
NAME
ct - Main user interface for the Common Test framework.

DESCRIPTION
Main user interface for the Common Test framework.

This module implements the command-line interface for running tests and basic functions for Common

Test case issues, such as configuration and logging.

Test Suite Support Macros

The config macro is defined in ct.hrl. This macro is to be used to retrieve information from the Config

variable sent to all test cases. It is used with two arguments; the first is the name of the configuration

variable to retrieve, the second is the Config variable supplied to the test case.

Possible configuration variables include:

* data_dir - Data file directory

* priv_dir - Scratch file directory

* Whatever added by init_per_suite/1 or init_per_testcase/2 in the test suite.

DATA TYPES

handle() = pid()

The identity (handle) of a connection.

config_key() = atom()

A configuration key which exists in a configuration file

target_name() = atom()

A name and association to configuration data introduced through a require statement, or a call to

ct:require/2, for example, ct:require(mynodename,{node,[telnet]}).

key_or_name() = config_key() | target_name()

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

conn_log_options() = [conn_log_option()]

Options that can be given to the cth_conn_log hook, which is used for logging of NETCONF and

Telnet connections. See ct_netconfc or ct_telnet for description and examples of how to use this

hook.

conn_log_option() = {log_type,conn_log_type()} | {hosts,[key_or_name()]}

conn_log_type() = raw | pretty | html | silent

conn_log_mod() = ct_netconfc | ct_telnet

EXPORTS
abort_current_testcase(Reason) -> ok | {error, ErrorReason}

Types:

Reason = term()

ErrorReason = no_testcase_running | parallel_group

Aborts the currently executing test case. The user must know with certainty which test case is

currently executing. The function is therefore only safe to call from a function that has been called

(or synchronously invoked) by the test case.

Reason, the reason for aborting the test case, is printed in the test case log.

add_config(Callback, Config) -> ok | {error, Reason}

Types:

Callback = atom()

Config = string()

Reason = term()

Loads configuration variables using the specified callback module and configuration string. The

callback module is to be either loaded or present in the code path. Loaded configuration variables

can later be removed using function ct:remove_config/2.

break(Comment) -> ok | {error, Reason}

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Types:

Comment = string()

Reason = {multiple_cases_running, TestCases} | ’enable break with release_shell option’

TestCases = [atom()]

Cancels any active timetrap and pauses the execution of the current test case until the user calls

function continue/0. The user can then interact with the Erlang node running the tests, for example,

for debugging purposes or for manually executing a part of the test case. If a parallel group is

executing, ct:break/2 is to be called instead.

A cancelled timetrap is not automatically reactivated after the break, but must be started explicitly

with ct:timetrap/1.

In order for the break/continue functionality to work, Common Test must release the shell process

controlling stdin. This is done by setting start option release_shell to true. For details, see section

Running Tests from the Erlang Shell or from an Erlang Program in the User’s Guide.

break(TestCase, Comment) -> ok | {error, Reason}

Types:

TestCase = atom()

Comment = string()

Reason = ’test case not running’ | ’enable break with release_shell option’

Works the same way as ct:break/1, only argument TestCase makes it possible to pause a test case

executing in a parallel group. Function ct:continue/1 is to be used to resume execution of TestCase.

For details, see ct:break/1.

capture_get() -> ListOfStrings

Types:

ListOfStrings = [string()]

Equivalent to ct:capture_get([default]).

capture_get(ExclCategories) -> ListOfStrings

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Types:

ExclCategories = [atom()]

ListOfStrings = [string()]

Returns and purges the list of text strings buffered during the latest session of capturing printouts

to stdout. Log categories that are to be ignored in ListOfStrings can be specified with

ExclCategories. If ExclCategories = [], no filtering takes place.

See also ct:capture_start/0, ct:capture_stop/0, ct:log/3.

capture_start() -> ok

Starts capturing all text strings printed to stdout during execution of the test case.

See also ct:capture_get/1, ct:capture_stop/0.

capture_stop() -> ok

Stops capturing text strings (a session started with capture_start/0).

See also ct:capture_get/1, ct:capture_start/0.

comment(Comment) -> ok

Types:

Comment = term()

Prints the specified Comment in the comment field in the table on the test suite result page.

