
NAME
ctf - Compact C Type Format

SYNOPSIS
#include <sys/ctf.h>

DESCRIPTION
ctf is designed to be a compact representation of the C programming language’s type information

focused on serving the needs of dynamic tracing, debuggers, and other in-situ and post-mortem

introspection tools. ctf data is generally included in ELF objects and is tagged as SHT_PROGBITS to

ensure that the data is accessible in a running process and in subsequent core dumps, if generated.

The ctf data contained in each file has information about the layout and sizes of C types, including

intrinsic types, enumerations, structures, typedefs, and unions, that are used by the corresponding ELF
object. The ctf data may also include information about the types of global objects and the return type

and arguments of functions in the symbol table.

Because a ctf file is often embedded inside a file, rather than being a standalone file itself, it may also be

referred to as a ctf container.

On FreeBSD systems, ctf data is consumed by dtrace(1). Programmatic access to ctf data can be

obtained through libctf.

The ctf file format is broken down into seven different sections. The first two sections are the preamble
and header, which describe the version of the ctf file, the links it has to other ctf files, and the sizes of

the other sections. The next section is the label section, which provides a way of identifying similar

groups of ctf data across multiple files. This is followed by the object information section, which

describes the types of global symbols. The subsequent section is the function information section, which

describes the return types and arguments of functions. The next section is the type information section,

which describes the format and layout of the C types themselves, and finally the last section is the string
section, which contains the names of types, enumerations, members, and labels.

While strictly speaking, only the preamble and header are required, to be actually useful, both the type

and string sections are necessary.

A ctf file may contain all of the type information that it requires, or it may optionally refer to another ctf
file which holds the remaining types. When a ctf file refers to another file, it is called the child and the

file it refers to is called the parent. A given file may only refer to one parent. This process is called

uniquification because it ensures each child only has type information that is unique to it. A common

example of this is that most kernel modules in illumos are uniquified against the kernel module genunix

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

and the type information that comes from the IP module. This means that a module only has types that

are unique to itself and the most common types in the kernel are not duplicated. Uniquification is not

used when building kernel modules on FreeBSD.

FILE FORMAT
This documents version three of the ctf file format. The ctfconvert(1) and ctfmerge(1) utilities emit ctf
version 3, and all other applications and libraries can operate on versions 2 and 3.

The file format can be summarized with the following image, the following sections will cover this in

more detail.

