
NAME
cpufreq - CPU frequency control framework

SYNOPSIS
device cpufreq

#include <sys/cpu.h>

int

cpufreq_levels(device_t dev, struct cf_level *levels, int *count);

int

cpufreq_set(device_t dev, const struct cf_level *level, int priority);

int

cpufreq_get(device_t dev, struct cf_level *level);

int

cpufreq_drv_settings(device_t dev, struct cf_setting *sets, int *count);

int

cpufreq_drv_type(device_t dev, int *type);

int

cpufreq_drv_set(device_t dev, const struct cf_setting *set);

int

cpufreq_drv_get(device_t dev, struct cf_setting *set);

DESCRIPTION
The cpufreq driver provides a unified kernel and user interface to CPU frequency control drivers. It

combines multiple drivers offering different settings into a single interface of all possible levels. Users

can access this interface directly via sysctl(8) or by indicating to /etc/rc.d/power_profile that it should

switch settings when the AC line state changes via rc.conf(5).

SYSCTL VARIABLES
These settings may be overridden by kernel drivers requesting alternate settings. If this occurs, the

original values will be restored once the condition has passed (e.g., the system has cooled sufficiently).

If a sysctl cannot be set due to an override condition, it will return EPERM.

CPUFREQ(4) FreeBSD Kernel Interfaces Manual CPUFREQ(4)

FreeBSD 14.0-RELEASE-p11 April 4, 2022 FreeBSD 14.0-RELEASE-p11



The frequency cannot be changed if TSC is in use as the timecounter and the hardware does not support

invariant TSC. This is because the timecounter system needs to use a source that has a constant rate.

(On invariant TSC hardware, the TSC runs at the P0 rate regardless of the configured P-state.) Modern

hardware mostly has invariant TSC. The timecounter source can be changed with the

kern.timecounter.hardware sysctl. Available modes are in kern.timecounter.choice sysctl entry.

dev.cpu.%d.freq

Current active CPU frequency in MHz.

dev.cpu.%d.freq_driver

The specific cpufreq driver used by this cpu.

dev.cpu.%d.freq_levels

Currently available levels for the CPU (frequency/power usage). Values are in units of MHz and

milliwatts.

dev.DEVICE.%d.freq_settings

Currently available settings for the driver (frequency/power usage). Values are in units of MHz

and milliwatts. This is helpful for understanding which settings are offered by which driver for

debugging purposes.

debug.cpufreq.lowest

Lowest CPU frequency in MHz to offer to users. This setting is also accessible via a tunable

with the same name. This can be used to disable very low levels that may be unusable on some

systems.

debug.cpufreq.verbose

Print verbose messages. This setting is also accessible via a tunable with the same name.

debug.hwpstate_pstate_limit

If enabled, the AMD hwpstate driver limits administrative control of P-states (including by

powerd(8)) to the value in the 0xc0010061 MSR, known as "PStateCurLim[CurPstateLimit]." It

is disabled (0) by default. On some hardware, the limit register seems to simply follow the

configured P-state, which results in the inability to ever raise the P-state back to P0 from a

reduced frequency state.

SUPPORTED DRIVERS
The following device drivers offer absolute frequency control via the cpufreq interface. Usually, only

one of these can be active at a time.

CPUFREQ(4) FreeBSD Kernel Interfaces Manual CPUFREQ(4)

FreeBSD 14.0-RELEASE-p11 April 4, 2022 FreeBSD 14.0-RELEASE-p11



acpi_perf ACPI CPU performance states

est(4) Intel Enhanced SpeedStep

hwpstate AMD Cool’n’Quiet2 used in K10 through Family 17h

hwpstate_intel(4) Intel SpeedShift driver

ichss Intel SpeedStep for ICH

powernow AMD PowerNow! and Cool’n’Quiet for K7 and K8

smist Intel SMI-based SpeedStep for PIIX4

The following device drivers offer relative frequency control and have an additive effect:

acpi_throttle ACPI CPU throttling

p4tcc Pentium 4 Thermal Control Circuitry

KERNEL INTERFACE
Kernel components can query and set CPU frequencies through the cpufreq kernel interface. This

involves obtaining a cpufreq device, calling cpufreq_levels() to get the currently available frequency

levels, checking the current level with cpufreq_get(), and setting a new one from the list with

cpufreq_set(). Each level may actually reference more than one cpufreq driver but kernel components

do not need to be aware of this. The total_set element of struct cf_level provides a summary of the

frequency and power for this level. Unknown or irrelevant values are set to

CPUFREQ_VAL_UNKNOWN.