If called several times, only the last comment is printed. The test case return value

{comment,Comment} overwrites the string set by this function.

comment(Format, Args) -> ok

Types:

Format = string()

Args = list()

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Prints the formatted string in the comment field in the table on the test suite result page.

Arguments Format and Args are used in a call to io_lib:format/2 to create the comment string. The

behavior of comment/2 is otherwise the same as function ct:comment/1.

continue() -> ok

This function must be called to continue after a test case (not executing in a parallel group) has

called function ct:break/1.

continue(TestCase) -> ok

Types:

TestCase = atom()

This function must be called to continue after a test case has called ct:break/2. If the paused test

case, TestCase, executes in a parallel group, this function, rather than continue/0, must be used to

let the test case proceed.

decrypt_config_file(EncryptFileName, TargetFileName) -> ok | {error, Reason}

Types:

EncryptFileName = string()

TargetFileName = string()

Reason = term()

Decrypts EncryptFileName, previously generated with ct:encrypt_config_file/2,3. The original file

contents is saved in the target file. The encryption key, a string, must be available in a text file

named .ct_config.crypt, either in the current directory, or the home directory of the user (it is

searched for in that order).

decrypt_config_file(EncryptFileName, TargetFileName, KeyOrFile) -> ok | {error, Reason}

Types:

EncryptFileName = string()

TargetFileName = string()

KeyOrFile = {key, string()} | {file, string()}

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Reason = term()

Decrypts EncryptFileName, previously generated with ct:encrypt_config_file/2,3. The original file

contents is saved in the target file. The key must have the same value as that used for encryption.

encrypt_config_file(SrcFileName, EncryptFileName) -> ok | {error, Reason}

Types:

SrcFileName = string()

EncryptFileName = string()

Reason = term()

Encrypts the source configuration file with DES3 and saves the result in file EncryptFileName.

The key, a string, must be available in a text file named .ct_config.crypt, either in the current

directory, or the home directory of the user (it is searched for in that order).

For information about using encrypted configuration files when running tests, see section

Encrypted Configuration Files in the User’s Guide.

For details on DES3 encryption/decryption, see application Crypto.

encrypt_config_file(SrcFileName, EncryptFileName, KeyOrFile) -> ok | {error, Reason}

Types:

SrcFileName = string()

EncryptFileName = string()

KeyOrFile = {key, string()} | {file, string()}

Reason = term()

Encrypts the source configuration file with DES3 and saves the result in the target file

EncryptFileName. The encryption key to use is either the value in {key,Key} or the value stored in

the file specified by {file,File}.

For information about using encrypted configuration files when running tests, see section

Encrypted Configuration Files in the User’s Guide.

For details on DES3 encryption/decryption, see application Crypto.

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

fail(Reason) -> ok

Types:

Reason = term()

Terminates a test case with the specified error Reason.

fail(Format, Args) -> ok

Types:

Format = string()

Args = list()

Terminates a test case with an error message specified by a format string and a list of values (used

as arguments to io_lib:format/2).

get_config(Required) -> Value

Equivalent to ct:get_config(Required, undefined, []).

get_config(Required, Default) -> Value

Equivalent to ct:get_config(Required, Default, []).

get_config(Required, Default, Opts) -> ValueOrElement

Types:

Required = KeyOrName | {KeyOrName, SubKey} | {KeyOrName, SubKey, SubKey}

KeyOrName = atom()

SubKey = atom()

Default = term()

Opts = [Opt] | []

Opt = element | all

ValueOrElement = term() | Default

Reads configuration data values.

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Returns the matching values or configuration elements, given a configuration variable key or its

associated name (if one has been specified with ct:require/2 or a require statement).

Example:

Given the following configuration file:

{unix,[{telnet,IpAddr},

{user,[{username,Username},

{password,Password}]}]}.

Then:

ct:get_config(unix,Default) -> [{telnet,IpAddr},

{user, [{username,Username}, {password,Password}]}]

ct:get_config({unix,telnet},Default) -> IpAddr

ct:get_config({unix,user,username},Default) -> Username

ct:get_config({unix,ftp},Default) -> Default

ct:get_config(unknownkey,Default) -> Default

If a configuration variable key has been associated with a name (by ct:require/2 or a require

statement), the name can be used instead of the key to read the value:

ct:require(myuser,{unix,user}) -> ok.

ct:get_config(myuser,Default) -> [{username,Username}, {password,Password}]

If a configuration variable is defined in multiple files, use option all to access all possible values.

