

certbot.tests.util.patch_display_util() -> MagicMock
Patch certbot.display.util to use a special mock display utility.

The mock display utility works like a regular mock object, except it also also asserts that methods

are called with valid arguments.

The mock created by this patch mocks out Certbot internals. That is, the mock object will be called

by the certbot.display.util functions and the mock returned by that call will be used as the display

utility. This was done to simplify the transition from zope.component and mocking

certbot.display.util functions directly in test code should be preferred over using this function in

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



the future.

See https://github.com/certbot/certbot/issues/8948

Returns
patch on the function used internally by certbot.display.util to get a display utility instance

Return type
mock.MagicMock

certbot.tests.util.patch_display_util_with_stdout(stdout: Optional[IO] = None) -> MagicMock
Patch certbot.display.util to use a special mock display utility.

The mock display utility works like a regular mock object, except it also asserts that methods are

called with valid arguments.

The mock created by this patch mocks out Certbot internals. That is, the mock object will be called

by the certbot.display.util functions and the mock returned by that call will be used as the display

utility. This was done to simplify the transition from zope.component and mocking

certbot.display.util functions directly in test code should be preferred over using this function in

the future.

See https://github.com/certbot/certbot/issues/8948

The message argument passed to the display utility methods is passed to stdout’s write method.

Parameters
stdout (object) -- object to write standard output to; it is expected to have a write method

Returns
patch on the function used internally by certbot.display.util to get a display utility instance

Return type
mock.MagicMock

class certbot.tests.util.FreezableMock(frozen: bool = False, func: Optional[Callable[[...], Any]] = None,
return_value: Any = sentinel.DEFAULT)

Bases: object

Mock object with the ability to freeze attributes.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



This class works like a regular mock.MagicMock object, except attributes and behavior set before

the object is frozen cannot be changed during tests.

If a func argument is provided to the constructor, this function is called first when an instance of

FreezableMock is called, followed by the usual behavior defined by MagicMock. The return value

of func is ignored.

freeze() -> None
Freeze object preventing further changes.

class certbot.tests.util.TempDirTestCase(methodName=’runTest’)
Bases: TestCase

Base test class which sets up and tears down a temporary directory

setUp() -> None
Execute before test

tearDown() -> None
Execute after test

class certbot.tests.util.ConfigTestCase(methodName=’runTest’)
Bases: TempDirTestCase

Test class which sets up a NamespaceConfig object.

setUp() -> None
Execute before test

certbot.tests.util.lock_and_call(callback: Callable[[], Any], path_to_lock: str) -> None
Grab a lock on path_to_lock from a foreign process then execute the callback. :param callable

callback: object to call after acquiring the lock :param str path_to_lock: path to file or directory to

lock

certbot.tests.util.skip_on_windows(reason: str) -> Callable[[Callable[[...], Any]], Callable[[...], Any]]
Decorator to skip permanently a test on Windows. A reason is required.

certbot.tests.util.temp_join(path: str) -> str
Return the given path joined to the tempdir path for the current platform Eg.: ’cert’ => /tmp/cert

(Linux) or ’C:UserscurrentuserAppDataTempcert’ (Windows)

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Submodules
certbot.achallenges module

Client annotated ACME challenges.

Please use names such as achall to distinguish from variables "of type" acme.challenges.Challenge
(denoted by chall) and ChallengeBody (denoted by challb):

from acme import challenges

from acme import messages

from certbot import achallenges

chall = challenges.DNS(token=’foo’)

challb = messages.ChallengeBody(chall=chall)

achall = achallenges.DNS(chall=challb, domain=’example.com’)

Note, that all annotated challenges act as a proxy objects:

achall.token == challb.token

class certbot.achallenges.AnnotatedChallenge(**kwargs: Any)
Bases: ImmutableMap

Client annotated challenge.

Wraps around server provided challenge and annotates with data useful for the client.

Variables
~.challb -- Wrapped ChallengeBody.

challb

class certbot.achallenges.KeyAuthorizationAnnotatedChallenge(**kwargs: Any)
Bases: AnnotatedChallenge

Client annotated KeyAuthorizationChallenge challenge.

response_and_validation(*args: Any, **kwargs: Any) -> Any
Generate response and validation.

challb

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



domain

account_key

class certbot.achallenges.DNS(**kwargs: Any)
Bases: AnnotatedChallenge

Client annotated "dns" ACME challenge.

acme_type
alias of DNS

challb

domain

class certbot.achallenges.Other(**kwargs: Any)
Bases: AnnotatedChallenge

Client annotated ACME challenge of an unknown type.

acme_type
alias of Challenge

challb

domain

certbot.crypto_util module
Certbot client crypto utility functions.

certbot.crypto_util.generate_key(key_size: int, key_dir: Optional[str], key_type: str = ’rsa’,
elliptic_curve: str = ’secp256r1’, keyname: str = ’key-certbot.pem’, strict_permissions: bool = True) ->
Key

Initializes and saves a privkey.

Inits key and saves it in PEM format on the filesystem.