The cpufreq_levels() method takes a cpufreq device and an empty array of levels. The count value

should be set to the number of levels available and after the function completes, will be set to the actual

number of levels returned. If there are more levels than count will allow, it should return E2BIG.

The cpufreq_get() method takes a pointer to space to store a level. After successful completion, the

output will be the current active level and is equal to one of the levels returned by cpufreq_levels().

The cpufreq_set() method takes a pointer a level and attempts to activate it. The priority (i.e.,

CPUFREQ_PRIO_KERN) tells cpufreq whether to override previous settings while activating this level.

If priority is higher than the current active level, that level will be saved and overridden with the new

level. If a level is already saved, the new level is set without overwriting the older saved level. If

cpufreq_set() is called with a NULL level, the saved level will be restored. If there is no saved level,

cpufreq_set() will return ENXIO. If priority is lower than the current active level’s priority, this method

returns EPERM.

DRIVER INTERFACE
Kernel drivers offering hardware-specific CPU frequency control export their individual settings through

the cpufreq driver interface. This involves implementing these methods: cpufreq_drv_settings(),

CPUFREQ(4) FreeBSD Kernel Interfaces Manual CPUFREQ(4)

FreeBSD 14.0-RELEASE-p11 April 4, 2022 FreeBSD 14.0-RELEASE-p11



cpufreq_drv_type(), cpufreq_drv_set(), and cpufreq_drv_get(). Additionally, the driver must attach a

device as a child of a CPU device so that these methods can be called by the cpufreq framework.

The cpufreq_drv_settings() method returns an array of currently available settings, each of type struct

cf_setting. The driver should set unknown or irrelevant values to CPUFREQ_VAL_UNKNOWN. All

the following elements for each setting should be returned:

struct cf_setting {

int freq; /* CPU clock in MHz or 100ths of a percent. */

int volts; /* Voltage in mV. */

int power; /* Power consumed in mW. */

int lat; /* Transition latency in us. */

device_t dev; /* Driver providing this setting. */

};

On entry to this method, count contains the number of settings that can be returned. On successful

completion, the driver sets it to the actual number of settings returned. If the driver offers more settings

than count will allow, it should return E2BIG.

The cpufreq_drv_type() method indicates the type of settings it offers, either

CPUFREQ_TYPE_ABSOLUTE or CPUFREQ_TYPE_RELATIVE. Additionally, the driver may set

the CPUFREQ_FLAG_INFO_ONLY flag if the settings it provides are information for other drivers

only and cannot be passed to cpufreq_drv_set() to activate them.

The cpufreq_drv_set() method takes a driver setting and makes it active. If the setting is invalid or not

currently available, it should return EINVAL.

The cpufreq_drv_get() method returns the currently-active driver setting. The struct cf_setting returned

must be valid for passing to cpufreq_drv_set(), including all elements being filled out correctly. If the

driver cannot infer the current setting (even by estimating it with cpu_est_clockrate()) then it should set

all elements to CPUFREQ_VAL_UNKNOWN.

SEE ALSO
acpi(4), est(4), timecounters(4), powerd(8), sysctl(8)

AUTHORS
Nate Lawson

Bruno Ducrot contributed the powernow driver.

BUGS

CPUFREQ(4) FreeBSD Kernel Interfaces Manual CPUFREQ(4)

FreeBSD 14.0-RELEASE-p11 April 4, 2022 FreeBSD 14.0-RELEASE-p11



The following drivers have not yet been converted to the cpufreq interface: longrun(4).

Notification of CPU and bus frequency changes is not implemented yet.

When multiple CPUs offer frequency control, they cannot be set to different levels and must all offer the

same frequency settings.

CPUFREQ(4) FreeBSD Kernel Interfaces Manual CPUFREQ(4)

FreeBSD 14.0-RELEASE-p11 April 4, 2022 FreeBSD 14.0-RELEASE-p11


