
NAME
crypto_request - symmetric cryptographic operations

SYNOPSIS
#include <opencrypto/cryptodev.h>

struct cryptop *

crypto_clonereq(crypto_session_t cses, struct cryptop *crp, int how);

int

crypto_dispatch(struct cryptop *crp);

int

crypto_dispatch_async(struct cryptop *crp, int flags);

void

crypto_dispatch_batch(struct cryptopq *crpq, int flags);

void

crypto_destroyreq(struct cryptop *crp);

void

crypto_freereq(struct cryptop *crp);

struct cryptop *

crypto_getreq(crypto_session_t cses, int how);

void

crypto_initreq(crypto_session_t cses, int how);

void

crypto_use_buf(struct cryptop *crp, void *buf, int len);

void

crypto_use_mbuf(struct cryptop *crp, struct mbuf *m);

void

crypto_use_uio(struct cryptop *crp, struct uio *uio);

void

CRYPTO_REQUEST(9) FreeBSD Kernel Developer’s Manual CRYPTO_REQUEST(9)

FreeBSD 14.0-RELEASE-p6 November 2, 2022 FreeBSD 14.0-RELEASE-p6



crypto_use_vmpage(struct cryptop *crp, vm_page_t *pages, int len, int offset);

void

crypto_use_output_buf(struct cryptop *crp, void *buf, int len);

void

crypto_use_output_mbuf(struct cryptop *crp, struct mbuf *m);

void

crypto_use_output_uio(struct cryptop *crp, struct uio *uio);

void

crypto_use_output_vmpage(struct cryptop *crp, vm_page_t *pages, int len, int offset);

DESCRIPTION
Each symmetric cryptographic operation in the kernel is described by an instance of struct cryptop and is

associated with an active session.

Requests can either be allocated dynamically or use caller-supplied storage. Dynamically allocated

requests should be allocated by either crypto_getreq() or crypto_clonereq(), and freed by

crypto_freereq() once the request has completed. Requests using caller-supplied storage should be

initialized by crypto_initreq() at the start of each operation and destroyed by crypto_destroyreq() once

the request has completed.

For crypto_clonereq(), crypto_getreq(), and crypto_initreq(), cses is a reference to an active session. For

crypto_clonereq() and crypto_getreq(), how is passed to malloc(9) and should be set to either

M_NOWAIT or M_WAITOK.

crypto_clonereq() allocates a new request that inherits request inputs such as request buffers from the

original crp request. However, the new request is associated with the cses session rather than inheriting

the session from crp. crp must not be a completed request.

Once a request has been initialized, the caller should set fields in the structure to describe request-

specific parameters. Unused fields should be left as-is.

The crypto_dispatch(), crypto_dispatch_async(), and crypto_dispatch_batch() functions pass one or

more crypto requests to the driver attached to the request’s session. If there are errors in the request’s

fields, these functions may return an error to the caller. If errors are encountered while servicing the

request, they will instead be reported to the request’s callback function (crp_callback) via crp_etype.

CRYPTO_REQUEST(9) FreeBSD Kernel Developer’s Manual CRYPTO_REQUEST(9)

FreeBSD 14.0-RELEASE-p6 November 2, 2022 FreeBSD 14.0-RELEASE-p6



Note that a request’s callback function may be invoked before crypto_dispatch() returns.

Once a request has signaled completion by invoking its callback function, it should be freed via

crypto_destroyreq() or crypto_freereq().

Cryptographic operations include several fields to describe the request.

Request Buffers
Requests can either specify a single data buffer that is modified in place (crp_buf) or separate input

(crp_buf) and output (crp_obuf) buffers. Note that separate input and output buffers are not supported

for compression mode requests.

All requests must have a valid crp_buf initialized by one of the following functions:

crypto_use_buf() Uses an array of len bytes pointed to by buf as the data buffer.

crypto_use_mbuf() Uses the network memory buffer m as the data buffer.

crypto_use_uio() Uses the scatter/gather list uio as the data buffer.

crypto_use_vmpage() Uses the array of vm_page_t structures as the data buffer.

One of the following functions should be used to initialize crp_obuf for requests that use separate input

and output buffers:

crypto_use_output_buf() Uses an array of len bytes pointed to by buf as the output buffer.

crypto_use_output_mbuf() Uses the network memory buffer m as the output buffer.

crypto_use_output_uio() Uses the scatter/gather list uio as the output buffer.

crypto_use_output_vmpage() Uses the array of vm_page_t structures as the output buffer.

Request Regions
Each request describes one or more regions in the data buffers. Each region is described by an offset

relative to the start of a data buffer and a length. The length of some regions is the same for all requests

belonging to a session. Those lengths are set in the session parameters of the associated session. All

requests must define a payload region. Other regions are only required for specific session modes.

