
NAME
counter - SMP-friendly kernel counter implementation

SYNOPSIS
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/counter.h>

counter_u64_t

counter_u64_alloc(int wait);

void

counter_u64_free(counter_u64_t c);

void

counter_u64_add(counter_u64_t c, int64_t v);

void

counter_enter();

void

counter_exit();

void

counter_u64_add_protected(counter_u64_t c, int64_t v);

uint64_t

counter_u64_fetch(counter_u64_t c);

void

counter_u64_zero(counter_u64_t c);

int64_t

counter_ratecheck(struct counter_rate *cr, int64_t limit);

COUNTER_U64_SYSINIT(counter_u64_t c);

COUNTER_U64_DEFINE_EARLY(counter_u64_t c);

#include <sys/sysctl.h>

COUNTER(9) FreeBSD Kernel Developer’s Manual COUNTER(9)

FreeBSD 14.0-RELEASE-p11 March 11, 2021 FreeBSD 14.0-RELEASE-p11



SYSCTL_COUNTER_U64(parent, nbr, name, access, ptr, descr);

SYSCTL_ADD_COUNTER_U64(ctx, parent, nbr, name, access, ptr, descr);

SYSCTL_COUNTER_U64_ARRAY(parent, nbr, name, access, ptr, len, descr);

SYSCTL_ADD_COUNTER_U64_ARRAY(ctx, parent, nbr, name, access, ptr, len, descr);

DESCRIPTION
counter is a generic facility to create counters that can be utilized for any purpose (such as collecting

statistical data). A counter is guaranteed to be lossless when several kernel threads do simultaneous

updates. However, counter does not block the calling thread, also no atomic(9) operations are used for

the update, therefore the counters can be used in any non-interrupt context. Moreover, counter has

special optimisations for SMP environments, making counter update faster than simple arithmetic on the

global variable. Thus counter is considered suitable for accounting in the performance-critical code

paths.

counter_u64_alloc(wait)

Allocate a new 64-bit unsigned counter. The wait argument is the malloc(9) wait flag, should be

either M_NOWAIT or M_WAITOK. If M_NOWAIT is specified the operation may fail and

return NULL.

counter_u64_free(c)

Free the previously allocated counter c. It is safe to pass NULL.

counter_u64_add(c, v)

Add v to c. The KPI does not guarantee any protection from wraparound.

counter_enter()

Enter mode that would allow the safe update of several counters via

counter_u64_add_protected(). On some machines this expands to critical(9) section, while on

other is a nop. See IMPLEMENTATION DETAILS.

counter_exit()
Exit mode for updating several counters.

counter_u64_add_protected(c, v)

Same as counter_u64_add(), but should be preceded by counter_enter().

counter_u64_fetch(c)

COUNTER(9) FreeBSD Kernel Developer’s Manual COUNTER(9)

FreeBSD 14.0-RELEASE-p11 March 11, 2021 FreeBSD 14.0-RELEASE-p11



Take a snapshot of counter c. The data obtained is not guaranteed to reflect the real cumulative

value for any moment.

counter_u64_zero(c)

Clear the counter c and set it to zero.

counter_ratecheck(cr, limit)

The function is a multiprocessor-friendly version of ppsratecheck() which uses counter
internally. Returns non-negative value if the rate is not yet reached during the current second,

and a negative value otherwise. If the limit was reached on previous second, but was just reset

back to zero, then counter_ratecheck() returns number of events since previous reset.

COUNTER_U64_SYSINIT(c)

Define a SYSINIT(9) initializer for the global counter c.

COUNTER_U64_DEFINE_EARLY(c)

Define and initialize a global counter c. It is always safe to increment c, though updates prior to

the SI_SUB_COUNTER SYSINIT(9) event are lost.

SYSCTL_COUNTER_U64(parent, nbr, name, access, ptr, descr)

Declare a static sysctl(9) oid that would represent a counter. The ptr argument should be a

pointer to allocated counter_u64_t. A read of the oid returns value obtained through

counter_u64_fetch(). Any write to the oid zeroes it.

SYSCTL_ADD_COUNTER_U64(ctx, parent, nbr, name, access, ptr, descr)

Create a sysctl(9) oid that would represent a counter. The ptr argument should be a pointer to

allocated counter_u64_t. A read of the oid returns value obtained through counter_u64_fetch().

Any write to the oid zeroes it.

SYSCTL_COUNTER_U64_ARRAY(parent, nbr, name, access, ptr, len, descr)

Declare a static sysctl(9) oid that would represent an array of counter. The ptr argument should

be a pointer to allocated array of counter_u64_t’s. The len argument should specify number of

elements in the array. A read of the oid returns len-sized array of uint64_t values obtained

through counter_u64_fetch(). Any write to the oid zeroes all array elements.

SYSCTL_ADD_COUNTER_U64_ARRAY(ctx, parent, nbr, name, access, ptr, len, descr)

Create a sysctl(9) oid that would represent an array of counter. The ptr argument should be a

pointer to allocated array of counter_u64_t’s. The len argument should specify number of

elements in the array. A read of the oid returns len-sized array of uint64_t values obtained

through counter_u64_fetch(). Any write to the oid zeroes all array elements.

COUNTER(9) FreeBSD Kernel Developer’s Manual COUNTER(9)

FreeBSD 14.0-RELEASE-p11 March 11, 2021 FreeBSD 14.0-RELEASE-p11



IMPLEMENTATION DETAILS
On all architectures counter is implemented using per-CPU data fields that are specially aligned in

memory, to avoid inter-CPU bus traffic due to shared use of the variables between CPUs. These are

allocated using UMA_ZONE_PCPU uma(9) zone. The update operation only touches the field that is

private to current CPU. Fetch operation loops through all per-CPU fields and obtains a snapshot sum of

all fields.

On amd64 a counter update is implemented as a single instruction without lock semantics, operating on

the private data for the current CPU, which is safe against preemption and interrupts.

On i386 architecture, when machine supports the cmpxchg8 instruction, this instruction is used. The

multi-instruction sequence provides the same guarantees as the amd64 single-instruction

implementation.

On some architectures updating a counter require a critical(9) section.

EXAMPLES
The following example creates a static counter array exported to userspace through a sysctl:

#define MY_SIZE 8

static counter_u64_t array[MY_SIZE];

SYSCTL_COUNTER_U64_ARRAY(_debug, OID_AUTO, counter_array, CTLFLAG_RW,

&array[0], MY_SIZE, "Test counter array");

SEE ALSO
atomic(9), critical(9), locking(9), malloc(9), ratecheck(9), sysctl(9), SYSINIT(9), uma(9)

HISTORY
The counter facility first appeared in FreeBSD 10.0.

AUTHORS
The counter facility was written by Gleb Smirnoff and Konstantin Belousov.

COUNTER(9) FreeBSD Kernel Developer’s Manual COUNTER(9)

FreeBSD 14.0-RELEASE-p11 March 11, 2021 FreeBSD 14.0-RELEASE-p11


