
NAME
close - delete a descriptor

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int

close(int fd);

DESCRIPTION
The close() system call deletes a descriptor from the per-process object reference table. If this is the last

reference to the underlying object, the object will be deactivated. For example, on the last close of a file

the current seek pointer associated with the file is lost; on the last close of a socket(2) associated naming

information and queued data are discarded; on the last close of a file holding an advisory lock the lock is

released (see further flock(2)). However, the semantics of System V and IEEE Std 1003.1-1988

("POSIX.1") dictate that all fcntl(2) advisory record locks associated with a file for a given process are

removed when any file descriptor for that file is closed by that process.

When a process exits, all associated file descriptors are freed, but since there is a limit on active

descriptors per processes, the close() system call is useful when a large quantity of file descriptors are

being handled.

When a process forks (see fork(2)), all descriptors for the new child process reference the same objects

as they did in the parent before the fork. If a new process is then to be run using execve(2), the process

would normally inherit these descriptors. Most of the descriptors can be rearranged with dup2(2) or

deleted with close() before the execve(2) is attempted, but if some of these descriptors will still be

needed if the execve fails, it is necessary to arrange for them to be closed if the execve succeeds. For

this reason, the call "fcntl(d, F_SETFD, FD_CLOEXEC)" is provided, which arranges that a descriptor

will be closed after a successful execve; the call "fcntl(d, F_SETFD, 0)" restores the default, which is to

not close the descriptor.

RETURN VALUES
The close() function returns the value 0 if successful; otherwise the value -1 is returned and the global

variable errno is set to indicate the error.

ERRORS
The close() system call will fail if:

CLOSE(2) FreeBSD System Calls Manual CLOSE(2)

FreeBSD 14.0-RELEASE-p11 December 1, 2017 FreeBSD 14.0-RELEASE-p11



[EBADF] The fd argument is not an active descriptor.

[EINTR] An interrupt was received.

[ENOSPC] The underlying object did not fit, cached data was lost.

[ECONNRESET] The underlying object was a stream socket that was shut down by the peer before

all pending data was delivered.

In case of any error except EBADF, the supplied file descriptor is deallocated and therefore is no longer

valid.

SEE ALSO
accept(2), closefrom(2), execve(2), fcntl(2), flock(2), open(2), pipe(2), socket(2), socketpair(2)

STANDARDS
The close() system call is expected to conform to IEEE Std 1003.1-1990 ("POSIX.1").

HISTORY
The close() function appeared in Version 1 AT&T UNIX.

CLOSE(2) FreeBSD System Calls Manual CLOSE(2)

FreeBSD 14.0-RELEASE-p11 December 1, 2017 FreeBSD 14.0-RELEASE-p11


