
NAME
copy_file_range - kernel copy of a byte range from one file to another or within one file

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

ssize_t

copy_file_range(int infd, off_t *inoffp, int outfd, off_t *outoffp, size_t len, unsigned int flags);

DESCRIPTION
The copy_file_range() system call copies up to len bytes from infd to outfd in the kernel. It may do this

using a file system specific technique if infd and outfd are on the same file system. If infd and outfd

refer to the same file, the byte ranges defined by the input file offset, output file offset and len cannot

overlap. The infd argument must be opened for reading and the outfd argument must be opened for

writing, but not O_APPEND. If inoffp or outoffp is NULL, the file offset for infd or outfd respectively

will be used and updated by the number of bytes copied. If inoffp or outoffp is not NULL, the byte

offset pointed to by inoffp or outoffp respectively will be used/updated and the file offset for infd or

outfd respectively will not be affected. The flags argument must be 0.

This system call attempts to maintain holes in the output file for the byte range being copied. However,

this does not always work well. It is recommended that sparse files be copied in a loop using lseek(2)

with SEEK_HOLE, SEEK_DATA arguments and this system call for the data ranges found.

For best performance, call copy_file_range() with the largest len value possible. It is interruptible on

most file systems, so there is no penalty for using very large len values, even SSIZE_MAX.

RETURN VALUES
If it succeeds, the call returns the number of bytes copied, which can be fewer than len. Returning fewer

bytes than len does not necessarily indicate that EOF was reached. However, a return of zero for a non-

zero len argument indicates that the offset for infd is at or beyond EOF. copy_file_range() should be

used in a loop until copying of the desired byte range has been completed. If an error has occurred, a -1

is returned and the error code is placed in the global variable errno.

ERRORS
The copy_file_range() system call will fail if:

COPY_FILE_RANGE(2) FreeBSD System Calls Manual COPY_FILE_RANGE(2)

FreeBSD 14.0-RELEASE-p6 January 2, 2021 FreeBSD 14.0-RELEASE-p6



[EBADF] If infd is not open for reading or outfd is not open for writing, or opened for

writing with O_APPEND, or if infd and outfd refer to the same file.

[EFBIG] If the copy exceeds the process’s file size limit or the maximum file size for the

file system outfd resides on.

[EINTR] A signal interrupted the system call before it could be completed. This may

happen for files on some NFS mounts. When this happens, the values pointed to

by inoffp and outoffp are reset to the initial values for the system call.

[EINVAL] infd and outfd refer to the same file and the byte ranges overlap or flags is not

zero.

[EIO] An I/O error occurred while reading/writing the files.

[EINTEGRITY] Corrupted data was detected while reading from a file system.

[EISDIR] If either infd or outfd refers to a directory.

[ENOSPC] File system that stores outfd is full.

SEE ALSO
lseek(2)

STANDARDS
The copy_file_range() system call is expected to be compatible with the Linux system call of the same

name.

HISTORY
The copy_file_range() function appeared in FreeBSD 13.0.

COPY_FILE_RANGE(2) FreeBSD System Calls Manual COPY_FILE_RANGE(2)

FreeBSD 14.0-RELEASE-p6 January 2, 2021 FreeBSD 14.0-RELEASE-p6


