
NAME
FascistCheck - check a potential password for guessability

LIBRARY
Cracklib (libcrack, -lcrack)

SYNOPSIS
#include <packer.h>

char *FascistCheck(char *pw, char *dictpath)

DESCRIPTION
CrackLib is a library containing a C function which may be used in a passwd(1)-like program.

The idea is simple: try to prevent users from choosing passwords that could be guessed by Crack by

filtering them out, at source.

FascistCheck() takes two arguments:

pw a string containing the user’s chosen "potential password"

dictpath the full path name of the CrackLib dictionary, without the suffix

CrackLib is an offshoot of the the version 5 Crack software, and contains a considerable number of

ideas nicked from the new software.

CrackLib makes literally hundreds of tests to determine whether you’ve chosen a bad password.

+o It tries to generate words from your username and gecos entry to try to match them against

what you’ve chosen.

+o It checks for simplistic patterns.

+o It then tries to reverse-engineer your password into a dictionary word, and searches for it in

your dictionary.

After all that, it’s probably a safe(-ish) password.

RETURN VALUE
FascistCheck() returns the NULL pointer for a good password or a pointer to a diagnostic string if it is

a bad password.

CRACKLIB(3) FreeBSD Library Functions Manual CRACKLIB(3)

CRACKLIB(3)

BUGS
It can’t catch everything. Just most things.

It calls getpwuid(getuid()) to look up the user, which may affect poorly written programs.

Using more than one dictionary file, e.g.:

char *msg;

if (msg = FascistCheck(pw, "onepath") ||

msg = FascistCheck(pw, "anotherpath")) {

printf("Bad Password: because %s\n", msg);

}

works, but it’s a kludge. Avoid it if possible. Using just the one dictionary is more efficient, anyway.

PWOpen() routines should cope with having more than one dictionary open at a time.

SEE ALSO
passwd(1), getpwuid(3),

CRACKLIB(3) FreeBSD Library Functions Manual CRACKLIB(3)

CRACKLIB(3)

