curl_easy recv(3) libcurl curl_easy recv(3)

NAME
curl_easy recv - receives raw dataon an "easy" connection

SYNOPSIS
#include <curl/curl.h>

CURLcode curl_easy recv(CURL *curl, void *buffer, size_t buflen, size t *n);

DESCRIPTION
This function receives raw data from the established connection. Y ou may use it together with
curl_easy send(3) to implement custom protocols using libcurl. This functionality can be particularly
useful if you use proxies and/or SSL encryption: libcurl takes care of proxy negotiation and connection
setup.

buffer isapointer to your buffer memory that gets populated by the received data. buflen isthe
maximum amount of data you can get in that buffer. The variable n points to receives the number of
received bytes.

To establish the connection, set CURLOPT_CONNECT _ONLY(3) option before calling
curl_easy perform(3) or curl_multi_perform(3). Note that curl_easy recv(3) does not work on
connections that were created without this option.

The call returns CURLE_AGAIN if thereis no datato read - the socket is used in non-blocking mode
internally. When CURLE_AGAIN isreturned, use your operating system facilities like select(2) to
wait for data. The socket may be obtained using curl_easy getinfo(3) with
CURLINFO_ACTIVESOCKET(3).

Wait on the socket only if curl_easy recv(3) returns CURLE_AGAIN. The reason for thisislibcurl or
the SSL library may internally cache some data, therefore you should call curl_easy recv(3) until all
datais read which would include any cached data.

Furthermore if you wait on the socket and it tells you there is data to read, curl_easy_recv(3) may
return CURLE_AGAIN if the only data that was read was for internal SSL processing, and no other
datais available.

EXAMPLE
int main(void)

{
CURL *curl = curl_easy_init();
if(curl) {

libcurl 8.5.0 December 4, 2023 curl_easy recv(3)



curl_easy recv(3) libcurl curl_easy recv(3)

CURLcoderes,

curl_easy setopt(curl, CURLOPT_URL, "https://example.com");
/* Do not do the transfer - only connect to host */
curl_easy_setopt(curl, CURLOPT_CONNECT_ONLY, 1L);

res = curl_easy_perform(curl);

if(res== CURLE_OK) {
char buf[256];
size t nread;
long sockfd;

[* Extract the socket from the curl handle - we need it for waiting. */
res = curl_easy getinfo(curl, CURLINFO_ACTIVESOCKET, & sockfd);

* read data*/
res = curl_easy recv(curl, buf, sizeof(buf), & nread);
}
}
}

AVAILABILITY
Addedin 7.18.2.

RETURN VALUE
On success, returns CURL E_OK, stores the received datainto buffer, and the number of bytesit
actually read into *n.

On failure, returns the appropriate error code.

The function may return CURL E_AGAIN. In this case, use your operating system facilitiesto wait
until data can be read, and retry.

Reading exactly 0 bytes indicates a closed connection.

If there is no socket available to use from the previous transfer, this function returns
CURLE_UNSUPPORTED_PROTOCOL.

SEE ALSO
curl_easy getinfo(3), curl_easy perform(3), curl_easy send(3), curl_easy setopt(3)

libcurl 8.5.0 December 4, 2023 curl_easy recv(3)