+-------------+ 0t0

+--------| Preamble |

| +-------------+ 0t4

|+-------| Header |

|| +-------------+ 0t36 + cth_lbloff

||+------| Labels |

||| +-------------+ 0t36 + cth_objtoff

|||+-----| Objects |

|||| +-------------+ 0t36 + cth_funcoff

||||+----| Functions |

||||| +-------------+ 0t36 + cth_typeoff

|||||+---| Types |

|||||| +-------------+ 0t36 + cth_stroff

||||||+--| Strings |

||||||| +-------------+ 0t36 + cth_stroff + cth_strlen

|||||||

|||||||

|||||||

||||||| +-- magic - vers flags

||||||| | | | |

||||||| +------+------+------+------+

+---------| 0xcf | 0xf1 | 0x03 | 0x00 |

|||||| +------+------+------+------+

|||||| 0 1 2 3 4

||||||

|||||| + parent label + objects

|||||| | + parent name | + functions + strings

|||||| | | + label | | + types | + strlen

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

|||||| | | | | | | | |

|||||| +------+------+------+------+------+-------+-------+-------+

+--------| 0x00 | 0x00 | 0x00 | 0x08 | 0x36 | 0x110 | 0x5f4 | 0x611 |

||||| +------+------+------+------+------+-------+-------+-------+

||||| 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c 0x20 0x24

|||||

||||| + Label name

||||| | + Label type

||||| | | + Next label

||||| | | |

||||| +-------+------+-----+

+-----------| 0x01 | 0x42 | ... |

|||| +-------+------+-----+

|||| cth_lbloff +0x4 +0x8 cth_objtoff

||||

||||

|||| Symidx 0t15 0t43 0t44

|||| +------+------+------+-----+

+----------| 0x00 | 0x42 | 0x36 | ... |

||| +------+------+------+-----+

||| cth_objtoff +0x4 +0x8 +0xc cth_funcoff

|||

||| + CTF_TYPE_INFO + CTF_TYPE_INFO

||| | + Return type |

||| | | + arg0 |

||| +--------+------+------+-----+

+---------| 0x2c10 | 0x08 | 0x0c | ... |

|| +--------+------+------+-----+

|| cth_funcff +0x4 +0x8 +0xc cth_typeoff

||

|| + ctf_stype_t for type 1

|| | integer + integer encoding

|| | | + ctf_stype_t for type 2

|| | | |

|| +--------------------+-----------+-----+

+--------| 0x19 * 0xc01 * 0x0 | 0x1000000 | ... |

| +--------------------+-----------+-----+

| cth_typeoff +0x0c +0x10 cth_stroff

|

| +--- str 0

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

| | +--- str 1 + str 2

| | | |

| v v v

| +----+---+---+---+----+---+---+---+---+---+----+

+---| \0 | i | n | t | \0 | f | o | o | _ | t | \0 |

+----+---+---+---+----+---+---+---+---+---+----+

0 1 2 3 4 5 6 7 8 9 10 11

Every ctf file begins with a preamble, followed by a header. The preamble is defined as follows:

typedef struct ctf_preamble {

uint16_t ctp_magic; /* magic number (CTF_MAGIC) */

uint8_t ctp_version; /* data format version number (CTF_VERSION) */

uint8_t ctp_flags; /* flags (see below) */

} ctf_preamble_t;

The preamble is four bytes long and must be four byte aligned. This preamble defines the version of the

ctf file which defines the format of the rest of the header. While the header may change in subsequent

versions, the preamble will not change across versions, though the interpretation of its flags may change

from version to version. The ctp_magic member defines the magic number for the ctf file format. This

must always be 0xcff1. If another value is encountered, then the file should not be treated as a ctf file.

The ctp_version member defines the version of the ctf file. The current version is 3. It is possible to

encounter an unsupported version. In that case, software should not try to parse the format, as it may

have changed. Finally, the ctp_flags member describes aspects of the file which modify its

interpretation. The following flags are currently defined:

#define CTF_F_COMPRESS 0x01

The flag CTF_F_COMPRESS indicates that the body of the ctf file, all the data following the header,

has been compressed through the zlib library and its deflate algorithm. If this flag is not present, then

the body has not been compressed and no special action is needed to interpret it. All offsets into the data

as described by header, always refer to the uncompressed data.

In versions two and three of the ctf file format, the header denotes whether or not this ctf file is the child

of another ctf file and also indicates the size of the remaining sections. The structure for the header
logically contains a copy of the preamble and the two have a combined size of 36 bytes.

typedef struct ctf_header {

ctf_preamble_t cth_preamble;

uint32_t cth_parlabel; /* ref to name of parent lbl uniq’d against */

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

uint32_t cth_parname; /* ref to basename of parent */

uint32_t cth_lbloff; /* offset of label section */

uint32_t cth_objtoff; /* offset of object section */

uint32_t cth_funcoff; /* offset of function section */

uint32_t cth_typeoff; /* offset of type section */

uint32_t cth_stroff; /* offset of string section */

uint32_t cth_strlen; /* length of string section in bytes */

} ctf_header_t;

After the preamble, the next two members cth_parlabel and cth_parname, are used to identify the parent.

The value of both members are offsets into the string section which point to the start of a null-terminated

string. For more information on the encoding of strings, see the subsection on String Identifiers. If the

value of either is zero, then there is no entry for that member. If the member cth_parlabel is set, then the

ctf_parname member must be set, otherwise it will not be possible to find the parent. If ctf_parname is

set, it is not necessary to define cth_parlabel, as the parent may not have a label. For more information

on labels and their interpretation, see The Label Section.

The remaining members (excepting cth_strlen) describe the beginning of the corresponding sections.