NOTE:
keyname is the attempted filename, it may be different if a file already exists at the path.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Parameters

+o key_size (int) -- key size in bits if key size is rsa.

+o key_dir (str) -- Optional key save directory.

+o key_type (str) -- Key Type [rsa, ecdsa]

+o elliptic_curve (str) -- Name of the elliptic curve if key type is ecdsa.

+o keyname (str) -- Filename of key

+o strict_permissions (bool) -- If true and key_dir exists, an exception is raised if the

directory doesn’t have 0700 permissions or isn’t owned by the current user.

Returns
Key

Return type
certbot.util.Key

Raises
ValueError -- If unable to generate the key given key_size.

certbot.crypto_util.generate_csr(privkey: Key, names: Union[List[str], Set[str]], path: Optional[str],
must_staple: bool = False, strict_permissions: bool = True) -> CSR

Initialize a CSR with the given private key.

Parameters

+o privkey (certbot.util.Key) -- Key to include in the CSR

+o names (set) -- str names to include in the CSR

+o path (str) -- Optional certificate save directory.

+o must_staple (bool) -- If true, include the TLS Feature extension "OCSP

Must-Staple"

+o strict_permissions (bool) -- If true and path exists, an exception is raised if the

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



directory doesn’t have 0755 permissions or isn’t owned by the current user.

Returns
CSR

Return type
certbot.util.CSR

certbot.crypto_util.valid_csr(csr: bytes) -> bool
Validate CSR.

Check if csr is a valid CSR for the given domains.

Parameters
csr (bytes) -- CSR in PEM.

Returns
Validity of CSR.

Return type
bool

certbot.crypto_util.csr_matches_pubkey(csr: bytes, privkey: bytes) -> bool
Does private key correspond to the subject public key in the CSR?

Parameters

+o csr (bytes) -- CSR in PEM.

+o privkey (bytes) -- Private key file contents (PEM)

Returns
Correspondence of private key to CSR subject public key.

Return type
bool

certbot.crypto_util.import_csr_file(csrfile: str, data: bytes) -> Tuple[int, CSR, List[str]]
Import a CSR file, which can be either PEM or DER.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Parameters

+o csrfile (str) -- CSR filename

+o data (bytes) -- contents of the CSR file

Returns
(crypto.FILETYPE_PEM, util.CSR object representing the CSR, list of domains

requested in the CSR)

Return type
tuple

certbot.crypto_util.make_key(bits: int = 1024, key_type: str = ’rsa’, elliptic_curve: Optional[str] =
None) -> bytes

Generate PEM encoded RSA|EC key.

Parameters

+o bits (int) -- Number of bits if key_type=rsa. At least 1024 for RSA.

+o key_type (str) -- The type of key to generate, but be rsa or ecdsa

+o elliptic_curve (str) -- The elliptic curve to use.

Returns
new RSA or ECDSA key in PEM form with specified number of bits or of type ec_curve

when key_type ecdsa is used.

Return type
str

certbot.crypto_util.valid_privkey(privkey: Union[str, bytes]) -> bool
Is valid RSA private key?

Parameters
privkey -- Private key file contents in PEM

Returns
Validity of private key.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Return type
bool

certbot.crypto_util.verify_renewable_cert(renewable_cert: RenewableCert) -> None
For checking that your certs were not corrupted on disk.

Several things are checked:

1. Signature verification for the cert.

2. That fullchain matches cert and chain when concatenated.

3. Check that the private key matches the certificate.

Parameters
renewable_cert (certbot.interfaces.RenewableCert) -- cert to verify

Raises
errors.Error -- If verification fails.

certbot.crypto_util.verify_renewable_cert_sig(renewable_cert: RenewableCert) -> None
Verifies the signature of a RenewableCert object.

Parameters
renewable_cert (certbot.interfaces.RenewableCert) -- cert to verify

Raises
errors.Error -- If signature verification fails.

certbot.crypto_util.verify_signed_payload(public_key: Union[DSAPublicKey, Ed25519PublicKey,
Ed448PublicKey, EllipticCurvePublicKey, RSAPublicKey, X25519PublicKey, X448PublicKey],
signature: bytes, payload: bytes, signature_hash_algorithm: HashAlgorithm) -> None

Check the signature of a payload.

Parameters

+o public_key (RSAPublicKey/EllipticCurvePublicKey) -- the public_key to check

signature

+o signature (bytes) -- the signature bytes

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o payload (bytes) -- the payload bytes

+o signature_hash_algorithm (hashes.HashAlgorithm) -- algorithm used to hash the

payload

Raises

+o InvalidSignature -- If signature verification fails.

+o errors.Error -- If public key type is not supported

certbot.crypto_util.verify_cert_matches_priv_key(cert_path: str, key_path: str) -> None
Verifies that the private key and cert match.

Parameters

+o cert_path (str) -- path to a cert in PEM format

+o key_path (str) -- path to a private key file

Raises
errors.Error -- If they don’t match.

certbot.crypto_util.verify_fullchain(renewable_cert: RenewableCert) -> None
Verifies that fullchain is indeed cert concatenated with chain.