For requests with separate input and output data buffers, the AAD, IV, and payload regions are always

CRYPTO_REQUEST(9) FreeBSD Kernel Developer’s Manual CRYPTO_REQUEST(9)

FreeBSD 14.0-RELEASE-p6 November 2, 2022 FreeBSD 14.0-RELEASE-p6



defined as regions in the input buffer, and a separate payload output region is defined to hold the output

of encryption or decryption in the output buffer. The digest region describes a region in the input data

buffer for requests that verify an existing digest. For requests that compute a digest, the digest region

describes a region in the output data buffer. Note that the only data written to the output buffer is the

encryption or decryption result and any computed digest. AAD and IV regions are not copied from the

input buffer into the output buffer but are only used as inputs.

The following regions are defined:

Region Buffer Description
AAD Input Embedded Additional Authenticated Data

IV Input Embedded IV or nonce

Payload Input Data to encrypt, decrypt, compress, or decompress

Payload Output Output Encrypted or decrypted data

Digest Input/Output Authentication digest, hash, or tag

Region Start Length
AAD crp_aad_start crp_aad_length

IV crp_iv_start csp_ivlen

Payload crp_payload_start crp_payload_length

Payload Output crp_payload_output_start crp_payload_length

Digest crp_digest_start csp_auth_mlen

Requests are permitted to operate on only a subset of the data buffer. For example, requests from IPsec

operate on network packets that include headers not used as either additional authentication data (AAD)

or payload data.

Request Operations
All requests must specify the type of operation to perform in crp_op. Available operations depend on

the session’s mode.

Compression requests support the following operations:

CRYPTO_OP_COMPRESS Compress the data in the payload region of the data buffer.

CRYPTO_OP_DECOMPRESS Decompress the data in the payload region of the data buffer.

Cipher requests support the following operations:

CRYPTO_OP_ENCRYPT Encrypt the data in the payload region of the data buffer.

CRYPTO_REQUEST(9) FreeBSD Kernel Developer’s Manual CRYPTO_REQUEST(9)

FreeBSD 14.0-RELEASE-p6 November 2, 2022 FreeBSD 14.0-RELEASE-p6



CRYPTO_OP_DECRYPT Decrypt the data in the payload region of the data buffer.

Digest requests support the following operations:

CRYPTO_OP_COMPUTE_DIGEST Calculate a digest over the payload region of the data buffer and

store the result in the digest region.

CRYPTO_OP_VERIFY_DIGEST Calculate a digest over the payload region of the data buffer.

Compare the calculated digest to the existing digest from the

digest region. If the digests match, complete the request

successfully. If the digests do not match, fail the request with

EBADMSG.

AEAD and Encrypt-then-Authenticate requests support the following operations:

CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST

Encrypt the data in the payload region of the data buffer. Calculate a digest over the

AAD and payload regions and store the result in the data buffer.

CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST

Calculate a digest over the AAD and payload regions of the data buffer. Compare the

calculated digest to the existing digest from the digest region. If the digests match,

decrypt the payload region. If the digests do not match, fail the request with

EBADMSG.

Request AAD
AEAD and Encrypt-then-Authenticate requests may optionally include Additional Authenticated Data.

AAD may either be supplied in the AAD region of the input buffer or as a single buffer pointed to by

crp_aad. In either case, crp_aad_length always indicates the amount of AAD in bytes.

Request ESN
IPsec requests may optionally include Extended Sequence Numbers (ESN). ESN may either be supplied

in crp_esn or as part of the AAD pointed to by crp_aad.

If the ESN is stored in crp_esn, CSP_F_ESN should be set in csp_flags. This use case is dedicated for

encrypt and authenticate mode, since the high-order 32 bits of the sequence number are appended after

the Next Header (RFC 4303).

AEAD modes supply the ESN in a separate AAD buffer (see e.g. RFC 4106, Chapter 5 AAD

Construction).

CRYPTO_REQUEST(9) FreeBSD Kernel Developer’s Manual CRYPTO_REQUEST(9)

FreeBSD 14.0-RELEASE-p6 November 2, 2022 FreeBSD 14.0-RELEASE-p6



Request IV and/or Nonce
Some cryptographic operations require an IV or nonce as an input. An IV may be stored either in the IV

region of the data buffer or in crp_iv. By default, the IV is assumed to be stored in the IV region. If the

IV is stored in crp_iv, CRYPTO_F_IV_SEPARATE should be set in crp_flags and crp_iv_start should

be left as zero.

Requests that store part, but not all, of the IV in the data buffer should store the partial IV in the data

buffer and pass the full IV separately in crp_iv.

