
NAME
curl_formadd - add a section to a multipart form POST

SYNOPSIS
#include <curl/curl.h>

CURLFORMcode curl_formadd(struct curl_httppost **firstitem,

struct curl_httppost **lastitem, ...);

DESCRIPTION
This function is deprecated. Use curl_mime_init(3) instead.

curl_formadd() is used to append sections when building a multipart form post. Append one section at

a time until you have added all the sections you want included and then you pass the firstitem pointer

as parameter to CURLOPT_HTTPPOST(3). lastitem is set after each curl_formadd(3) call and on

repeated invokes it should be left as set to allow repeated invokes to find the end of the list faster.

After the lastitem pointer follow the real arguments.

The pointers firstitem and lastitem should both be pointing to NULL in the first call to this function.

All list-data is allocated by the function itself. You must call curl_formfree(3) on the firstitem after the

form post has been done to free the resources.

Using POST with HTTP 1.1 implies the use of a "Expect: 100-continue" header. You can disable this

header with CURLOPT_HTTPHEADER(3) as usual.

First, there are some basics you need to understand about multipart form posts. Each part consists of at

least a NAME and a CONTENTS part. If the part is made for file upload, there are also a stored

CONTENT-TYPE and a FILENAME. Below, we discuss what options you use to set these properties

in the parts you want to add to your post.

The options listed first are for making normal parts. The options from CURLFORM_FILE through

CURLFORM_BUFFERLENGTH are for file upload parts.

OPTIONS
CURLFORM_COPYNAME

followed by a string which provides the name of this part. libcurl copies the string so your

application does not need to keep it around after this function call. If the name is not null-

terminated, you must set its length with CURLFORM_NAMELENGTH. The name is not allowed

to contain zero-valued bytes. The copied data is freed by curl_formfree(3).

curl_formadd(3) libcurl curl_formadd(3)

libcurl 8.5.0 December 4, 2023 curl_formadd(3)

CURLFORM_PTRNAME

followed by a string which provides the name of this part. libcurl uses the pointer and refer to the

data in your application, so you must make sure it remains until curl no longer needs it. If the name

is not null-terminated, you must set its length with CURLFORM_NAMELENGTH. The name is

not allowed to contain zero-valued bytes.

CURLFORM_COPYCONTENTS

followed by a pointer to the contents of this part, the actual data to send away. libcurl copies the

provided data, so your application does not need to keep it around after this function call. If the

data is not null terminated, or if you would like it to contain zero bytes, you must set the length of

the name with CURLFORM_CONTENTSLENGTH. The copied data is freed by curl_formfree(3).

CURLFORM_PTRCONTENTS

followed by a pointer to the contents of this part, the actual data to send away. libcurl uses the

pointer and refer to the data in your application, so you must make sure it remains until curl no

longer needs it. If the data is not null-terminated, or if you would like it to contain zero bytes, you

must set its length with CURLFORM_CONTENTSLENGTH.

CURLFORM_CONTENTLEN

followed by a curl_off_t value giving the length of the contents. Note that for

CURLFORM_STREAM contents, this option is mandatory.

If you pass a 0 (zero) for this option, libcurl calls strlen() on the contents to figure out the size. If

you really want to send a zero byte content then you must make sure strlen() on the data pointer

returns zero.

(Option added in 7.46.0)

CURLFORM_CONTENTSLENGTH

(This option is deprecated. Use CURLFORM_CONTENTLEN instead!)

followed by a long giving the length of the contents. Note that for CURLFORM_STREAM

contents, this option is mandatory.

If you pass a 0 (zero) for this option, libcurl calls strlen() on the contents to figure out the size. If

you really want to send a zero byte content then you must make sure strlen() on the data pointer

returns zero.

CURLFORM_FILECONTENT

followed by a filename, causes that file to be read and its contents used as data in this part. This

curl_formadd(3) libcurl curl_formadd(3)

libcurl 8.5.0 December 4, 2023 curl_formadd(3)

part does not automatically become a file upload part simply because its data was read from a file.

The specified file needs to kept around until the associated transfer is done.