Parameters
renewable_cert (certbot.interfaces.RenewableCert) -- cert to verify

Raises
errors.Error -- If cert and chain do not combine to fullchain.

certbot.crypto_util.pyopenssl_load_certificate(data: bytes) -> Tuple[X509, int]
Load PEM/DER certificate.

Raises
errors.Error --

certbot.crypto_util.get_sans_from_cert(cert: bytes, typ: int = 1) -> List[str]
Get a list of Subject Alternative Names from a certificate.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Parameters

+o cert (str) -- Certificate (encoded).

+o typ -- crypto.FILETYPE_PEM or crypto.FILETYPE_ASN1

Returns
A list of Subject Alternative Names.

Return type
list

certbot.crypto_util.get_names_from_cert(cert: bytes, typ: int = 1) -> List[str]
Get a list of domains from a cert, including the CN if it is set.

Parameters

+o cert (str) -- Certificate (encoded).

+o typ -- crypto.FILETYPE_PEM or crypto.FILETYPE_ASN1

Returns
A list of domain names.

Return type
list

certbot.crypto_util.get_names_from_req(csr: bytes, typ: int = 1) -> List[str]
Get a list of domains from a CSR, including the CN if it is set.

Parameters

+o csr (str) -- CSR (encoded).

+o typ -- crypto.FILETYPE_PEM or crypto.FILETYPE_ASN1

Returns
A list of domain names.

Return type

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



list

certbot.crypto_util.dump_pyopenssl_chain(chain: Union[List[X509], List[ComparableX509]], filetype:
int = 1) -> bytes

Dump certificate chain into a bundle.

Parameters
chain (list) -- List of crypto.X509 (or wrapped in josepy.util.ComparableX509).

certbot.crypto_util.notBefore(cert_path: str) -> datetime
When does the cert at cert_path start being valid?

Parameters
cert_path (str) -- path to a cert in PEM format

Returns
the notBefore value from the cert at cert_path

Return type
datetime.datetime

certbot.crypto_util.notAfter(cert_path: str) -> datetime
When does the cert at cert_path stop being valid?

Parameters
cert_path (str) -- path to a cert in PEM format

Returns
the notAfter value from the cert at cert_path

Return type
datetime.datetime

certbot.crypto_util.sha256sum(filename: str) -> str
Compute a sha256sum of a file.

NB: In given file, platform specific newlines characters will be converted into their equivalent

unicode counterparts before calculating the hash.

Parameters

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



filename (str) -- path to the file whose hash will be computed

Returns
sha256 digest of the file in hexadecimal

Return type
str

certbot.crypto_util.cert_and_chain_from_fullchain(fullchain_pem: str) -> Tuple[str, str]
Split fullchain_pem into cert_pem and chain_pem

Parameters
fullchain_pem (str) -- concatenated cert + chain

Returns
tuple of string cert_pem and chain_pem

Return type
tuple

Raises
errors.Error -- If there are less than 2 certificates in the chain.

certbot.crypto_util.get_serial_from_cert(cert_path: str) -> int
Retrieve the serial number of a certificate from certificate path

Parameters
cert_path (str) -- path to a cert in PEM format

Returns
serial number of the certificate

Return type
int

certbot.crypto_util.find_chain_with_issuer(fullchains: List[str], issuer_cn: str, warn_on_no_match:
bool = False) -> str

Chooses the first certificate chain from fullchains whose topmost intermediate has an Issuer

Common Name matching issuer_cn (in other words the first chain which chains to a root whose

name matches issuer_cn).

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Parameters

+o fullchains (list of str) -- The list of fullchains in PEM chain format.

+o issuer_cn (str) -- The exact Subject Common Name to match against any issuer in

the certificate chain.

Returns
The best-matching fullchain, PEM-encoded, or the first if none match.

Return type
str

certbot.errors module
Certbot client errors.

exception certbot.errors.Error
Bases: Exception

Generic Certbot client error.

exception certbot.errors.AccountStorageError
Bases: Error

Generic AccountStorage error.

exception certbot.errors.AccountNotFound
Bases: AccountStorageError

Account not found error.

exception certbot.errors.ReverterError
Bases: Error

Certbot Reverter error.

exception certbot.errors.SubprocessError
Bases: Error

Subprocess handling error.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



exception certbot.errors.CertStorageError
Bases: Error

Generic CertStorage error.

exception certbot.errors.HookCommandNotFound
Bases: Error

Failed to find a hook command in the PATH.

exception certbot.errors.SignalExit
Bases: Error

A Unix signal was received while in the ErrorHandler context manager.

exception certbot.errors.OverlappingMatchFound
Bases: Error

Multiple lineages matched what should have been a unique result.

exception certbot.errors.LockError
Bases: Error

File locking error.

exception certbot.errors.AuthorizationError
Bases: Error

Authorization error.

exception certbot.errors.FailedChallenges(failed_achalls: Set[AnnotatedChallenge])
Bases: AuthorizationError

Failed challenges error.