The values are returned in a list. The order of the elements corresponds to the order that the

configuration files were specified at startup.

If configuration elements (key-value tuples) are to be returned as result instead of values, use

option element. The returned elements are then on the form {Required,Value}.

See also ct:get_config/1, ct:get_config/2, ct:require/1, ct:require/2.

get_event_mgr_ref() -> EvMgrRef

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Types:

EvMgrRef = atom()

Gets a reference to the Common Test event manager. The reference can be used to, for example,

add a user-specific event handler while tests are running.

Example:

gen_event:add_handler(ct:get_event_mgr_ref(), my_ev_h, [])

get_progname() -> string()

Returns the command used to start this Erlang instance. If this information could not be found, the

string "no_prog_name" is returned.

get_status() -> TestStatus | {error, Reason} | no_tests_running

Types:

TestStatus = [StatusElem]

StatusElem = {current, TestCaseInfo} | {successful, Successful} | {failed, Failed} | {skipped,

Skipped} | {total, Total}

TestCaseInfo = {Suite, TestCase} | [{Suite, TestCase}]

Suite = atom()

TestCase = atom()

Successful = integer()

Failed = integer()

Skipped = {UserSkipped, AutoSkipped}

UserSkipped = integer()

AutoSkipped = integer()

Total = integer()

Reason = term()

Returns status of ongoing test. The returned list contains information about which test case is

executing (a list of cases when a parallel test case group is executing), as well as counters for

successful, failed, skipped, and total test cases so far.

get_target_name(Handle) -> {ok, TargetName} | {error, Reason}

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Types:

Handle = handle()

TargetName = target_name()

Returns the name of the target that the specified connection belongs to.

get_testspec_terms() -> TestSpecTerms | undefined

Types:

TestSpecTerms = [{Tag, Value}]

Value = [term()]

Gets a list of all test specification terms used to configure and run this test.

get_testspec_terms(Tags) -> TestSpecTerms | undefined

Types:

Tags = [Tag] | Tag

Tag = atom()

TestSpecTerms = [{Tag, Value}] | {Tag, Value}

Value = [{Node, term()}] | [term()]

Node = atom()

Reads one or more terms from the test specification used to configure and run this test. Tag is any

valid test specification tag, for example, label, config, or logdir. User-specific terms are also

available to read if option allow_user_terms is set.

All value tuples returned, except user terms, have the node name as first element.

To read test terms, use Tag = tests (rather than suites, groups, or cases). Value is then the list of all

tests on the form [{Node,Dir,[{TestSpec,GroupsAndCases1},...]},...], where GroupsAndCases =

[{Group,[Case]}] | [Case].

get_timetrap_info() -> {Time, {Scaling,ScaleVal}}

Types:

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Time = integer() | infinity

Scaling = true | false

ScaleVal = integer()

Reads information about the timetrap set for the current test case. Scaling indicates if Common

Test will attempt to compensate timetraps automatically for runtime delays introduced by, for

example, tools like cover. ScaleVal is the value of the current scaling multiplier (always 1 if

scaling is disabled). Note the Time is not the scaled result.

get_verbosity(Category) -> Level | undefined

Types:

Category = default | atom()

Level = integer()

This function returns the verbosity level for the specified logging category. See the User’s Guide

for details. Use the value default to read the general verbosity level.

install(Opts) -> ok | {error, Reason}

Types:

Opts = [Opt]

Opt = {config, ConfigFiles} | {event_handler, Modules} | {decrypt, KeyOrFile}

ConfigFiles = [ConfigFile]

ConfigFile = string()

Modules = [atom()]

KeyOrFile = {key, Key} | {file, KeyFile}

Key = string()

KeyFile = string()

Installs configuration files and event handlers.

Run this function once before the first test.