These offsets are relative to the end of the header. Therefore, something with an offset of 0 is at an

offset of thirty-six bytes relative to the start of the ctf file. The difference between members indicates

the size of the section itself. Different offsets have different alignment requirements. The start of the

cth_objtoff and cth_funcoff must be two byte aligned, while the sections cth_lbloff and cth_typeoff must

be four-byte aligned. The section cth_stroff has no alignment requirements. To calculate the size of a

given section, excepting the string section, one should subtract the offset of the section from the

following one. For example, the size of the types section can be calculated by subtracting cth_typeoff

from cth_stroff.

Finally, the member cth_strlen describes the length of the string section itself. From it, you can also

calculate the size of the entire ctf file by adding together the size of the ctf_header_t, the offset of the

string section in cth_stroff, and the size of the string section in cth_srlen.

Type Identifiers
Through the ctf data, types are referred to by identifiers. A given ctf file supports up to 2147483646

(0x7ffffffe) types. ctf version 2 had a much smaller limit of 32767 types. The first valid type identifier

is 0x1. When a given ctf file is a child, indicated by a non-zero entry for the header’s cth_parname, then

the first valid type identifier is 0x80000000 and the last is 0xfffffffe. In this case, type identifiers 0x1

through 0x7ffffffe are references to the parent. 0x7fffffff and 0xffffffff are not treated as valid type

identifiers so as to enable the use of -1 as an error value.

The type identifier zero is a sentinel value used to indicate that there is no type information available or

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

it is an unknown type.

Throughout the file format, the identifier is stored in different sized values; however, the minimum size

to represent a given identifier is a uint16_t. Other consumers of ctf information may use larger or

opaque identifiers.

String Identifiers
String identifiers are always encoded as four byte unsigned integers which are an offset into a string

table. The ctf format supports two different string tables which have an identifier of zero or one. This

identifier is stored in the high-order bit of the unsigned four byte offset. Therefore, the maximum

supported offset into one of these tables is 0x7ffffffff.

Table identifier zero, always refers to the string section in the CTF file itself. String table identifier one

refers to an external string table which is the ELF string table for the ELF symbol table associated with

the ctf container.

Type Encoding
Every ctf type begins with metadata encoded into a uint32_t. This encoded information tells us three

different pieces of information:

+o The kind of the type

+o Whether this type is a root type or not

+o The length of the variable data

The 32 bits that make up the encoding are broken down into six bits for the kind (bits 26 to 31), one bit

for the root type flag (bit 25), and 25 bits for the length of the variable data.

The current version of the file format defines 14 different kinds. The interpretation of these different

kinds will be discussed in the section The Type Section. If a kind is encountered that is not listed below,

then it is not a valid ctf file. The kinds are defined as follows:

#define CTF_K_UNKNOWN 0

#define CTF_K_INTEGER 1

#define CTF_K_FLOAT 2

#define CTF_K_POINTER 3

#define CTF_K_ARRAY 4

#define CTF_K_FUNCTION 5

#define CTF_K_STRUCT 6

#define CTF_K_UNION 7

#define CTF_K_ENUM 8

#define CTF_K_FORWARD 9

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

#define CTF_K_TYPEDEF10

#define CTF_K_VOLATILE 11

#define CTF_K_CONST 12

#define CTF_K_RESTRICT 13

Programs directly reference many types; however, other types are referenced indirectly because they are

part of some other structure. These types that are referenced directly and used are called root types.

Other types may be used indirectly, for example, a program may reference a structure directly, but not

one of its members which has a type. That type is not considered a root type. If a type is a root type,

then it will have bit 25 set.

The variable length section is specific to each kind and is discussed in the section The Type Section.

