
NAME
cgetent, cgetset, cgetmatch, cgetcap, cgetnum, cgetstr, cgetustr, cgetfirst, cgetnext, cgetclose - capability

database access routines

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int

cgetent(char **buf, char **db_array, const char *name);

int

cgetset(const char *ent);

int

cgetmatch(const char *buf, const char *name);

char *

cgetcap(char *buf, const char *cap, int type);

int

cgetnum(char *buf, const char *cap, long *num);

int

cgetstr(char *buf, const char *cap, char **str);

int

cgetustr(char *buf, const char *cap, char **str);

int

cgetfirst(char **buf, char **db_array);

int

cgetnext(char **buf, char **db_array);

int

cgetclose(void);

GETCAP(3) FreeBSD Library Functions Manual GETCAP(3)

FreeBSD 14.0-RELEASE-p6 March 22, 2002 FreeBSD 14.0-RELEASE-p6

DESCRIPTION
The cgetent() function extracts the capability name from the database specified by the NULL terminated

file array db_array and returns a pointer to a malloc(3)’d copy of it in buf. The cgetent() function will

first look for files ending in .db (see cap_mkdb(1)) before accessing the ASCII file. The buf argument

must be retained through all subsequent calls to cgetmatch(), cgetcap(), cgetnum(), cgetstr(), and

cgetustr(), but may then be free(3)’d. On success 0 is returned, 1 if the returned record contains an

unresolved tc expansion, -1 if the requested record could not be found, -2 if a system error was

encountered (could not open/read a file, etc.) also setting errno, and -3 if a potential reference loop is

detected (see tc= comments below).

The cgetset() function enables the addition of a character buffer containing a single capability record

entry to the capability database. Conceptually, the entry is added as the first ‘‘file’’ in the database, and

is therefore searched first on the call to cgetent(). The entry is passed in ent. If ent is NULL, the current

entry is removed from the database. A call to cgetset() must precede the database traversal. It must be

called before the cgetent() call. If a sequential access is being performed (see below), it must be called

before the first sequential access call (cgetfirst() or cgetnext()), or be directly preceded by a cgetclose()

call. On success 0 is returned and -1 on failure.

The cgetmatch() function will return 0 if name is one of the names of the capability record buf, -1 if not.

The cgetcap() function searches the capability record buf for the capability cap with type type. A type is

specified using any single character. If a colon (‘:’) is used, an untyped capability will be searched for

(see below for explanation of types). A pointer to the value of cap in buf is returned on success, NULL

if the requested capability could not be found. The end of the capability value is signaled by a ‘:’ or

ASCII NUL (see below for capability database syntax).

The cgetnum() function retrieves the value of the numeric capability cap from the capability record

pointed to by buf. The numeric value is returned in the long pointed to by num. 0 is returned on

success, -1 if the requested numeric capability could not be found.

The cgetstr() function retrieves the value of the string capability cap from the capability record pointed

to by buf. A pointer to a decoded, NUL terminated, malloc(3)’d copy of the string is returned in the

char * pointed to by str. The number of characters in the decoded string not including the trailing NUL

is returned on success, -1 if the requested string capability could not be found, -2 if a system error was

encountered (storage allocation failure).

The cgetustr() function is identical to cgetstr() except that it does not expand special characters, but

rather returns each character of the capability string literally.

The cgetfirst() and cgetnext() functions comprise a function group that provides for sequential access of

GETCAP(3) FreeBSD Library Functions Manual GETCAP(3)

FreeBSD 14.0-RELEASE-p6 March 22, 2002 FreeBSD 14.0-RELEASE-p6

the NULL pointer terminated array of file names, db_array. The cgetfirst() function returns the first

record in the database and resets the access to the first record. The cgetnext() function returns the next

record in the database with respect to the record returned by the previous cgetfirst() or cgetnext() call. If

there is no such previous call, the first record in the database is returned. Each record is returned in a

malloc(3)’d copy pointed to by buf. Tc expansion is done (see tc= comments below). Upon completion

of the database 0 is returned, 1 is returned upon successful return of record with possibly more

remaining (we have not reached the end of the database yet), 2 is returned if the record contains an

unresolved tc expansion, -1 is returned if a system error occurred, and -2 is returned if a potential

reference loop is detected (see tc= comments below). Upon completion of database (0 return) the

database is closed.