Example:

install([{config,["config_node.ctc","config_user.ctc"]}])

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

This function is automatically run by program ct_run.

listenv(Telnet) -> [Env]

Types:

Telnet = term()

Env = {Key, Value}

Key = string()

Value = string()

Performs command listenv on the specified Telnet connection and returns the result as a list of

key-value pairs.

log(Format) -> ok

Equivalent to ct:log(default, 50, Format, [], []).

log(X1, X2) -> ok

Types:

X1 = Category | Importance | Format

X2 = Format | FormatArgs

Equivalent to ct:log(Category, Importance, Format, FormatArgs, []).

log(X1, X2, X3) -> ok

Types:

X1 = Category | Importance

X2 = Importance | Format

X3 = Format | FormatArgs | Opts

Equivalent to ct:log(Category, Importance, Format, FormatArgs, Opts).

log(X1, X2, X3, X4) -> ok

Types:

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

X1 = Category | Importance

X2 = Importance | Format

X3 = Format | FormatArgs

X4 = FormatArgs | Opts

Equivalent to ct:log(Category, Importance, Format, FormatArgs, Opts).

log(Category, Importance, Format, FormatArgs, Opts) -> ok

Types:

Category = atom()

Importance = integer()

Format = string()

FormatArgs = list()

Opts = [Opt]

Opt = {heading,string()} | no_css | esc_chars

Prints from a test case to the log file.

This function is meant for printing a string directly from a test case to the test case log file.

Default Category is default, default Importance is ?STD_IMPORTANCE, and default value for

FormatArgs is [].

For details on Category, Importance and the no_css option, see section Logging - Categories and

Verbosity Levels in the User’s Guide.

Common Test will not escape special HTML characters (<, > and &) in the text printed with this

function, unless the esc_chars option is used.

make_priv_dir() -> ok | {error, Reason}

Types:

Reason = term()

If the test is started with option create_priv_dir set to manual_per_tc, in order for the test case to

use the private directory, it must first create it by calling this function.

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

notify(Name, Data) -> ok

Types:

Name = atom()

Data = term()

Sends an asynchronous notification of type Name with Datato the Common Test event manager.

This can later be caught by any installed event manager.

See also gen_event(3).

pal(Format) -> ok

Equivalent to ct:pal(default, 50, Format, [], []).

pal(X1, X2) -> ok

Types:

X1 = Category | Importance | Format

X2 = Format | FormatArgs

Equivalent to ct:pal(Category, Importance, Format, FormatArgs, []).

pal(X1, X2, X3) -> ok

Types:

X1 = Category | Importance

X2 = Importance | Format

X3 = Format | FormatArgs | Opts

Equivalent to ct:pal(Category, Importance, Format, FormatArgs, Opts).

pal(X1, X2, X3, X4) -> ok

Types:

X1 = Category | Importance

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

X2 = Importance | Format

X3 = Format | FormatArgs

X4 = FormatArgs | Opts

Equivalent to ct:pal(Category, Importance, Format, FormatArgs, Opts).

pal(Category, Importance, Format, FormatArgs, Opts) -> ok

Types:

Category = atom()

Importance = integer()

Format = string()

FormatArgs = list()

Opts = [Opt]

Opt = {heading,string()} | no_css

Prints and logs from a test case.

This function is meant for printing a string from a test case, both to the test case log file and to the

console.

Default Category is default, default Importance is ?STD_IMPORTANCE, and default value for

FormatArgs is [].

For details on Category and Importance, see section Logging - Categories and Verbosity Levels in

the User’s Guide.

Note that special characters in the text (<, > and &) will be escaped by Common Test before the

text is printed to the log file.

parse_table(Data) -> {Heading, Table}

Types:

Data = [string()]

Heading = tuple()

Table = [tuple()]

Parses the printout from an SQL table and returns a list of tuples.

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

The printout to parse is typically the result of a select command in SQL. The returned Table is a

list of tuples, where each tuple is a row in the table.

Heading is a tuple of strings representing the headings of each column in the table.

print(Format) -> ok

Equivalent to ct:print(default, 50, Format, [], []).

print(X1, X2) -> ok

Types:

X1 = Category | Importance | Format

X2 = Format | FormatArgs

Equivalent to ct:print(Category, Importance, Format, FormatArgs, []).

print(X1, X2, X3) -> ok

Types:

X1 = Category | Importance

X2 = Importance | Format

X3 = Format | FormatArgs | Opts

Equivalent to ct:print(Category, Importance, Format, FormatArgs, Opts).

print(X1, X2, X3, X4) -> ok

Types:

X1 = Category | Importance

X2 = Importance | Format

X3 = Format | FormatArgs

X4 = FormatArgs | Opts

Equivalent to ct:print(Category, Importance, Format, FormatArgs, Opts).

print(Category, Importance, Format, FormatArgs, Opts) -> ok

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Types:

Category = atom()

Importance = integer()

Format = string()

FormatArgs = list()

Opts = [Opt]

Opt = {heading,string()}

Prints from a test case to the console.