The following macros are useful for constructing and deconstructing the encoded type information:

#define CTF_V3_MAX_VLEN 0x00ffffff

#define CTF_V3_INFO_KIND(info) (((info) & 0xfc000000) >> 26)

#define CTF_V3_INFO_ISROOT(info) (((info) & 0x02000000) >> 25)

#define CTF_V3_INFO_VLEN(info) (((info) & CTF_V3_MAX_VLEN))

#define CTF_V3_TYPE_INFO(kind, isroot, vlen) \

(((kind) << 26) | (((isroot) ? 1 : 0) << 25) | ((vlen) & CTF_V3_MAX_VLEN))

The Label Section
When consuming ctf data, it is often useful to know whether two different ctf containers come from the

same source base and version. For example, when building illumos, there are many kernel modules that

are built against a single collection of source code. A label is encoded into the ctf files that corresponds

with the particular build. This ensures that if files on the system were to become mixed up from

multiple releases, that they are not used together by tools, particularly when a child needs to refer to a

type in the parent. Because they are linked using the type identifiers, if the wrong parent is used then the

wrong type will be encountered. Note that this mechanism is not currently used on FreeBSD. In

particular, kernel modules built on FreeBSD each contain a complete type graph.

Each label is encoded in the file format using the following eight byte structure:

typedef struct ctf_lblent {

uint32_t ctl_label; /* ref to name of label */

uint32_t ctl_typeidx; /* last type associated with this label */

} ctf_lblent_t;

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

Each label has two different components, a name and a type identifier. The name is encoded in the

ctl_label member which is in the format defined in the section String Identifiers. Generally, the names

of all labels are found in the internal string section.

The type identifier encoded in the member ctl_typeidx refers to the last type identifier that a label refers

to in the current file. Labels only refer to types in the current file, if the ctf file is a child, then it will

have the same label as its parent; however, its label will only refer to its types, not its parent’s.

It is also possible, though rather uncommon, for a ctf file to have multiple labels. Labels are placed one

after another, every eight bytes. When multiple labels are present, types may only belong to a single

label.

The Object Section
The object section provides a mapping from ELF symbols of type STT_OBJECT in the symbol table to

a type identifier. Every entry in this section is a uint32_t which contains a type identifier as described in

the section Type Identifiers. If there is no information for an object, then the type identifier 0x0 is stored

for that entry.

To walk the object section, you need to have a corresponding symbol table in the ELF object that

contains the ctf data. Not every object is included in this section. Specifically, when walking the

symbol table, an entry is skipped if it matches any of the following conditions:

+o The symbol type is not STT_OBJECT
+o The symbol’s section index is SHN_UNDEF
+o The symbol’s name offset is zero

+o The symbol’s section index is SHN_ABS and the value of the symbol is zero.

+o The symbol’s name is _START_ or _END_. These are skipped because they are used for

scoping local symbols in ELF.

The following sample code shows an example of iterating the object section and skipping the correct

symbols:

#include <gelf.h>

#include <stdio.h>

/*

* Given the start of the object section in a CTFv3 file, the number of symbols,

* and the ELF Data sections for the symbol table and the string table, this

* prints the type identifiers that correspond to objects. Note, a more robust

* implementation should ensure that they don’t walk beyond the end of the CTF

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

* object section.

*

* An implementation that handles CTFv2 must take into account the fact that

* type identifiers are 16 bits wide rather than 32 bits wide.

*/

static int

walk_symbols(uint32_t *objtoff, Elf_Data *symdata, Elf_Data *strdata,

long nsyms)

{

long i;

uintptr_t strbase = strdata->d_buf;

for (i = 1; i < nsyms; i++, objftoff++) {

const char *name;

GElf_Sym sym;

if (gelf_getsym(symdata, i, &sym) == NULL)

return (1);

if (GELF_ST_TYPE(sym.st_info) != STT_OBJECT)

continue;

if (sym.st_shndx == SHN_UNDEF || sym.st_name == 0)

continue;

if (sym.st_shndx == SHN_ABS && sym.st_value == 0)

continue;

name = (const char *)(strbase + sym.st_name);

if (strcmp(name, "_START_") == 0 || strcmp(name, "_END_") == 0)

continue;

(void) printf("Symbol %d has type %d0, i, *objtoff);

}

return (0);