The cgetclose() function closes the sequential access and frees any memory and file descriptors being

used. Note that it does not erase the buffer pushed by a call to cgetset().

CAPABILITY DATABASE SYNTAX
Capability databases are normally ASCII and may be edited with standard text editors. Blank lines and

lines beginning with a ‘#’ are comments and are ignored. Lines ending with a ‘\’ indicate that the next

line is a continuation of the current line; the ‘\’ and following newline are ignored. Long lines are

usually continued onto several physical lines by ending each line except the last with a ‘\’.

Capability databases consist of a series of records, one per logical line. Each record contains a variable

number of ‘:’-separated fields (capabilities). Empty fields consisting entirely of white space characters

(spaces and tabs) are ignored.

The first capability of each record specifies its names, separated by ‘|’ characters. These names are used

to reference records in the database. By convention, the last name is usually a comment and is not

intended as a lookup tag. For example, the vt100 record from the termcap(5) database begins:

d0|vt100|vt100-am|vt100am|dec vt100:

giving four names that can be used to access the record.

The remaining non-empty capabilities describe a set of (name, value) bindings, consisting of a names

optionally followed by a typed value:

name typeless [boolean] capability name is present [true]

nameTvalue capability (name, T) has value value

name@ no capability name exists

nameT@ capability (name, T) does not exist

GETCAP(3) FreeBSD Library Functions Manual GETCAP(3)

FreeBSD 14.0-RELEASE-p6 March 22, 2002 FreeBSD 14.0-RELEASE-p6

Names consist of one or more characters. Names may contain any character except ‘:’, but it is usually

best to restrict them to the printable characters and avoid use of graphics like ‘#’, ‘=’, ‘%’, ‘@’, etc.

Types are single characters used to separate capability names from their associated typed values. Types

may be any character except a ‘:’. Typically, graphics like ‘#’, ‘=’, ‘%’, etc. are used. Values may be

any number of characters and may contain any character except ‘:’.

CAPABILITY DATABASE SEMANTICS
Capability records describe a set of (name, value) bindings. Names may have multiple values bound to

them. Different values for a name are distinguished by their types. The cgetcap() function will return a

pointer to a value of a name given the capability name and the type of the value.

The types ‘#’ and ‘=’ are conventionally used to denote numeric and string typed values, but no

restriction on those types is enforced. The functions cgetnum() and cgetstr() can be used to implement

the traditional syntax and semantics of ‘#’ and ‘=’. Typeless capabilities are typically used to denote

boolean objects with presence or absence indicating truth and false values respectively. This

interpretation is conveniently represented by:

(getcap(buf, name, ’:’) != NULL)

A special capability, tc= name, is used to indicate that the record specified by name should be

substituted for the tc capability. Tc capabilities may interpolate records which also contain tc
capabilities and more than one tc capability may be used in a record. A tc expansion scope (i.e., where

the argument is searched for) contains the file in which the tc is declared and all subsequent files in the

file array.

When a database is searched for a capability record, the first matching record in the search is returned.

When a record is scanned for a capability, the first matching capability is returned; the capability

:nameT@: will hide any following definition of a value of type T for name; and the capability :name@:
will prevent any following values of name from being seen.

These features combined with tc capabilities can be used to generate variations of other databases and

records by either adding new capabilities, overriding definitions with new definitions, or hiding

following definitions via ‘@’ capabilities.