This function is meant for printing a string from a test case to the console.

Default Category is default, default Importance is ?STD_IMPORTANCE, and default value for

FormatArgs is [].

For details on Category and Importance, see section Logging - Categories and Verbosity Levels in

the User’s Guide.

reload_config(Required) -> ValueOrElement | {error, Reason}

Types:

Required = KeyOrName | {KeyOrName, SubKey} | {KeyOrName, SubKey, SubKey}

KeyOrName = atom()

SubKey = atom()

ValueOrElement = term()

Reloads configuration file containing specified configuration key.

This function updates the configuration data from which the specified configuration variable was

read, and returns the (possibly) new value of this variable.

If some variables were present in the configuration, but are not loaded using this function, they are

removed from the configuration table together with their aliases.

remaining_test_procs() -> {TestProcs,SharedGL,OtherGLs}

Types:

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

TestProcs = [{pid(),GL}]

GL = pid()

SharedGL = pid()

OtherGLs = [pid()]

This function will return the identity of test- and group leader processes that are still running at the

time of this call. TestProcs are processes in the system that have a Common Test IO process as

group leader. SharedGL is the central Common Test IO process, responsible for printing to log

files for configuration functions and sequentially executing test cases. OtherGLs are Common Test

IO processes that print to log files for test cases in parallel test case groups.

The process information returned by this function may be used to locate and terminate remaining

processes after tests have finished executing. The function would typically by called from

Common Test Hook functions.

Note that processes that execute configuration functions or test cases are never included in

TestProcs. It is therefore safe to use post configuration hook functions (such as

post_end_per_suite, post_end_per_group, post_end_per_testcase) to terminate all processes in

TestProcs that have the current group leader process as its group leader.

Note also that the shared group leader (SharedGL) must never be terminated by the user, only by

Common Test. Group leader processes for parallel test case groups (OtherGLs) may however be

terminated in post_end_per_group hook functions.

remove_config(Callback, Config) -> ok

Types:

Callback = atom()

Config = string()

Reason = term()

Removes configuration variables (together with their aliases) that were loaded with specified

callback module and configuration string.

require(Required) -> ok | {error, Reason}

Types:

Required = Key | {Key, SubKeys} | {Key, SubKey, SubKeys}

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Key = atom()

SubKeys = SubKey | [SubKey]

SubKey = atom()

Checks if the required configuration is available. Arbitrarily deep tuples can be specified as

Required. Only the last element of the tuple can be a list of SubKeys.

Example 1. Require the variable myvar:

ok = ct:require(myvar).

In this case the configuration file must at least contain:

{myvar,Value}.

Example 2. Require key myvar with subkeys sub1 and sub2:

ok = ct:require({myvar,[sub1,sub2]}).

In this case the configuration file must at least contain:

{myvar,[{sub1,Value},{sub2,Value}]}.

Example 3. Require key myvar with subkey sub1 with subsub1:

ok = ct:require({myvar,sub1,sub2}).

In this case the configuration file must at least contain:

{myvar,[{sub1,[{sub2,Value}]}]}.

See also ct:get_config/1, ct:get_config/2, ct:get_config/3, ct:require/2.

require(Name, Required) -> ok | {error, Reason}

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Types:

Name = atom()

Required = Key | {Key, SubKey} | {Key, SubKey, SubKey}

SubKey = Key

Key = atom()

Checks if the required configuration is available and gives it a name. The semantics for Required is

the same as in ct:require/1 except that a list of SubKeys cannot be specified.

If the requested data is available, the subentry is associated with Name so that the value of the

element can be read with ct:get_config/1,2 provided Name is used instead of the whole Required

term.

Example:

Require one node with a Telnet connection and an FTP connection. Name the node a:

ok = ct:require(a,{machine,node}).

All references to this node can then use the node name. For example, a file over FTP is fetched like

follows:

ok = ct:ftp_get(a,RemoteFile,LocalFile).

For this to work, the configuration file must at least contain:

{machine,[{node,[{telnet,IpAddr},{ftp,IpAddr}]}]}.

