
NAME
crypt - Trapdoor encryption

LIBRARY
Crypt Library (libcrypt, -lcrypt)

SYNOPSIS
#include <unistd.h>

char *

crypt(const char *key, const char *salt);

char *

crypt_r(const char *key, const char *salt, struct crypt_data *data);

const char *

crypt_get_format(void);

int

crypt_set_format(const char *string);

DESCRIPTION
The crypt() function performs password hashing with additional code added to deter key search

attempts. Different algorithms can be used to in the hash. Currently these include the NBS Data

Encryption Standard (DES), MD5 hash, NT-Hash (compatible with Microsoft’s NT scheme) and

Blowfish. The algorithm used will depend upon the format of the Salt (following the Modular Crypt

Format (MCF)), if DES and/or Blowfish is installed or not, and whether crypt_set_format() has been

called to change the default.

The first argument to crypt is the data to hash (usually a password), in a NUL-terminated string. The

second is the salt, in one of three forms:

Extended If it begins with an underscore ("_") then the DES Extended Format is used in

interpreting both the key and the salt, as outlined below.

Modular If it begins with the string "$digit$" then the Modular Crypt Format is used, as

outlined below.

Traditional If neither of the above is true, it assumes the Traditional Format, using the entire

string as the salt (or the first portion).

All routines are designed to be time-consuming.

CRYPT(3) FreeBSD Library Functions Manual CRYPT(3)

FreeBSD 14.0-RELEASE-p6 May 26, 2019 FreeBSD 14.0-RELEASE-p6

DES Extended Format:
The key is divided into groups of 8 characters (the last group is NUL-padded) and the low-order 7 bits of

each character (56 bits per group) are used to form the DES key as follows: the first group of 56 bits

becomes the initial DES key. For each additional group, the XOR of the encryption of the current DES

key with itself and the group bits becomes the next DES key.

The salt is a 9-character array consisting of an underscore followed by 4 bytes of iteration count and 4

bytes of salt. These are encoded as printable characters, 6 bits per character, least significant character

first. The values 0 to 63 are encoded as "./0-9A-Za-z". This allows 24 bits for both count and salt.

The salt introduces disorder in the DES algorithm in one of 16777216 or 4096 possible ways (i.e., with

24 or 12 bits: if bit i of the salt is set, then bits i and i+24 are swapped in the DES E-box output).

The DES key is used to encrypt a 64-bit constant using count iterations of DES. The value returned is a

NUL-terminated string, 20 or 13 bytes (plus NUL) in length, consisting of the salt followed by the

encoded 64-bit encryption.

Modular crypt:
If the salt begins with the string $digit$ then the Modular Crypt Format is used. The digit represents

which algorithm is used in encryption. Following the token is the actual salt to use in the encryption.

The maximum length of the salt used depends upon the module. The salt must be terminated with the

end of the string character (NUL) or a dollar sign. Any characters after the dollar sign are ignored.

Currently supported algorithms are:

1. MD5

2. Blowfish

3. NT-Hash

4. (unused)

5. SHA-256

6. SHA-512

Other crypt formats may be easily added. An example salt would be:

4thesalt$rest

Traditional crypt:
The algorithm used will depend upon whether crypt_set_format() has been called and whether a global

default format has been specified. Unless a global default has been specified or crypt_set_format() has

set the format to something else, the built-in default format is used. This is currently DES if it is

CRYPT(3) FreeBSD Library Functions Manual CRYPT(3)

FreeBSD 14.0-RELEASE-p6 May 26, 2019 FreeBSD 14.0-RELEASE-p6

available, or SHA-512 if not.

How the salt is used will depend upon the algorithm for the hash. For best results, specify at least eight

characters of salt.

The crypt_get_format() function returns a constant string that represents the name of the algorithm

currently used. Valid values are ‘des’, ‘blf’, ‘md5’, ‘sha256’, ‘sha512’ and ‘nth’.

The crypt_set_format() function sets the default encoding format according to the supplied string.

The crypt_r() function behaves identically to crypt(), except that the resulting string is stored in data,

making it thread-safe.

RETURN VALUES
The crypt() and crypt_r() functions return a pointer to the encrypted value on success, and NULL on

failure. Note: this is not a standard behaviour, AT&T crypt() will always return a pointer to a string.

The crypt_set_format() function will return 1 if the supplied encoding format was valid. Otherwise, a

value of 0 is returned.

SEE ALSO
login(1), passwd(1), getpass(3), passwd(5)

HISTORY
A rotor-based crypt() function appeared in Version 6 AT&T UNIX. The current style crypt() first

appeared in Version 7 AT&T UNIX.

The DES section of the code (FreeSec 1.0) was developed outside the United States of America as an

unencumbered replacement for the U.S.-only NetBSD libcrypt encryption library.

The crypt_r() function was added in FreeBSD 12.0.

AUTHORS
Originally written by David Burren <davidb@werj.com.au>, later additions and changes by

Poul-Henning Kamp, Mark R V Murray, Michael Bretterklieber, Kris Kennaway, Brian Feldman, Paul

Herman and Niels Provos.

BUGS
The crypt() function returns a pointer to static data, and subsequent calls to crypt() will modify the same

data. Likewise, crypt_set_format() modifies static data.

CRYPT(3) FreeBSD Library Functions Manual CRYPT(3)

FreeBSD 14.0-RELEASE-p6 May 26, 2019 FreeBSD 14.0-RELEASE-p6

The NT-hash scheme does not use a salt, and is not hard for a competent attacker to break. Its use is not

recommended.

CRYPT(3) FreeBSD Library Functions Manual CRYPT(3)

FreeBSD 14.0-RELEASE-p6 May 26, 2019 FreeBSD 14.0-RELEASE-p6