EXAMPLES
example|an example of binding multiple values to names:\

:foo%bar:foo^blah:foo@:\

:abc%xyz:abc^frap:abc$@:\

:tc=more:

GETCAP(3) FreeBSD Library Functions Manual GETCAP(3)

FreeBSD 14.0-RELEASE-p6 March 22, 2002 FreeBSD 14.0-RELEASE-p6

The capability foo has two values bound to it (bar of type ‘%’ and blah of type ‘^’) and any other value

bindings are hidden. The capability abc also has two values bound but only a value of type ‘$’ is

prevented from being defined in the capability record more.

file1:

new|new_record|a modification of "old":\

:fript=bar:who-cares@:tc=old:blah:tc=extensions:

file2:

old|old_record|an old database record:\

:fript=foo:who-cares:glork#200:

The records are extracted by calling cgetent() with file1 preceding file2. In the capability record new in

file1, fript=bar overrides the definition of fript=foo interpolated from the capability record old in file2,

who-cares@ prevents the definition of any who-cares definitions in old from being seen, glork#200 is

inherited from old, and blah and anything defined by the record extensions is added to those definitions

in old. Note that the position of the fript=bar and who-cares@ definitions before tc=old is important

here. If they were after, the definitions in old would take precedence.

CGETNUM AND CGETSTR SYNTAX AND SEMANTICS
Two types are predefined by cgetnum() and cgetstr():

name#number numeric capability name has value number

name=string string capability name has value string

name#@ the numeric capability name does not exist

name=@ the string capability name does not exist

Numeric capability values may be given in one of three numeric bases. If the number starts with either

‘0x’ or ‘0X’ it is interpreted as a hexadecimal number (both upper and lower case a-f may be used to

denote the extended hexadecimal digits). Otherwise, if the number starts with a ‘0’ it is interpreted as an

octal number. Otherwise the number is interpreted as a decimal number.

String capability values may contain any character. Non-printable ASCII codes, new lines, and colons

may be conveniently represented by the use of escape sequences:

^X (’X’ & 037) control-X

\b, \B (ASCII 010) backspace

\t, \T (ASCII 011) tab

\n, \N (ASCII 012) line feed (newline)

\f, \F (ASCII 014) form feed

\r, \R (ASCII 015) carriage return

GETCAP(3) FreeBSD Library Functions Manual GETCAP(3)

FreeBSD 14.0-RELEASE-p6 March 22, 2002 FreeBSD 14.0-RELEASE-p6

\e, \E (ASCII 027) escape

\c, \C (:) colon

\\ (\) back slash

\^ (^) caret

\nnn (ASCII octal nnn)

A ‘\’ may be followed by up to three octal digits directly specifies the numeric code for a character. The

use of ASCII NULs, while easily encoded, causes all sorts of problems and must be used with care since

NULs are typically used to denote the end of strings; many applications use ‘\200’ to represent a NUL.

DIAGNOSTICS
The cgetent(), cgetset(), cgetmatch(), cgetnum(), cgetstr(), cgetustr(), cgetfirst(), and cgetnext() functions

return a value greater than or equal to 0 on success and a value less than 0 on failure. The cgetcap()

function returns a character pointer on success and a NULL on failure.

The cgetent(), and cgetset() functions may fail and set errno for any of the errors specified for the library

functions: fopen(3), fclose(3), open(2), and close(2).

The cgetent(), cgetset(), cgetstr(), and cgetustr() functions may fail and set errno as follows:

[ENOMEM] No memory to allocate.

SEE ALSO
cap_mkdb(1), malloc(3)

BUGS
Colons (‘:’) cannot be used in names, types, or values.

There are no checks for tc=name loops in cgetent().

The buffer added to the database by a call to cgetset() is not unique to the database but is rather

prepended to any database used.

GETCAP(3) FreeBSD Library Functions Manual GETCAP(3)

FreeBSD 14.0-RELEASE-p6 March 22, 2002 FreeBSD 14.0-RELEASE-p6