}

The Function Section
The function section of the ctf file encodes the types of both the function’s arguments and the function’s

return value. Similar to The Object Section, the function section encodes information for all symbols of

type STT_FUNCTION, excepting those that fit specific criteria. Unlike with objects, because functions

have a variable number of arguments, they start with a type encoding as defined in Type Encoding,

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

which is the size of a uint32_t. For functions which have no type information available, they are

encoded as CTF_V3_TYPE_INFO(CTF_K_UNKNOWN, 0, 0). Functions with arguments are encoded

differently. Here, the variable length is turned into the number of arguments in the function. If a

function is a varargs type function, then the number of arguments is increased by one. Functions with

type information are encoded as: CTF_V3_TYPE_INFO(CTF_K_FUNCTION, 0, nargs).

For functions that have no type information, nothing else is encoded, and the next function is encoded.

For functions with type information, the next uint32_t is encoded with the type identifier of the return

type of the function. It is followed by each of the type identifiers of the arguments, if any exist, in the

order that they appear in the function. Therefore, argument 0 is the first type identifier and so on. When

a function has a final varargs argument, that is encoded with the type identifier of zero.

Like The Object Section, the function section is encoded in the order of the symbol table. It has similar,

but slightly different considerations from objects. While iterating the symbol table, if any of the

following conditions are true, then the entry is skipped and no corresponding entry is written:

+o The symbol type is not STT_FUNCTION
+o The symbol’s section index is SHN_UNDEF
+o The symbol’s name offset is zero

+o The symbol’s name is _START_ or _END_. These are skipped because they are used for

scoping local symbols in ELF.

The Type Section
The type section is the heart of the ctf data. It encodes all of the information about the types themselves.

The base of the type information comes in two forms, a short form and a long form, each of which may

be followed by a variable number of arguments. The following definitions describe the short and long

forms:

#define CTF_V3_MAX_SIZE 0xfffffffe /* max size of a type in bytes */

#define CTF_V3_LSIZE_SENT 0xffffffff /* sentinel for ctt_size */

#define CTF_V3_MAX_LSIZE UINT64_MAX

struct ctf_stype_v3 {

uint32_t ctt_name; /* reference to name in string table */

uint32_t ctt_info; /* encoded kind, variant length */

union {

uint32_t _size; /* size of entire type in bytes */

uint32_t _type; /* reference to another type */

} _u;

};

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

struct ctf_type_v3 {

uint32_t ctt_name; /* reference to name in string table */

uint32_t ctt_info; /* encoded kind, variant length */

union {

uint32_t _size; /* always CTF_LSIZE_SENT */

uint32_t _type; /* do not use */

} _u;

uint32_t ctt_lsizehi;/* high 32 bits of type size in bytes */

uint32_t ctt_lsizelo;/* low 32 bits of type size in bytes */

};

#define ctt_size _u._size /* for fundamental types that have a size */

#define ctt_type _u._type /* for types that reference another type */

Type sizes are stored in bytes. The basic small form uses a uint32_t to store the number of bytes. If the

number of bytes in a structure would exceed 0xfffffffe, then the alternate form, the struct ctf_type_v3, is

used instead. To indicate that the larger form is being used, the member ctt_size is set to value of

CTF_V3_LSIZE_SENT (0xffffffff). In general, when going through the type section, consumers use

the struct ctf_type_v3 structure, but pay attention to the value of the member ctt_size to determine

whether they should increment their scan by the size of struct ctf_stype_v3 or struct ctf_type_v3. Not

all kinds of types use ctt_size. Those which do not, will always use the struct ctf_stype_v3 structure.

The individual sections for each kind have more information.

Types are written out in order. Therefore the first entry encountered has a type id of 0x1, or 0x8000 if a

child. The member ctt_name is encoded as described in the section String Identifiers. The string that it

points to is the name of the type. If the identifier points to an empty string (one that consists solely of a

null terminator) then the type does not have a name, this is common with anonymous structures and

unions that only have a typedef to name them, as well as pointers and qualifiers.

The next member, the ctt_info, is encoded as described in the section Type Encoding. The type’s kind

tells us how to interpret the remaining data in the struct ctf_type_v3 and any variable length data that

may exist. The rest of this section will be broken down into the interpretation of the various kinds.

