
NAME
mi_switch, cpu_switch, cpu_throw - switch to another thread context

SYNOPSIS
#include <sys/param.h>
#include <sys/proc.h>

void

mi_switch(int flags);

void

cpu_switch(struct thread *oldtd, struct thread *newtd, struct mtx *lock);

void

cpu_throw(struct thread *oldtd, struct thread *newtd);

DESCRIPTION
The mi_switch() function implements the machine-independent prelude to a thread context switch. It is

the single entry point for every context switch and is called from only a few distinguished places in the

kernel. The context switch is, by necessity, always performed by the switched thread, even when the

switch is initiated from elsewhere; e.g. preemption requested via Inter-Processor Interrupt (IPI).

The various major uses of mi_switch() can be enumerated as follows:

1. From within a function such as sleepq_wait(9) or turnstile_wait() when the current thread

voluntarily relinquishes the CPU to wait for some resource or lock to become available.

2. Involuntary preemption due to arrival of a higher-priority thread.

3. At the tail end of critical_exit(9), if preemption was deferred due to the critical section.

4. Within the TDA_SCHED AST handler, when rescheduling before the return to usermode

was requested. There are several reasons for this, a notable one coming from sched_clock()

when the running thread has exceeded its time slice.

5. In the signal handling code (see issignal(9)) if a signal is delivered that causes a process to

stop.

6. In thread_suspend_check() where a thread needs to stop execution due to the suspension state

of the process as a whole.

MI_SWITCH(9) FreeBSD Kernel Developer’s Manual MI_SWITCH(9)

FreeBSD 14.0-RELEASE-p11 January 9, 2023 FreeBSD 14.0-RELEASE-p11



7. In kern_yield(9) when a thread wants to voluntarily relinquish the processor.

The flags argument to mi_switch() indicates the context switch type. One of the following must be

passed:

SWT_OWEPREEMPT Switch due to delayed preemption after exiting a critical section.

SWT_TURNSTILE Switch after propagating scheduling priority to the owner of a

resource.

SWT_SLEEPQ Begin waiting on a sleepqueue(9).

SWT_RELINQUISH Yield call.

SWT_NEEDRESCHED Rescheduling was requested.

SWT_IDLE Switch from the idle thread.

SWT_IWAIT A kernel thread which handles interrupts has finished work and

must wait for interrupts to schedule additional work.

SWT_SUSPEND Thread suspended.

SWT_REMOTEPREEMPT Preemption by a higher-priority thread, initiated by a remote

processor.

SWT_REMOTEWAKEIDLE Idle thread preempted, initiated by a remote processor.

SWT_BIND The running thread has been bound to another processor and must

be switched out.

In addition to the switch type, callers must specify the nature of the switch by performing a bitwise OR

with one of the SW_VOL or SW_INVOL flags, but not both. Respectively, these flags denote whether

the context switch is voluntary or involuntary on the part of the current thread. For an involuntary

context switch in which the running thread is being preempted, the caller should also pass the

SW_PREEMPT flag.

Upon entry to mi_switch(), the current thread must be holding its assigned thread lock. It may be

unlocked as part of the context switch. After they have been rescheduled and execution resumes,

threads will exit mi_switch() with their thread lock unlocked.

MI_SWITCH(9) FreeBSD Kernel Developer’s Manual MI_SWITCH(9)

FreeBSD 14.0-RELEASE-p11 January 9, 2023 FreeBSD 14.0-RELEASE-p11



mi_switch() records the amount of time the current thread has been running before handing control over

to the scheduler, via sched_switch(). After selecting a new thread to run, the scheduler will call

cpu_switch() to perform the low-level context switch.

cpu_switch() is the machine-dependent function that performs the actual switch from the running thread

oldtd to the chosen thread newtd. First, it saves the context of oldtd to its Process Control Block (PCB,

struct pcb), pointed at by oldtd->td_pcb. The function then updates important per-CPU state such as the

curthread variable, and activates newtd’s virtual address space using its associated pmap(9) structure.

Finally, it reads in the saved context from newtd’s PCB. CPU instruction flow continues in the new

thread context, on newtd’s kernel stack. The return from cpu_switch() can be understood as a

completion of the function call initiated by newtd when it was previously switched out, at some point in

the distant (relative to CPU time) past.

The mtx argument to cpu_switch() is used to pass the mutex which will be stored as oldtd’s thread lock

at the moment that oldtd is completely switched out. This is an implementation detail of sched_switch().

cpu_throw() is similar to cpu_switch() except that it does not save the context of the old thread. This

function is useful when the kernel does not have an old thread context to save, such as when CPUs other

than the boot CPU perform their first task switch, or when the kernel does not care about the state of the

old thread, such as in thread_exit(9) when the kernel terminates the current thread and switches into a

new thread, newtd. The oldtd argument is unused.

SEE ALSO
critical_exit(9), issignal(9), kern_yield(9), mutex(9), pmap(9), sleepqueue(9), thread_exit(9)

MI_SWITCH(9) FreeBSD Kernel Developer’s Manual MI_SWITCH(9)

FreeBSD 14.0-RELEASE-p11 January 9, 2023 FreeBSD 14.0-RELEASE-p11