Variables
failed_achalls (set) -- Failed AnnotatedChallenge instances.

exception certbot.errors.PluginError
Bases: Error

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Certbot Plugin error.

exception certbot.errors.PluginEnhancementAlreadyPresent
Bases: Error

Enhancement was already set

exception certbot.errors.PluginSelectionError
Bases: Error

A problem with plugin/configurator selection or setup

exception certbot.errors.NoInstallationError
Bases: PluginError

Certbot No Installation error.

exception certbot.errors.MisconfigurationError
Bases: PluginError

Certbot Misconfiguration error.

exception certbot.errors.NotSupportedError
Bases: PluginError

Certbot Plugin function not supported error.

exception certbot.errors.PluginStorageError
Bases: PluginError

Certbot Plugin Storage error.

exception certbot.errors.StandaloneBindError(socket_error: OSError, port: int)
Bases: Error

Standalone plugin bind error.

exception certbot.errors.ConfigurationError
Bases: Error

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Configuration sanity error.

exception certbot.errors.MissingCommandlineFlag
Bases: Error

A command line argument was missing in noninteractive usage

certbot.interfaces module
Certbot client interfaces.

class certbot.interfaces.AccountStorage
Bases: object

Accounts storage interface.

abstract find_all() -> List[Account]
Find all accounts.

Returns
All found accounts.

Return type
list

abstract load(account_id: str) -> Account
Load an account by its id.

Raises

+o .AccountNotFound -- if account could not be found

+o .AccountStorageError -- if account could not be loaded

Returns
The account loaded

Return type
.Account

abstract save(account: Account, client: ClientV2) -> None

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Save account.

Raises
.AccountStorageError -- if account could not be saved

class certbot.interfaces.Plugin(config: Optional[NamespaceConfig], name: str)
Bases: object

Certbot plugin.

Objects providing this interface will be called without satisfying any entry point "extras" (extra

dependencies) you might have defined for your plugin, e.g (excerpt from setup.py script):

setup(

...

entry_points={

’certbot.plugins’: [

’name=example_project.plugin[plugin_deps]’,

],

},

extras_require={

’plugin_deps’: [’dep1’, ’dep2’],

}

)

Therefore, make sure such objects are importable and usable without extras. This is

necessary, because CLI does the following operations (in order):

+o loads an entry point,

+o calls inject_parser_options,

+o requires an entry point,

+o creates plugin instance (__call__).

description: str = NotImplemented
Short plugin description

name: str = NotImplemented

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Unique name of the plugin

abstract prepare() -> None
Prepare the plugin.

Finish up any additional initialization.

Raises

+o .PluginError -- when full initialization cannot be completed.

+o .MisconfigurationError -- when full initialization cannot be completed.

Plugin will be displayed on a list of available plugins.

+o .NoInstallationError -- when the necessary programs/files cannot be

located. Plugin will NOT be displayed on a list of available plugins.

+o .NotSupportedError -- when the installation is recognized, but the version

is not currently supported.

abstract more_info() -> str
Human-readable string to help the user.

Should describe the steps taken and any relevant info to help the user decide which plugin

to use.

Rtype str

abstract classmethod inject_parser_options(parser: ArgumentParser, name: str) -> None
Inject argument parser options (flags).

1. Be nice and prepend all options and destinations with option_namespace and

dest_namespace.

2. Inject options (flags) only. Positional arguments are not allowed, as this would break

the CLI.

Parameters

+o parser (ArgumentParser) -- (Almost) top-level CLI parser.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o name (str) -- Unique plugin name.

class certbot.interfaces.Authenticator(config: Optional[NamespaceConfig], name: str)
Bases: Plugin

Generic Certbot Authenticator.

Class represents all possible tools processes that have the ability to perform challenges and attain a

certificate.

abstract get_chall_pref(domain: str) -> Iterable[Type[Challenge]]
Return collections.Iterable of challenge preferences.

Parameters
domain (str) -- Domain for which challenge preferences are sought.

Returns
collections.Iterable of challenge types (subclasses of acme.challenges.Challenge)

with the most preferred challenges first. If a type is not specified, it means the

Authenticator cannot perform the challenge.

Return type
collections.Iterable

abstract perform(achalls: List[AnnotatedChallenge]) -> List[ChallengeResponse]
Perform the given challenge.

Parameters
achalls (list) -- Non-empty (guaranteed) list of AnnotatedChallenge instances,

such that it contains types found within get_chall_pref() only.

Returns
list of ACME ChallengeResponse instances corresponding to each provided

Challenge.

Return type
collections.List of acme.challenges.ChallengeResponse, where responses are

required to be returned in the same order as corresponding input challenges

Raises

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



.PluginError -- If some or all challenges cannot be performed

abstract cleanup(achalls: List[AnnotatedChallenge]) -> None
Revert changes and shutdown after challenges complete.

This method should be able to revert all changes made by perform, even if perform exited

abnormally.