Request and Callback Scheduling
The crypto framework provides multiple methods of scheduling the dispatch of requests to drivers along

with the processing of driver callbacks. The crypto_dispatch(), crypto_dispatch_async(), and

crypto_dispatch_batch() functions can be used to request different dispatch scheduling policies.

crypto_dispatch() synchronously passes the request to the driver. The driver itself may process the

request synchronously or asynchronously depending on whether the driver is implemented by software

or hardware.

crypto_dispatch_async() dispatches the request asynchronously. If the driver is inherently synchronous,

the request is queued to a taskqueue backed by a pool of worker threads. This can increase througput by

allowing requests from a single producer to be processed in parallel. By default the pool is sized to

provide one thread for each CPU. Worker threads dequeue requests and pass them to the driver

asynchronously. crypto_dispatch_async() additionally takes a flags parameter. The

CRYPTO_ASYNC_ORDERED flag indicates that completion callbacks for requests must be called in

the same order as requests were dispatched. If the driver is asynchronous, the behavior of

crypto_dispatch_async() is identical to that of crypto_dispatch().

crypto_dispatch_batch() allows the caller to collect a batch of requests and submit them to the driver at

the same time. This allows hardware drivers to optimize the scheduling of request processing and batch

completion interrupts. A batch is submitted to the driver by invoking the driver’s process method on

each request, specifying CRYPTO_HINT_MORE with each request except for the last. The flags

parameter to crypto_dispatch_batch() is currently ignored.

Callback function scheduling is simpler than request scheduling. Callbacks can either be invoked

synchronously from crypto_done(), or they can be queued to a pool of worker threads. This pool of

worker threads is also sized to provide one worker thread for each CPU by default. Note that a callback

function invoked synchronously from crypto_done() must follow the same restrictions placed on

threaded interrupt handlers.

By default, callbacks are invoked asynchronously by a worker thread. If CRYPTO_F_CBIMM is set,

CRYPTO_REQUEST(9) FreeBSD Kernel Developer’s Manual CRYPTO_REQUEST(9)

FreeBSD 14.0-RELEASE-p6 November 2, 2022 FreeBSD 14.0-RELEASE-p6



the callback is always invoked synchronously from crypto_done(). If CRYPTO_F_CBIFSYNC is set,

the callback is invoked synchronously if the request was processed by a software driver or

asynchronously if the request was processed by a hardware driver.

If a request was scheduled to the taskqueue with CRYPTO_ASYNC_ORDERED, callbacks are always

invoked asynchronously ignoring CRYPTO_F_CBIMM and CRYPTO_F_CBIFSYNC. This flag is

used by IPsec to ensure that decrypted network packets are passed up the network stack in roughly the

same order they were received.

Other Request Fields
In addition to the fields and flags enumerated above, struct cryptop includes the following:

crp_session A reference to the active session. This is set when the request is created by

crypto_getreq() and should not be modified. Drivers can use this to fetch driver-

specific session state or session parameters.

crp_etype Error status. Either zero on success, or an error if a request fails. Set by drivers

prior to completing a request via crypto_done().

crp_flags A bitmask of flags. The following flags are available in addition to flags discussed

previously:

CRYPTO_F_DONE Set by crypto_done before calling crp_callback. This flag is

not very useful and will likely be removed in the future. It

can only be safely checked from the callback routine at which

point it is always set.

crp_cipher_key Pointer to a request-specific encryption key. If this value is not set, the request uses

the session encryption key.

crp_auth_key Pointer to a request-specific authentication key. If this value is not set, the request

uses the session authentication key.

crp_opaque An opaque pointer. This pointer permits users of the cryptographic framework to

store information about a request to be used in the callback.

crp_callback Callback function. This must point to a callback function of type void (*)(struct

cryptop *). The callback function should inspect crp_etype to determine the status

of the completed operation. It should also arrange for the request to be freed via

crypto_freereq().

CRYPTO_REQUEST(9) FreeBSD Kernel Developer’s Manual CRYPTO_REQUEST(9)

FreeBSD 14.0-RELEASE-p6 November 2, 2022 FreeBSD 14.0-RELEASE-p6



crp_olen Used with compression and decompression requests to describe the updated length

of the payload region in the data buffer.

If a compression request increases the size of the payload, then the data buffer is

unmodified, the request completes successfully, and crp_olen is set to the size the

compressed data would have used. Callers can compare this to the payload region

length to determine if the compressed data was discarded.

RETURN VALUES
crypto_dispatch() returns an error if the request contained invalid fields, or zero if the request was valid.

crypto_getreq() returns a pointer to a new request structure on success, or NULL on failure. NULL can

only be returned if M_NOWAIT was passed in how.

SEE ALSO
ipsec(4), crypto(7), crypto(9), crypto_session(9), mbuf(9), uio(9)

BUGS
Not all drivers properly handle mixing session and per-request keys within a single session. Consumers

should either use a single key for a session specified in the session parameters or always use per-request

keys.

CRYPTO_REQUEST(9) FreeBSD Kernel Developer’s Manual CRYPTO_REQUEST(9)

FreeBSD 14.0-RELEASE-p6 November 2, 2022 FreeBSD 14.0-RELEASE-p6