CURLFORM_FILE

followed by a filename, makes this part a file upload part. It sets the filename field to the basename

of the provided filename, it reads the contents of the file and passes them as data and sets the

content-type if the given file match one of the internally known file extensions. For

CURLFORM_FILE the user may send one or more files in one part by providing multiple

CURLFORM_FILE arguments each followed by the filename (and each CURLFORM_FILE is

allowed to have a CURLFORM_CONTENTTYPE).

The given upload file has to exist in its full in the file system already when the upload starts, as

libcurl needs to read the correct file size beforehand.

The specified file needs to kept around until the associated transfer is done.

CURLFORM_CONTENTTYPE

is used in combination with CURLFORM_FILE. Followed by a pointer to a string which provides

the content-type for this part, possibly instead of an internally chosen one.

CURLFORM_FILENAME

is used in combination with CURLFORM_FILE. Followed by a pointer to a string, it tells libcurl

to use the given string as the filename in the file upload part instead of the actual file name.

CURLFORM_BUFFER

is used for custom file upload parts without use of CURLFORM_FILE. It tells libcurl that the file

contents are already present in a buffer. The parameter is a string which provides the filename field

in the content header.

CURLFORM_BUFFERPTR

is used in combination with CURLFORM_BUFFER. The parameter is a pointer to the buffer to be

uploaded. This buffer must not be freed until after curl_easy_cleanup(3) is called. You must also

use CURLFORM_BUFFERLENGTH to set the number of bytes in the buffer.

CURLFORM_BUFFERLENGTH

is used in combination with CURLFORM_BUFFER. The parameter is a long which gives the

length of the buffer.

CURLFORM_STREAM

curl_formadd(3) libcurl curl_formadd(3)

libcurl 8.5.0 December 4, 2023 curl_formadd(3)

Tells libcurl to use the CURLOPT_READFUNCTION(3) callback to get data. The parameter you

pass to CURLFORM_STREAM is the pointer passed on to the read callback’s fourth argument. If

you want the part to look like a file upload one, set the CURLFORM_FILENAME parameter as

well. Note that when using CURLFORM_STREAM, CURLFORM_CONTENTSLENGTH must

also be set with the total expected length of the part unless the formpost is sent chunked encoded.

(Option added in libcurl 7.18.2)

CURLFORM_ARRAY

Another possibility to send options to curl_formadd() is the CURLFORM_ARRAY option, that

passes a struct curl_forms array pointer as its value. Each curl_forms structure element has a

CURLformoption and a char pointer. The final element in the array must be a CURLFORM_END.

All available options can be used in an array, except the CURLFORM_ARRAY option itself. The

last argument in such an array must always be CURLFORM_END.

CURLFORM_CONTENTHEADER

specifies extra headers for the form POST section. This takes a curl_slist prepared in the usual way

using curl_slist_append and appends the list of headers to those libcurl automatically generates.

The list must exist while the POST occurs, if you free it before the post completes you may

experience problems.

When you have passed the struct curl_httppost pointer to curl_easy_setopt(3) (using the

CURLOPT_HTTPPOST(3) option), you must not free the list until after you have called

curl_easy_cleanup(3) for the curl handle.

See example below.

EXAMPLE
#include <string.h> /* for strlen */

static const char record[]="data in a buffer";

int main(void)

{

CURL *curl = curl_easy_init();

if(curl) {

struct curl_httppost *post = NULL;

struct curl_httppost *last = NULL;

char namebuffer[] = "name buffer";

long namelength = strlen(namebuffer);

char buffer[] = "test buffer";

curl_formadd(3) libcurl curl_formadd(3)

libcurl 8.5.0 December 4, 2023 curl_formadd(3)

char htmlbuffer[] = "<HTML>test buffer</HTML>";

long htmlbufferlength = strlen(htmlbuffer);

struct curl_forms forms[3];

char file1[] = "my-face.jpg";

char file2[] = "your-face.jpg";

/* add null character into htmlbuffer, to demonstrate that

transfers of buffers containing null characters actually work

*/

htmlbuffer[8] = ’\0’;