Parameters
achalls (list) -- Non-empty (guaranteed) list of AnnotatedChallenge instances, a

subset of those previously passed to perform().

Raises
PluginError -- if original configuration cannot be restored

class certbot.interfaces.Installer(config: Optional[NamespaceConfig], name: str)
Bases: Plugin

Generic Certbot Installer Interface.

Represents any server that an X509 certificate can be placed.

It is assumed that save() is the only method that finalizes a checkpoint. This is important to ensure

that checkpoints are restored in a consistent manner if requested by the user or in case of an error.

Using certbot.reverter.Reverter to implement checkpoints, rollback, and recovery can dramatically

simplify plugin development.

abstract get_all_names() -> Iterable[str]
Returns all names that may be authenticated.

Return type
collections.Iterable of str

abstract deploy_cert(domain: str, cert_path: str, key_path: str, chain_path: str, fullchain_path:
str) -> None

Deploy certificate.

Parameters

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o domain (str) -- domain to deploy certificate file

+o cert_path (str) -- absolute path to the certificate file

+o key_path (str) -- absolute path to the private key file

+o chain_path (str) -- absolute path to the certificate chain file

+o fullchain_path (str) -- absolute path to the certificate fullchain file (cert

plus chain)

Raises
.PluginError -- when cert cannot be deployed

abstract enhance(domain: str, enhancement: str, options: Optional[Union[List[str], str]] =
None) -> None

Perform a configuration enhancement.

Parameters

+o domain (str) -- domain for which to provide enhancement

+o enhancement (str) -- An enhancement as defined in ENHANCEMENTS

+o options -- Flexible options parameter for enhancement. Check

documentation of ENHANCEMENTS for expected options for each

enhancement.

Raises
.PluginError -- If Enhancement is not supported, or if an error occurs during the

enhancement.

abstract supported_enhancements() -> List[str]
Returns a collections.Iterable of supported enhancements.

Returns
supported enhancements which should be a subset of ENHANCEMENTS

Return type
collections.Iterable of str

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



abstract save(title: Optional[str] = None, temporary: bool = False) -> None
Saves all changes to the configuration files.

Both title and temporary are needed because a save may be intended to be permanent, but

the save is not ready to be a full checkpoint.

It is assumed that at most one checkpoint is finalized by this method. Additionally, if an

exception is raised, it is assumed a new checkpoint was not finalized.

Parameters

+o title (str) -- The title of the save. If a title is given, the configuration will be

saved as a new checkpoint and put in a timestamped directory. title has no

effect if temporary is true.

+o temporary (bool) -- Indicates whether the changes made will be quickly

reversed in the future (challenges)

Raises
.PluginError -- when save is unsuccessful

abstract rollback_checkpoints(rollback: int = 1) -> None
Revert rollback number of configuration checkpoints.

Raises
.PluginError -- when configuration cannot be fully reverted

abstract recovery_routine() -> None
Revert configuration to most recent finalized checkpoint.

Remove all changes (temporary and permanent) that have not been finalized. This is

useful to protect against crashes and other execution interruptions.

Raises
.errors.PluginError -- If unable to recover the configuration

abstract config_test() -> None
Make sure the configuration is valid.

Raises

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



.MisconfigurationError -- when the config is not in a usable state

abstract restart() -> None
Restart or refresh the server content.

Raises
.PluginError -- when server cannot be restarted

class certbot.interfaces.RenewableCert
Bases: object

Interface to a certificate lineage.

abstract property cert_path: str
Path to the certificate file.

Return type
str

abstract property key_path: str
Path to the private key file.

Return type
str

abstract property chain_path: str
Path to the certificate chain file.

Return type
str

abstract property fullchain_path: str
Path to the full chain file.

The full chain is the certificate file plus the chain file.

Return type
str

abstract property lineagename: str

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Name given to the certificate lineage.

Return type
str

abstract names() -> List[str]
What are the subject names of this certificate?

Returns
the subject names

Return type
list of str

Raises
.CertStorageError -- if could not find cert file.

class certbot.interfaces.GenericUpdater
Bases: object

Interface for update types not currently specified by Certbot.

This class allows plugins to perform types of updates that Certbot hasn’t defined (yet).

To make use of this interface, the installer should implement the interface methods, and

interfaces.GenericUpdater.register(InstallerClass) should be called from the installer code.

The plugins implementing this enhancement are responsible of handling the saving of

configuration checkpoints as well as other calls to interface methods of interfaces.Installer such as

prepare() and restart()

abstract generic_updates(lineage: RenewableCert, *args: Any, **kwargs: Any) -> None
Perform any update types defined by the installer.

If an installer is a subclass of the class containing this method, this function will always be

called when "certbot renew" is run. If the update defined by the installer should be run

conditionally, the installer needs to handle checking the conditions itself.

This method is called once for each lineage.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Parameters
lineage (RenewableCert) -- Certificate lineage object

class certbot.interfaces.RenewDeployer
Bases: object

Interface for update types run when a lineage is renewed

This class allows plugins to perform types of updates that need to run at lineage renewal that

Certbot hasn’t defined (yet).