Encoding of Integers
Integers, which are of type CTF_K_INTEGER, have no variable length arguments. Instead, they are

followed by a uint32_t which describes their encoding. All integers must be encoded with a variable

length of zero. The ctt_size member describes the length of the integer in bytes. In general, integer

sizes will be rounded up to the closest power of two.

The integer encoding contains three different pieces of information:

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

+o The encoding of the integer

+o The offset in bits of the type

+o The size in bits of the type

This encoding can be expressed through the following macros:

#define CTF_INT_ENCODING(data) (((data) & 0xff000000) >> 24)

#define CTF_INT_OFFSET(data) (((data) & 0x00ff0000) >> 16)

#define CTF_INT_BITS(data) (((data) & 0x0000ffff))

#define CTF_INT_DATA(encoding, offset, bits) \

(((encoding) << 24) | ((offset) << 16) | (bits))

The following flags are defined for the encoding at this time:

#define CTF_INT_SIGNED 0x01

#define CTF_INT_CHAR 0x02

#define CTF_INT_BOOL 0x04

#define CTF_INT_VARARGS 0x08

By default, an integer is considered to be unsigned, unless it has the CTF_INT_SIGNED flag set. If the

flag CTF_INT_CHAR is set, that indicates that the integer is of a type that stores character data, for

example the intrinsic C type char would have the CTF_INT_CHAR flag set. If the flag

CTF_INT_BOOL is set, that indicates that the integer represents a boolean type. For example, the

intrinsic C type _Bool would have the CTF_INT_BOOL flag set. Finally, the flag

CTF_INT_VARARGS indicates that the integer is used as part of a variable number of arguments. This

encoding is rather uncommon.

Encoding of Floats
Floats, which are of type CTF_K_FLOAT, are similar to their integer counterparts. They have no

variable length arguments and are followed by a four byte encoding which describes the kind of float

that exists. The ctt_size member is the size, in bytes, of the float. The float encoding has three different

pieces of information inside of it:

+o The specific kind of float that exists

+o The offset in bits of the float

+o The size in bits of the float

This encoding can be expressed through the following macros:

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

#define CTF_FP_ENCODING(data) (((data) & 0xff000000) >> 24)

#define CTF_FP_OFFSET(data) (((data) & 0x00ff0000) >> 16)

#define CTF_FP_BITS(data) (((data) & 0x0000ffff))

#define CTF_FP_DATA(encoding, offset, bits) \

(((encoding) << 24) | ((offset) << 16) | (bits))

Where as the encoding for integers is a series of flags, the encoding for floats maps to a specific kind of

float. It is not a flag-based value. The kinds of floats correspond to both their size, and the encoding.

This covers all of the basic C intrinsic floating point types. The following are the different kinds of

floats represented in the encoding:

#define CTF_FP_SINGLE 1 /* IEEE 32-bit float encoding */

#define CTF_FP_DOUBLE 2 /* IEEE 64-bit float encoding */

#define CTF_FP_CPLX 3 /* Complex encoding */

#define CTF_FP_DCPLX 4 /* Double complex encoding */

#define CTF_FP_LDCPLX 5 /* Long double complex encoding */

#define CTF_FP_LDOUBLE 6 /* Long double encoding */

#define CTF_FP_INTRVL 7 /* Interval (2x32-bit) encoding */

#define CTF_FP_DINTRVL 8 /* Double interval (2x64-bit) encoding */

#define CTF_FP_LDINTRVL 9 /* Long double interval (2x128-bit) encoding */

#define CTF_FP_IMAGRY 10 /* Imaginary (32-bit) encoding */

#define CTF_FP_DIMAGRY 11 /* Long imaginary (64-bit) encoding */

#define CTF_FP_LDIMAGRY 12 /* Long double imaginary (128-bit) encoding */

Encoding of Arrays
Arrays, which are of type CTF_K_ARRAY, have no variable length arguments. They are followed by a

structure which describes the number of elements in the array, the type identifier of the elements in the

array, and the type identifier of the index of the array. With arrays, the ctt_size member is set to zero.