/* Add simple name/content section */

curl_formadd(&post, &last, CURLFORM_COPYNAME, "name",

CURLFORM_COPYCONTENTS, "content", CURLFORM_END);

/* Add simple name/content/contenttype section */

curl_formadd(&post, &last, CURLFORM_COPYNAME, "htmlcode",

CURLFORM_COPYCONTENTS, "<HTML></HTML>",

CURLFORM_CONTENTTYPE, "text/html", CURLFORM_END);

/* Add name/ptrcontent section */

curl_formadd(&post, &last, CURLFORM_COPYNAME, "name_for_ptrcontent",

CURLFORM_PTRCONTENTS, buffer, CURLFORM_END);

/* Add ptrname/ptrcontent section */

curl_formadd(&post, &last, CURLFORM_PTRNAME, namebuffer,

CURLFORM_PTRCONTENTS, buffer, CURLFORM_NAMELENGTH,

namelength, CURLFORM_END);

/* Add name/ptrcontent/contenttype section */

curl_formadd(&post, &last, CURLFORM_COPYNAME, "html_code_with_hole",

CURLFORM_PTRCONTENTS, htmlbuffer,

CURLFORM_CONTENTSLENGTH, htmlbufferlength,

CURLFORM_CONTENTTYPE, "text/html", CURLFORM_END);

/* Add simple file section */

curl_formadd(&post, &last, CURLFORM_COPYNAME, "picture",

CURLFORM_FILE, "my-face.jpg", CURLFORM_END);

/* Add file/contenttype section */

curl_formadd(&post, &last, CURLFORM_COPYNAME, "picture",

curl_formadd(3) libcurl curl_formadd(3)

libcurl 8.5.0 December 4, 2023 curl_formadd(3)

CURLFORM_FILE, "my-face.jpg",

CURLFORM_CONTENTTYPE, "image/jpeg", CURLFORM_END);

/* Add two file section */

curl_formadd(&post, &last, CURLFORM_COPYNAME, "pictures",

CURLFORM_FILE, "my-face.jpg",

CURLFORM_FILE, "your-face.jpg", CURLFORM_END);

/* Add two file section using CURLFORM_ARRAY */

forms[0].option = CURLFORM_FILE;

forms[0].value = file1;

forms[1].option = CURLFORM_FILE;

forms[1].value = file2;

forms[2].option = CURLFORM_END;

/* Add a buffer to upload */

curl_formadd(&post, &last,

CURLFORM_COPYNAME, "name",

CURLFORM_BUFFER, "data",

CURLFORM_BUFFERPTR, record,

CURLFORM_BUFFERLENGTH, sizeof(record),

CURLFORM_END);

/* no option needed for the end marker */

curl_formadd(&post, &last, CURLFORM_COPYNAME, "pictures",

CURLFORM_ARRAY, forms, CURLFORM_END);

/* Add the content of a file as a normal post text value */

curl_formadd(&post, &last, CURLFORM_COPYNAME, "filecontent",

CURLFORM_FILECONTENT, ".bashrc", CURLFORM_END);

/* Set the form info */

curl_easy_setopt(curl, CURLOPT_HTTPPOST, post);

curl_easy_perform(curl);

curl_easy_cleanup(curl);

curl_formfree(post);

}

}

curl_formadd(3) libcurl curl_formadd(3)

libcurl 8.5.0 December 4, 2023 curl_formadd(3)

AVAILABILITY
Deprecated in 7.56.0. Before this release, field names were allowed to contain zero-valued bytes. The

pseudo-filename "-" to read stdin is discouraged although still supported, but data is not read before

being actually sent: the effective data size can then not be automatically determined, resulting in a

chunked encoding transfer. Backslashes and double quotes in field and file names are now escaped

before transmission.

RETURN VALUE
0 means everything was OK, non-zero means an error occurred corresponding to a

CURL_FORMADD_* constant defined in <curl/curl.h>

SEE ALSO
curl_easy_setopt(3), curl_formfree(3), curl_mime_init(3)

curl_formadd(3) libcurl curl_formadd(3)

libcurl 8.5.0 December 4, 2023 curl_formadd(3)