To make use of this interface, the installer should implement the interface methods, and

interfaces.RenewDeployer.register(InstallerClass) should be called from the installer code.

abstract renew_deploy(lineage: RenewableCert, *args: Any, **kwargs: Any) -> None
Perform updates defined by installer when a certificate has been renewed

If an installer is a subclass of the class containing this method, this function will always be

called when a certificate has been renewed by running "certbot renew". For example if a

plugin needs to copy a certificate over, or change configuration based on the new

certificate.

This method is called once for each lineage renewed

Parameters
lineage (RenewableCert) -- Certificate lineage object

class certbot.interfaces.IPluginFactory
Bases: object

Compatibility shim for plugins that still use Certbot’s old zope.interface classes.

class certbot.interfaces.IPlugin
Bases: object

Compatibility shim for plugins that still use Certbot’s old zope.interface classes.

class certbot.interfaces.IAuthenticator
Bases: IPlugin

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Compatibility shim for plugins that still use Certbot’s old zope.interface classes.

class certbot.interfaces.IInstaller
Bases: IPlugin

Compatibility shim for plugins that still use Certbot’s old zope.interface classes.

certbot.main module
Certbot main public entry point.

certbot.main.main(cli_args: Optional[List[str]] = None) -> Optional[Union[str, int]]
Run Certbot.

Parameters
cli_args (list of str) -- command line to Certbot, defaults to sys.argv[1:]

Returns
value for sys.exit about the exit status of Certbot

Return type
str or int or None

certbot.ocsp package
Tools for checking certificate revocation.

class certbot.ocsp.RevocationChecker(enforce_openssl_binary_usage: bool = False)
Bases: object

This class figures out OCSP checking on this system, and performs it.

ocsp_revoked(cert: RenewableCert) -> bool
Get revoked status for a particular cert version.

Parameters
cert (interfaces.RenewableCert) -- Certificate object

Returns
True if revoked; False if valid or the check failed or cert is expired.

Return type

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



bool

ocsp_revoked_by_paths(cert_path: str, chain_path: str, timeout: int = 10) -> bool
Performs the OCSP revocation check

Parameters

+o cert_path (str) -- Certificate filepath

+o chain_path (str) -- Certificate chain

+o timeout (int) -- Timeout (in seconds) for the OCSP query

Returns
True if revoked; False if valid or the check failed or cert is expired.

Return type
bool

certbot.reverter module
Reverter class saves configuration checkpoints and allows for recovery.

class certbot.reverter.Reverter(config: NamespaceConfig)
Bases: object

Reverter Class - save and revert configuration checkpoints.

This class can be used by the plugins, especially Installers, to undo changes made to the user’s

system. Modifications to files and commands to do undo actions taken by the plugin should be

registered with this class before the action is taken.

Once a change has been registered with this class, there are three states the change can be in. First,

the change can be a temporary change. This should be used for changes that will soon be reverted,

such as config changes for the purpose of solving a challenge. Changes are added to this state

through calls to add_to_temp_checkpoint() and reverted when revert_temporary_config() or

recovery_routine() is called.

The second state a change can be in is in progress. These changes are not temporary, however, they

also have not been finalized in a checkpoint. A change must become in progress before it can be

finalized. Changes are added to this state through calls to add_to_checkpoint() and reverted when

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



recovery_routine() is called.

The last state a change can be in is finalized in a checkpoint. A change is put into this state by first

becoming an in progress change and then calling finalize_checkpoint(). Changes in this state can

be reverted through calls to rollback_checkpoints().

As a final note, creating new files and registering undo commands are handled specially and use

the methods register_file_creation() and register_undo_command() respectively. Both of these

methods can be used to create either temporary or in progress changes.

NOTE:
Consider moving everything over to CSV format.

Parameters
config (certbot.configuration.NamespaceConfig) -- Configuration.

revert_temporary_config() -> None
Reload users original configuration files after a temporary save.

This function should reinstall the users original configuration files for all saves with

temporary=True

Raises
.ReverterError -- when unable to revert config

rollback_checkpoints(rollback: int = 1) -> None
Revert ’rollback’ number of configuration checkpoints.

Parameters
rollback (int) -- Number of checkpoints to reverse. A str num will be cast to an

integer. So "2" is also acceptable.

Raises
.ReverterError -- if there is a problem with the input or if the function is unable to

correctly revert the configuration checkpoints

add_to_temp_checkpoint(save_files: Set[str], save_notes: str) -> None
Add files to temporary checkpoint.

Parameters

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



+o save_files (set) -- set of filepaths to save

+o save_notes (str) -- notes about changes during the save

add_to_checkpoint(save_files: Set[str], save_notes: str) -> None
Add files to a permanent checkpoint.

Parameters

+o save_files (set) -- set of filepaths to save

+o save_notes (str) -- notes about changes during the save

register_file_creation(temporary: bool, *files: str) -> None
Register the creation of all files during certbot execution.

