
NAME
curl_easy_pause - pause and unpause a connection

SYNOPSIS
#include <curl/curl.h>

CURLcode curl_easy_pause(CURL *handle, int bitmask );

DESCRIPTION
Using this function, you can explicitly mark a running connection to get paused, and you can unpause a

connection that was previously paused. Unlike most other libcurl functions, curl_easy_pause(3) can be

used from within callbacks.

A connection can be paused by using this function or by letting the read or the write callbacks return

the proper magic return code (CURL_READFUNC_PAUSE and CURL_WRITEFUNC_PAUSE). A

write callback that returns pause signals to the library that it could not take care of any data at all, and

that data is then delivered again to the callback when the transfer is unpaused.

While it may feel tempting, take care and notice that you cannot call this function from another thread.

To unpause, you may for example call it from the progress callback

(CURLOPT_PROGRESSFUNCTION(3)).

When this function is called to unpause receiving, the write callback might get called before this

function returns to deliver cached content. When libcurl delivers such cached data to the write callback,

it is delivered as fast as possible, which may overstep the boundary set in

CURLOPT_MAX_RECV_SPEED_LARGE(3) etc.

The handle argument identifies the transfer you want to pause or unpause.

A paused transfer is excluded from low speed cancels via the CURLOPT_LOW_SPEED_LIMIT(3)

option and unpausing a transfer resets the time period required for the low speed limit to be met.

The bitmask argument is a set of bits that sets the new state of the connection. The following bits can

be used:

CURLPAUSE_RECV

Pause receiving data. There is no data received on this connection until this function is called again

without this bit set. Thus, the write callback (CURLOPT_WRITEFUNCTION(3)) is not called.

CURLPAUSE_SEND

curl_easy_pause(3) libcurl curl_easy_pause(3)

libcurl 8.5.0 December 4, 2023 curl_easy_pause(3)



Pause sending data. There is no data sent on this connection until this function is called again

without this bit set. Thus, the read callback (CURLOPT_READFUNCTION(3)) is not called.

CURLPAUSE_ALL

Convenience define that pauses both directions.

CURLPAUSE_CONT

Convenience define that unpauses both directions.

LIMITATIONS
The pausing of transfers does not work with protocols that work without network connectivity, like

FILE://. Trying to pause such a transfer, in any direction, might cause problems or error.

MULTIPLEXED
When a connection is used multiplexed, like for HTTP/2, and one of the transfers over the connection

is paused and the others continue flowing, libcurl might end up buffering contents for the paused

transfer. It has to do this because it needs to drain the socket for the other transfers and the already

announced window size for the paused transfer allows the server to continue sending data up to that

window size amount. By default, libcurl announces a 32 megabyte window size, which thus can make

libcurl end up buffering 32 megabyte of data for a paused stream.

When such a paused stream is unpaused again, any buffered data is delivered first.

EXAMPLE
int main(void)

{

CURL *curl = curl_easy_init();

if(curl) {

/* pause a transfer in both directions */

curl_easy_pause(curl, CURL_READFUNC_PAUSE | CURL_WRITEFUNC_PAUSE);

}

}

MEMORY USE
When pausing a download transfer by returning the magic return code from a write callback, the read

data is already in libcurl’s internal buffers so it has to keep it in an allocated buffer until the receiving is

again unpaused using this function.

If the downloaded data is compressed and is asked to get uncompressed automatically on download,

curl_easy_pause(3) libcurl curl_easy_pause(3)

libcurl 8.5.0 December 4, 2023 curl_easy_pause(3)



libcurl continues to uncompress the entire downloaded chunk and it caches the data uncompressed.

This has the side- effect that if you download something that is compressed a lot, it can result in a large

data amount needing to be allocated to save the data during the pause. consider not using paused

receiving if you allow libcurl to uncompress data automatically.

If the download is done with HTTP/2 or HTTP/3, there is up to a stream window size worth of data that

curl cannot stop but instead needs to cache while the transfer is paused. This means that if a window

size of 64 MB is used, libcurl might end up having to cache 64 MB of data.

AVAILABILITY
Added in 7.18.0.

RETURN VALUE
CURLE_OK (zero) means that the option was set properly, and a non-zero return code means

something wrong occurred after the new state was set. See the libcurl-errors(3) man page for the full

list with descriptions.

SEE ALSO
curl_easy_cleanup(3), curl_easy_reset(3)

curl_easy_pause(3) libcurl curl_easy_pause(3)

libcurl 8.5.0 December 4, 2023 curl_easy_pause(3)