The structure that follows an array is defined as:

struct ctf_array_v3 {

uint32_t cta_contents; /* reference to type of array contents */

uint32_t cta_index; /* reference to type of array index */

uint32_t cta_nelems; /* number of elements */

};

The cta_contents and cta_index members of the struct ctf_array_v3 are type identifiers which are

encoded as per the section Type Identifiers. The member cta_nelems is a simple four byte unsigned

count of the number of elements. This count may be zero when encountering C99’s flexible array

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

members.

Encoding of Functions
Function types, which are of type CTF_K_FUNCTION, use the variable length list to be the number of

arguments in the function. When the function has a final member which is a varargs, then the argument

count is incremented by one to account for the variable argument. Here, the ctt_type member is encoded

with the type identifier of the return type of the function. Note that the ctt_size member is not used here.

The variable argument list contains the type identifiers for the arguments of the function, if any. Each

one is represented by a uint32_t and encoded according to the Type Identifiers section. If the function’s

last argument is of type varargs, then it is also written out, but the type identifier is zero. This is

included in the count of the function’s arguments. In ctf version 2, an extra type identifier may follow

the argument and return type identifiers in order to maintain four-byte alignment for the following type

definition. Such a type identifier is not included in the argument count and has a value of zero. In ctf
version 3, four-byte alignment occurs naturally and no padding is used.

Encoding of Structures and Unions
Structures and Unions, which are encoded with CTF_K_STRUCT and CTF_K_UNION respectively,

are very similar constructs in C. The main difference between them is the fact that members of a

structure follow one another, where as in a union, all members share the same memory. They are also

very similar in terms of their encoding in ctf. The variable length argument for structures and unions

represents the number of members that they have. The value of the member ctt_size is the size of the

structure and union. There are two different structures which are used to encode members in the

variable list. When the size of a structure or union is greater than or equal to the large member

threshold, 536870912, then a different structure is used to encode the member; all members are encoded

using the same structure. The structure for members is as follows:

struct ctf_member_v3 {

uint32_t ctm_name; /* reference to name in string table */

uint32_t ctm_type; /* reference to type of member */

uint32_t ctm_offset; /* offset of this member in bits */

};

struct ctf_lmember_v3 {

uint32_t ctlm_name; /* reference to name in string table */

uint32_t ctlm_type; /* reference to type of member */

uint32_t ctlm_offsethi; /* high 32 bits of member offset in bits */

uint32_t ctlm_offsetlo; /* low 32 bits of member offset in bits */

};

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

Both the ctm_name and ctlm_name refer to the name of the member. The name is encoded as an offset

into the string table as described by the section String Identifiers. The members ctm_type and ctlm_type
both refer to the type of the member. They are encoded as per the section Type Identifiers.

The last piece of information that is present is the offset which describes the offset in memory at which

the member begins. For unions, this value will always be zero because each member of a union has an

offset of zero. For structures, this is the offset in bits at which the member begins. Note that a compiler

may lay out a type with padding. This means that the difference in offset between two consecutive

members may be larger than the size of the member. When the size of the overall structure is strictly

less than 536870912 bytes, the normal structure, struct ctf_member_v3, is used and the offset in bits is

stored in the member ctm_offset. However, when the size of the structure is greater than or equal to

536870912 bytes, then the number of bits is split into two 32-bit quantities. One member, ctlm_offsethi,

represents the upper 32 bits of the offset, while the other member, ctlm_offsetlo, represents the lower 32

bits of the offset. These can be joined together to get a 64-bit sized offset in bits by shifting the member

ctlm_offsethi to the left by thirty two and then doing a binary or of ctlm_offsetlo.

Encoding of Enumerations
Enumerations, noted by the type CTF_K_ENUM, are similar to structures. Enumerations use the

variable list to note the number of values that the enumeration contains, which we’ll term enumerators.