Call this method before writing to the file to make sure that the file will be cleaned up if

the program exits unexpectedly. (Before a save occurs)

Parameters

+o temporary (bool) -- If the file creation registry is for a temp or permanent

save.

+o *files -- file paths (str) to be registered

Raises
certbot.errors.ReverterError -- If call does not contain necessary parameters or if

the file creation is unable to be registered.

register_undo_command(temporary: bool, command: Iterable[str]) -> None
Register a command to be run to undo actions taken.

WARNING:
This function does not enforce order of operations in terms of file modification

vs. command registration. All undo commands are run first before all normal

files are reverted to their previous state. If you need to maintain strict order, you

may create checkpoints before and after the the command registration. This

function may be improved in the future based on demand.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Parameters

+o temporary (bool) -- Whether the command should be saved in the

IN_PROGRESS or TEMPORARY checkpoints.

+o command (list of str) -- Command to be run.

recovery_routine() -> None
Revert configuration to most recent finalized checkpoint.

Remove all changes (temporary and permanent) that have not been finalized. This is

useful to protect against crashes and other execution interruptions.

Raises
.errors.ReverterError -- If unable to recover the configuration

finalize_checkpoint(title: str) -> None
Finalize the checkpoint.

Timestamps and permanently saves all changes made through the use of

add_to_checkpoint() and register_file_creation()

Parameters
title (str) -- Title describing checkpoint

Raises
certbot.errors.ReverterError -- when the checkpoint is not able to be finalized.

certbot.util module
Utilities for all Certbot.

class certbot.util.Key(file: Optional[str], pem: bytes)
Bases: NamedTuple

Container for an optional file path and contents for a PEM-formated private key.

file: Optional[str]
Alias for field number 0

pem: bytes

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Alias for field number 1

class certbot.util.CSR(file: Optional[str], data: bytes, form: str)
Bases: NamedTuple

Container for an optional file path and contents for a PEM or DER-formatted CSR.

file: Optional[str]
Alias for field number 0

data: bytes
Alias for field number 1

form: str
Alias for field number 2

certbot.util.env_no_snap_for_external_calls() -> Dict[str, str]
When Certbot is run inside a Snap, certain environment variables are modified. But Certbot

sometimes calls out to external programs, since it uses classic confinement. When we do that, we

must modify the env to remove our modifications so it will use the system’s libraries, since they

may be incompatible with the versions of libraries included in the Snap. For example, apachectl,

Nginx, and anything run from inside a hook should call this function and pass the results into the

env argument of subprocess.Popen.

Returns
A modified copy of os.environ ready to pass to Popen

Return type
dict

certbot.util.run_script(params: ~typing.List[str], log: ~typing.Callable[[str], None] = <bound method
Logger.error of <Logger certbot.util (WARNING)>>) -> Tuple[str, str]

Run the script with the given params.

Parameters

+o params (list) -- List of parameters to pass to subprocess.run

+o log (callable) -- Logger method to use for errors

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



certbot.util.exe_exists(exe: str) -> bool
Determine whether path/name refers to an executable.

Parameters
exe (str) -- Executable path or name

Returns
If exe is a valid executable

Return type
bool

certbot.util.lock_dir_until_exit(dir_path: str) -> None
Lock the directory at dir_path until program exit.

Parameters
dir_path (str) -- path to directory

Raises
errors.LockError -- if the lock is held by another process

certbot.util.set_up_core_dir(directory: str, mode: int, strict: bool) -> None
Ensure directory exists with proper permissions and is locked.

Parameters

+o directory (str) -- Path to a directory.

+o mode (int) -- Directory mode.

+o strict (bool) -- require directory to be owned by current user

Raises

+o .errors.LockError -- if the directory cannot be locked

+o .errors.Error -- if the directory cannot be made or verified

certbot.util.make_or_verify_dir(directory: str, mode: int = 493, strict: bool = False) -> None
Make sure directory exists with proper permissions.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Parameters

+o directory (str) -- Path to a directory.

+o mode (int) -- Directory mode.

+o strict (bool) -- require directory to be owned by current user

Raises

+o .errors.Error -- if a directory already exists, but has wrong permissions or owner

+o OSError -- if invalid or inaccessible file names and paths, or other arguments that

have the correct type, but are not accepted by the operating system.

certbot.util.safe_open(path: str, mode: str = ’w’, chmod: Optional[int] = None) -> IO
Safely open a file.

Parameters

+o path (str) -- Path to a file.

+o mode (str) -- Same os mode for open.

+o chmod (int) -- Same as mode for filesystem.open, uses Python defaults if None.

certbot.util.unique_file(path: str, chmod: int = 511, mode: str = ’w’) -> Tuple[IO, str]
Safely finds a unique file.

Parameters

+o path (str) -- path/filename.ext

+o chmod (int) -- File mode

+o mode (str) -- Open mode

Returns
tuple of file object and file name

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



certbot.util.unique_lineage_name(path: str, filename: str, chmod: int = 420, mode: str = ’w’) ->
Tuple[IO, str]

Safely finds a unique file using lineage convention.