Note:
The behavior of this function changed radically in Common Test 1.6.2. To keep some backwards

compatibility, it is still possible to do:

ct:require(a,{node,[telnet,ftp]}).

This associates the name a with the top-level node entry. For this to work, the configuration file

must at least contain:

{node,[{telnet,IpAddr},{ftp,IpAddr}]}.

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

See also ct:get_config/1, ct:get_config/2, ct:get_config/3, ct:require/1.

run(TestDirs) -> Result

Types:

TestDirs = TestDir | [TestDir]

Runs all test cases in all suites in the specified directories.

See also ct:run/3.

run(TestDir, Suite) -> Result

Runs all test cases in the specified suite.

See also ct:run/3.

run(TestDir, Suite, Cases) -> Result

Types:

TestDir = string()

Suite = atom()

Cases = atom() | [atom()]

Result = [TestResult] | {error, Reason}

Runs the specified test cases.

Requires that ct:install/1 has been run first.

Suites (*_SUITE.erl) files must be stored in TestDir or TestDir/test. All suites are compiled when

the test is run.

run_test(Opts) -> Result

Types:

Opts = [OptTuples]

OptTuples = {dir, TestDirs} | {suite, Suites} | {group, Groups} | {testcase, Cases} | {spec,

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

TestSpecs} | {join_specs, Bool} | {label, Label} | {config, CfgFiles} | {userconfig,

UserConfig} | {allow_user_terms, Bool} | {logdir, LogDir} | {silent_connections, Conns} |

{stylesheet, CSSFile} | {cover, CoverSpecFile} | {cover_stop, Bool} | {step, StepOpts} |

{event_handler, EventHandlers} | {include, InclDirs} | {auto_compile, Bool} |

{abort_if_missing_suites, Bool} | {create_priv_dir, CreatePrivDir} | {multiply_timetraps, M} |

{scale_timetraps, Bool} | {repeat, N} | {duration, DurTime} | {until, StopTime} | {force_stop,

ForceStop} | {decrypt, DecryptKeyOrFile} | {refresh_logs, LogDir} | {logopts, LogOpts} |

{verbosity, VLevels} | {basic_html, Bool} | {esc_chars, Bool} | {keep_logs,KeepSpec} |

{ct_hooks, CTHs} | {enable_builtin_hooks, Bool} | {release_shell, Bool}

TestDirs = [string()] | string()

Suites = [string()] | [atom()] | string() | atom()

Cases = [atom()] | atom()

Groups = GroupNameOrPath | [GroupNameOrPath]

GroupNameOrPath = [atom()] | atom() | all

TestSpecs = [string()] | string()

Label = string() | atom()

CfgFiles = [string()] | string()

UserConfig = [{CallbackMod, CfgStrings}] | {CallbackMod, CfgStrings}

CallbackMod = atom()

CfgStrings = [string()] | string()

LogDir = string()

Conns = all | [atom()]

CSSFile = string()

CoverSpecFile = string()

StepOpts = [StepOpt] | []

StepOpt = config | keep_inactive

EventHandlers = EH | [EH]

EH = atom() | {atom(), InitArgs} | {[atom()], InitArgs}

InitArgs = [term()]

InclDirs = [string()] | string()

CreatePrivDir = auto_per_run | auto_per_tc | manual_per_tc

M = integer()

N = integer()

DurTime = string(HHMMSS)

StopTime = string(YYMoMoDDHHMMSS) | string(HHMMSS)

ForceStop = skip_rest | Bool

DecryptKeyOrFile = {key, DecryptKey} | {file, DecryptFile}

DecryptKey = string()

DecryptFile = string()

LogOpts = [LogOpt]

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

LogOpt = no_nl | no_src

VLevels = VLevel | [{Category, VLevel}]

VLevel = integer()

Category = atom()

KeepSpec = all | pos_integer()

CTHs = [CTHModule | {CTHModule, CTHInitArgs}]

CTHModule = atom()

CTHInitArgs = term()

Result = {Ok, Failed, {UserSkipped, AutoSkipped}} | TestRunnerPid | {error, Reason}

Ok = integer()

Failed = integer()

UserSkipped = integer()

AutoSkipped = integer()

TestRunnerPid = pid()

Reason = term()

Runs tests as specified by the combination of options in Opts. The options are the same as those

used with program ct_run, see Run Tests from Command Line in the ct_run manual page.

