
NAME
cpuset, cpuset_getid, cpuset_setid - manage CPU affinity sets

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/param.h>
#include <sys/cpuset.h>

int

cpuset(cpusetid_t *setid);

int

cpuset_setid(cpuwhich_t which, id_t id, cpusetid_t setid);

int

cpuset_getid(cpulevel_t level, cpuwhich_t which, id_t id, cpusetid_t *setid);

DESCRIPTION
The cpuset family of system calls allow applications to control sets of processors and memory domains

and assign processes and threads to these sets. Processor sets contain lists of CPUs and domains that

members may run on and exist only as long as some process is a member of the set. All processes in the

system have an assigned set. The default set for all processes in the system is the set numbered 1.

Threads belong to the same set as the process which contains them, however, they may further restrict

their set with the anonymous per-thread mask to bind to a specific CPU or subset of CPUs and memory

domains.

Sets are referenced by a number of type cpuset_id_t. Each thread has a root set, an assigned set, and an

anonymous mask. Only the root and assigned sets are numbered. The root set is the set of all CPUs and

memory domains available in the system or in the system partition the thread is running in. The

assigned set is a subset of the root set and is administratively assignable on a per-process basis. Many

processes and threads may be members of a numbered set.

The anonymous set is a further thread-specific refinement on the assigned set. It is intended that

administrators will manipulate numbered sets using cpuset(1) while application developers will

manipulate anonymous sets using cpuset_setaffinity(2) and cpuset_setdomain(2).

To select the correct set a value of type cpulevel_t is used. The following values for level are supported:

CPUSET(2) FreeBSD System Calls Manual CPUSET(2)

FreeBSD 14.0-RELEASE-p6 January 29, 2023 FreeBSD 14.0-RELEASE-p6



CPU_LEVEL_ROOT Root set

CPU_LEVEL_CPUSET Assigned set

CPU_LEVEL_WHICH Set specified by which argument

The which argument determines how the value of id is interpreted and is of type cpuwhich_t. The which

argument may have the following values:

CPU_WHICH_TID id is lwpid_t (thread id)

CPU_WHICH_PID id is pid_t (process id)

CPU_WHICH_TIDPID id is either a thread or process id

CPU_WHICH_JAIL id is jid (jail id)

CPU_WHICH_CPUSET id is a cpusetid_t (cpuset id)

CPU_WHICH_IRQ id is an irq number

CPU_WHICH_INTRHANDLER id is an irq number for an interrupt handler

CPU_WHICH_ITHREAD id is an irq number for an ithread

CPU_WHICH_DOMAIN id is a NUMA domain

An id of ’-1’ may be used with a which of CPU_WHICH_TID, CPU_WHICH_PID,

CPU_WHICH_TIDPID, or CPU_WHICH_CPUSET to mean the current thread, process, or current

thread’s cpuset. All cpuset syscalls allow this usage.

A level argument of CPU_LEVEL_WHICH combined with a which argument other than

CPU_WHICH_CPUSET refers to the anonymous mask of the object. This mask does not have an id

and may only be manipulated with cpuset_setaffinity(2).

cpuset() creates a new set containing the same CPUs as the root set of the current process and stores its

id in the space provided by setid. On successful completion the calling process joins the set and is the

only member. Children inherit this set after a call to fork(2).

cpuset_setid() attempts to set the id of the object specified by the which argument. Currently

CPU_WHICH_PID is the only acceptable value for which as threads do not have an id distinct from

their process and the API does not permit changing the id of an existing set. Upon successful

completion all of the threads in the target process will be running on CPUs permitted by the set.

cpuset_getid() retrieves a set id from the object indicated by which and stores it in the space pointed to

by setid. The retrieved id may be that of either the root or assigned set depending on the value of level.

level should be CPU_LEVEL_CPUSET or CPU_LEVEL_ROOT to get the set id from the process or

thread specified by the id argument. Specifying CPU_LEVEL_WHICH with a process or thread is

unsupported since this references the unnumbered anonymous mask.