Parameters

+o path (str) -- directory path

+o filename (str) -- proposed filename

+o chmod (int) -- file mode

+o mode (str) -- open mode

Returns
tuple of file object and file name (which may be modified from the requested one by

appending digits to ensure uniqueness)

Raises
OSError -- if writing files fails for an unanticipated reason, such as a full disk or a lack of

permission to write to specified location.

certbot.util.safely_remove(path: str) -> None
Remove a file that may not exist.

certbot.util.get_filtered_names(all_names: Set[str]) -> Set[str]
Removes names that aren’t considered valid by Let’s Encrypt.

Parameters
all_names (set) -- all names found in the configuration

Returns
all found names that are considered valid by LE

Return type
set

certbot.util.get_os_info() -> Tuple[str, str]
Get OS name and version

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Returns
(os_name, os_version)

Return type
tuple of str

certbot.util.get_os_info_ua() -> str
Get OS name and version string for User Agent

Returns
os_ua

Return type
str

certbot.util.get_systemd_os_like() -> List[str]
Get a list of strings that indicate the distribution likeness to other distributions.

Returns
List of distribution acronyms

Return type
list of str

certbot.util.get_var_from_file(varname: str, filepath: str = ’/etc/os-release’) -> str
Get single value from a file formatted like systemd /etc/os-release

Parameters

+o varname (str) -- Name of variable to fetch

+o filepath (str) -- File path of os-release file

Returns
requested value

Return type
str

certbot.util.get_python_os_info(pretty: bool = False) -> Tuple[str, str]

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Get Operating System type/distribution and major version using python platform module

Parameters
pretty (bool) -- If the returned OS name should be in longer (pretty) form

Returns
(os_name, os_version)

Return type
tuple of str

certbot.util.safe_email(email: str) -> bool
Scrub email address before using it.

class certbot.util.DeprecatedArgumentAction(option_strings, dest, nargs=None, const=None,
default=None, type=None, choices=None, required=False, help=None, metavar=None)

Bases: Action

Action to log a warning when an argument is used.

certbot.util.add_deprecated_argument(add_argument: Callable[[...], None], argument_name: str, nargs:
Union[str, int]) -> None

Adds a deprecated argument with the name argument_name.

Deprecated arguments are not shown in the help. If they are used on the command line, a warning

is shown stating that the argument is deprecated and no other action is taken.

Parameters

+o add_argument (callable) -- Function that adds arguments to an argument

parser/group.

+o argument_name (str) -- Name of deprecated argument.

+o nargs -- Value for nargs when adding the argument to argparse.

certbot.util.enforce_le_validity(domain: str) -> str
Checks that Let’s Encrypt will consider domain to be valid.

Parameters

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



domain (str) -- FQDN to check

Returns
The domain cast to str, with ASCII-only contents

Return type
str

Raises
ConfigurationError -- for invalid domains and cases where Let’s Encrypt currently will

not issue certificates

certbot.util.enforce_domain_sanity(domain: Union[str, bytes]) -> str
Method which validates domain value and errors out if the requirements are not met.

Parameters
domain (str or bytes) -- Domain to check

Raises
ConfigurationError -- for invalid domains and cases where Let’s Encrypt currently will

not issue certificates

Returns
The domain cast to str, with ASCII-only contents

Return type
str

certbot.util.is_ipaddress(address: str) -> bool
Is given address string form of IP(v4 or v6) address?

Parameters
address (str) -- address to check

Returns
True if address is valid IP address, otherwise return False.

Return type
bool

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



certbot.util.is_wildcard_domain(domain: Union[str, bytes]) -> bool
"Is domain a wildcard domain?

Parameters
domain (bytes or str) -- domain to check

Returns
True if domain is a wildcard, otherwise, False

Return type
bool

certbot.util.is_staging(srv: str) -> bool
Determine whether a given ACME server is a known test / staging server.

Parameters
srv (str) -- the URI for the ACME server

Returns
True iff srv is a known test / staging server

Rtype bool

certbot.util.atexit_register(func: Callable, *args: Any, **kwargs: Any) -> None
Sets func to be called before the program exits.

Special care is taken to ensure func is only called when the process that first imports this module

exits rather than any child processes.

Parameters
func (function) -- function to be called in case of an error

certbot.util.parse_loose_version(version_string: str) -> List[Union[int, str]]
Parses a version string into its components.

This code and the returned tuple is based on the now deprecated distutils.version.LooseVersion

class from the Python standard library. Two LooseVersion classes and two lists as returned by this

function should compare in the same way. See

https://github.com/python/cpython/blob/v3.10.0/Lib/distutils/version.py#L205-L347.

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)



Parameters
version_string (str) -- version string

Returns
list of parsed version string components

Return type
list

+o Index

+o Module Index

+o Search Page

AUTHOR
Certbot

CERTBOT(7) Certbot CERTBOT(7)

2.6 December 16, 2023 CERTBOT(7)