In C, an enumeration is always equivalent to the intrinsic type int, thus the value of the member ctt_size

is always the size of an integer which is determined based on the current model. For FreeBSD systems,

this will always be 4, as an integer is always defined to be 4 bytes large in both ILP32 and LP64,

regardless of the architecture. For further details, see arch(7).

The enumerators encoded in an enumeration have the following structure in the variable list:

typedef struct ctf_enum {

uint32_t cte_name; /* reference to name in string table */

int32_t cte_value; /* value associated with this name */

} ctf_enum_t;

The member cte_name refers to the name of the enumerator’s value, it is encoded according to the rules

in the section String Identifiers. The member cte_value contains the integer value of this enumerator.

Encoding of Forward References
Forward references, types of kind CTF_K_FORWARD, in a ctf file refer to types which may not have a

definition at all, only a name. If the ctf file is a child, then it may be that the forward is resolved to an

actual type in the parent, otherwise the definition may be in another ctf container or may not be known

at all. The only member of the struct ctf_type_v3 that matters for a forward declaration is the ctt_name

which points to the name of the forward reference in the string table as described earlier. There is no

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

other information recorded for forward references.

Encoding of Pointers, Typedefs, Volatile, Const, and Restrict
Pointers, typedefs, volatile, const, and restrict are all similar in ctf. They all refer to another type. In the

case of typedefs, they provide an alternate name, while volatile, const, and restrict change how the type

is interpreted in the C programming language. This covers the ctf kinds CTF_K_POINTER,

CTF_K_TYPEDEF, CTF_K_VOLATILE, CTF_K_RESTRICT, and CTF_K_CONST.

These types have no variable list entries and use the member ctt_type to refer to the base type that they

modify.

Encoding of Unknown Types
Types with the kind CTF_K_UNKNOWN are used to indicate gaps in the type identifier space. These

entries consume an identifier, but do not define anything. Nothing should refer to these gap identifiers.

Dependencies Between Types
C types can be imagined as a directed, cyclic, graph. Structures and unions may refer to each other in a

way that creates a cyclic dependency. In cases such as these, the entire type section must be read in and

processed. Consumers must not assume that every type can be laid out in dependency order; they

cannot.

The String Section
The last section of the ctf file is the string section. This section encodes all of the strings that appear

throughout the other sections. It is laid out as a series of characters followed by a null terminator.

Generally, all names are written out in ASCII, as most C compilers do not allow any characters to

appear in identifiers outside of a subset of ASCII. However, any extended characters sets should be

written out as a series of UTF-8 bytes.

The first entry in the section, at offset zero, is a single null terminator to reference the empty string.

Following that, each C string should be written out, including the null terminator. Offsets that refer to

something in this section should refer to the first byte which begins a string. Beyond the first byte in the

section being the null terminator, the order of strings is unimportant.

Data Encoding and ELF Considerations
ctf data is generally included in ELF objects which specify information to identify the architecture and

endianness of the file. A ctf container inside such an object must match the endianness of the ELF

object. Aside from the question of the endian encoding of data, there should be no other differences

between architectures. While many of the types in this document refer to non-fixed size C integral

types, they are equivalent in the models ILP32 and LP64. If any other model is being used with ctf data

that has different sizes, then it must not use the model’s sizes for those integral types and instead use the

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

fixed size equivalents based on an ILP32 environment.

When placing a ctf container inside of an ELF object, there are certain conventions that are expected for

the purposes of tooling being able to find the ctf data. In particular, a given ELF object should only

contain a single ctf section. Multiple containers should be merged together into a single one.

The ctf file should be included in its own ELF section. The section’s name must be ‘.SUNW_ctf’. The

type of the section must be SHT_PROGBITS. The section should have a link set to the symbol table

and its address alignment must be 4.

SEE ALSO
ctfconvert(1), ctfdump(1), ctfmerge(1), dtrace(1), elf(3), gelf(3), a.out(5), elf(5), arch(7)

CTF(5) FreeBSD File Formats Manual CTF(5)

FreeBSD 14.0-RELEASE-p6 February 28, 2022 FreeBSD 14.0-RELEASE-p6

