
NAME
critical_enter, critical_exit - enter and exit a critical region

SYNOPSIS
#include <sys/param.h>
#include <sys/systm.h>

void

critical_enter(void);

void

critical_exit(void);

CRITICAL_ASSERT(struct thread *td);

DESCRIPTION
These functions are used to prevent preemption in a critical region of code. All that is guaranteed is that

the thread currently executing on a CPU will not be preempted. Specifically, a thread in a critical region

will not migrate to another CPU while it is in a critical region, nor will the current CPU switch to a

different thread. The current CPU may still trigger faults and exceptions during a critical section;

however, these faults are usually fatal.

The CPU might also receive and handle interrupts within a critical section. When this occurs the

interrupt exit will not result in a context switch, and execution will continue in the critical section. Thus,

the net effect of a critical section on the current thread’s execution is similar to running with interrupts

disabled, except that timer interrupts and filtered interrupt handlers do not incur a latency penalty.

The critical_enter() and critical_exit() functions manage a per-thread counter to handle nested critical

sections. If a thread is made runnable that would normally preempt the current thread while the current

thread is in a critical section, then the preemption will be deferred until the current thread exits the

outermost critical section.

Note that these functions do not provide any inter-CPU synchronization, data protection, or memory

ordering guarantees, and thus should not be used to protect shared data structures.

These functions should be used with care as an unbound or infinite loop within a critical region will

deadlock the CPU. Also, they should not be interlocked with operations on mutexes, sx locks,

semaphores, or other synchronization primitives, as these primitives may require a context switch to

operate. One exception to this is that spin mutexes include a critical section, so in certain cases critical

sections may be interlocked with spin mutexes.

CRITICAL_ENTER(9) FreeBSD Kernel Developer’s Manual CRITICAL_ENTER(9)

FreeBSD 14.2-RELEASE March 20, 2023 FreeBSD 14.2-RELEASE



Critical regions should be only as wide as necessary. That is, code which does not require the critical

section to operate correctly should be excluded from its bounds whenever possible. Abuse of critical

sections has an effect on overall system latency and timer precision, since disabling preemption will

delay the execution of threaded interrupt handlers and callout(9) events on the current CPU.

The CRITICAL_ASSERT() macro verifies that the provided thread td is currently executing in a critical

section. It is a wrapper around KASSERT(9).

SEE ALSO
callout(9), KASSERT(9), locking(9)

HISTORY
These functions were introduced in FreeBSD 5.0.

CRITICAL_ENTER(9) FreeBSD Kernel Developer’s Manual CRITICAL_ENTER(9)

FreeBSD 14.2-RELEASE March 20, 2023 FreeBSD 14.2-RELEASE