CPUSET(2) FreeBSD System Calls Manual CPUSET(2)

FreeBSD 14.0-RELEASE-p6 January 29, 2023 FreeBSD 14.0-RELEASE-p6



The actual contents of the sets may be retrieved or manipulated using cpuset_getaffinity(2),

cpuset_setaffinity(2), cpuset_getdomain(2), and cpuset_setdomain(2). The cpuset(9) macros may be

used to manipulate masks of type cpuset_t get and set using those APIs. See those manual pages for

more detail.

RETURN VALUES
Upon successful completion, the value 0 is returned; otherwise the value -1 is returned and the global

variable errno is set to indicate the error.

EXAMPLES
In this example, a CPU set mask is configured to limit execution to the first CPU using CPU_ZERO(9)

and CPU_SET(9), members of the cpuset(9) programming interface. Then, the mask is applied to a new

anonymous CPU set associated with the current process using cpuset_setaffinity(2). This mask will be

used by the current process, and inherited by any new child processes.

#include <sys/param.h>

#include <sys/cpuset.h>

#include <sysexits.h>

cpuset_t cpuset_mask;

/* Initialize a CPU mask and enable CPU 0. */

CPU_ZERO(&cpuset_mask);

CPU_SET(0, &cpuset_mask);

/* Set affinity for the CPU set for the current process. */

if (cpuset_setaffinity(CPU_LEVEL_WHICH, CPU_WHICH_PID, -1,

sizeof(cpuset_mask), &cpuset_mask) < 0)

err(EX_OSERR, "cpuset_setaffinity");

In the next example, a named CPU set is created containing the current process, and its affinity similarly

configured. The resulting CPU set ID can then be used for further external management of the affinity

of the set.

#include <sys/param.h>

#include <sys/cpuset.h>

#include <sysexits.h>

CPUSET(2) FreeBSD System Calls Manual CPUSET(2)

FreeBSD 14.0-RELEASE-p6 January 29, 2023 FreeBSD 14.0-RELEASE-p6



cpusetid_t cpuset_id;

cpuset_t cpuset_mask;

/* Create new cpuset for the current process. */

if (cpuset(&cpuset_id) < 0)

err(EX_OSERR, "cpuset");

/* Initialize a CPU mask and enable CPU 0. */

CPU_ZERO(&cpuset_mask);

CPU_SET(0, &cpuset_mask);

/* Set affinity for the CPU set for the current process. */

if (cpuset_setaffinity(CPU_LEVEL_SET, CPU_WHICH_CPUSET, cpuset_id,

sizeof(cpuset_mask), &cpuset_mask) < 0)

err(EX_OSERR, "cpuset_setaffinity");

ERRORS
The following error codes may be set in errno:

[EINVAL] The which or level argument was not a valid value.

[EDEADLK] The cpuset_setid() call would leave a thread without a valid CPU to run on

because the set does not overlap with the thread’s anonymous mask.

[EFAULT] The setid pointer passed to cpuset_getid() or cpuset() was invalid.

[ESRCH] The object specified by the id and which arguments could not be found.

[EPERM] The calling process did not have the credentials required to complete the

operation.

[ENFILE] There was no free cpusetid_t for allocation.

SEE ALSO
cpuset(1), cpuset_getaffinity(2), cpuset_getdomain(2), cpuset_setaffinity(2), cpuset_setdomain(2),

pthread_affinity_np(3), pthread_attr_affinity_np(3), CPU_SET(9), CPU_ZERO(9), cpuset(9)

HISTORY
The cpuset family of system calls first appeared in FreeBSD 7.1.

CPUSET(2) FreeBSD System Calls Manual CPUSET(2)

FreeBSD 14.0-RELEASE-p6 January 29, 2023 FreeBSD 14.0-RELEASE-p6



AUTHORS
Jeffrey Roberson <jeff@FreeBSD.org>

CPUSET(2) FreeBSD System Calls Manual CPUSET(2)

FreeBSD 14.0-RELEASE-p6 January 29, 2023 FreeBSD 14.0-RELEASE-p6


