
NAME
FascistCheck - check a potential password for guessability

LIBRARY
Cracklib (libcrack, -lcrack)

SYNOPSIS
#include <packer.h>

char *FascistCheck(char *pw, char *dictpath)

DESCRIPTION
CrackLib is a library containing a C function which may be used in a passwd(1)-like program.

The idea is simple: try to prevent users from choosing passwords that could be guessed by Crack by

filtering them out, at source.

FascistCheck() takes two arguments:

pw a string containing the user’s chosen "potential password"

dictpath the full path name of the CrackLib dictionary, without the suffix

CrackLib is an offshoot of the the version 5 Crack software, and contains a considerable number of

ideas nicked from the new software.

CrackLib makes literally hundreds of tests to determine whether you’ve chosen a bad password.

+o It tries to generate words from your username and gecos entry to try to match them against

what you’ve chosen.

+o It checks for simplistic patterns.

+o It then tries to reverse-engineer your password into a dictionary word, and searches for it in

your dictionary.

After all that, it’s probably a safe(-ish) password.

RETURN VALUE
FascistCheck() returns the NULL pointer for a good password or a pointer to a diagnostic string if it is

a bad password.
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BUGS
It can’t catch everything. Just most things.

It calls getpwuid(getuid()) to look up the user, which may affect poorly written programs.

Using more than one dictionary file, e.g.:

char *msg;

if (msg = FascistCheck(pw, "onepath") ||

msg = FascistCheck(pw, "anotherpath")) {

printf("Bad Password: because %s\n", msg);

}

works, but it’s a kludge. Avoid it if possible. Using just the one dictionary is more efficient, anyway.

PWOpen() routines should cope with having more than one dictionary open at a time.

SEE ALSO
passwd(1), getpwuid(3),
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