Here a TestDir can be used to point out the path to a Suite. Option testcase corresponds to option

-case in program ct_run. Configuration files specified in Opts are installed automatically at startup.

TestRunnerPid is returned if release_shell == true. For details, see ct:break/1.

Reason indicates the type of error encountered.

run_testspec(TestSpec) -> Result

Types:

TestSpec = [term()]

Result = {Ok, Failed, {UserSkipped, AutoSkipped}} | {error, Reason}

Ok = integer()

Failed = integer()

UserSkipped = integer()

AutoSkipped = integer()

Reason = term()

Runs a test specified by TestSpec. The same terms are used as in test specification files.

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Reason indicates the type of error encountered.

set_verbosity(Category, Level) -> ok

Types:

Category = default | atom()

Level = integer()

Use this function to set, or modify, the verbosity level for a logging category. See the User’s

Guide for details. Use the value default to set the general verbosity level.

sleep(Time) -> ok

Types:

Time = {hours, Hours} | {minutes, Mins} | {seconds, Secs} | Millisecs | infinity

Hours = integer()

Mins = integer()

Secs = integer()

Millisecs = integer() | float()

This function, similar to timer:sleep/1 in STDLIB, suspends the test case for a specified time.

However, this function also multiplies Time with the multiply_timetraps value (if set) and under

certain circumstances also scales up the time automatically if scale_timetraps is set to true (default

is false).

start_interactive() -> ok

Starts Common Test in interactive mode.

From this mode, all test case support functions can be executed directly from the Erlang shell. The

interactive mode can also be started from the OS command line with ct_run -shell [-config File...].

If any functions (for example, Telnet or FTP) using "required configuration data" are to be called

from the Erlang shell, configuration data must first be required with ct:require/2.

Example:

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

> ct:require(unix_telnet, unix).

ok

> ct_telnet:open(unix_telnet).

{ok,<0.105.0>}

> ct_telnet:cmd(unix_telnet, "ls .").

{ok,["ls","file1 ...",...]}

step(TestDir, Suite, Case) -> Result

Types:

Case = atom()

Steps through a test case with the debugger.

See also ct:run/3.

step(TestDir, Suite, Case, Opts) -> Result

Types:

Case = atom()

Opts = [Opt] | []

Opt = config | keep_inactive

Steps through a test case with the debugger. If option config has been specified, breakpoints are

also set on the configuration functions in Suite.

See also ct:run/3.

stop_interactive() -> ok

Exits the interactive mode.

See also ct:start_interactive/0.

sync_notify(Name, Data) -> ok

Types:

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Name = atom()

Data = term()

Sends a synchronous notification of type Name with Data to the Common Test event manager.

This can later be caught by any installed event manager.

See also gen_event(3).

testcases(TestDir, Suite) -> Testcases | {error, Reason}

Types:

TestDir = string()

Suite = atom()

Testcases = list()

Reason = term()

Returns all test cases in the specified suite.

timetrap(Time) -> ok

Types:

Time = {hours, Hours} | {minutes, Mins} | {seconds, Secs} | Millisecs | infinity | Func

Hours = integer()

Mins = integer()

Secs = integer()

Millisecs = integer()

Func = {M, F, A} | function()

M = atom()

F = atom()

A = list()

Sets a new timetrap for the running test case.

If the argument is Func, the timetrap is triggered when this function returns. Func can also return a

new Time value, which in that case is the value for the new timetrap.

userdata(TestDir, Suite) -> SuiteUserData | {error, Reason}

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

Types:

TestDir = string()

Suite = atom()

SuiteUserData = [term()]

Reason = term()

Returns any data specified with tag userdata in the list of tuples returned from suite/0.

userdata(TestDir, Suite, Case::GroupOrCase) -> TCUserData | {error, Reason}

Types:

TestDir = string()

Suite = atom()

GroupOrCase = {group, GroupName} | atom()

GroupName = atom()

TCUserData = [term()]

Reason = term()

Returns any data specified with tag userdata in the list of tuples returned from

Suite:group(GroupName) or Suite:Case().

ct(3) Erlang Module Definition ct(3)

Ericsson AB common_test 1.24 ct(3)

