
NAME
curl_multi_fdset - extracts file descriptor information from a multi handle

SYNOPSIS
#include <curl/curl.h>

CURLMcode curl_multi_fdset(CURLM *multi_handle,

fd_set *read_fd_set,

fd_set *write_fd_set,

fd_set *exc_fd_set,

int *max_fd);

DESCRIPTION
This function extracts file descriptor information from a given multi_handle. libcurl returns its fd_set

sets. The application can use these to select() on, but be sure to FD_ZERO them before calling this

function as curl_multi_fdset(3) only adds its own descriptors, it does not zero or otherwise remove any

others. The curl_multi_perform(3) function should be called as soon as one of them is ready to be read

from or written to.

If the read_fd_set argument is not a null pointer, it points to an object of type fd_set that on returns

specifies the file descriptors to be checked for being ready to read.

If the write_fd_set argument is not a null pointer, it points to an object of type fd_set that on return

specifies the file descriptors to be checked for being ready to write.

If the exc_fd_set argument is not a null pointer, it points to an object of type fd_set that on return

specifies the file descriptors to be checked for error conditions pending.

If no file descriptors are set by libcurl, max_fd contain -1 when this function returns. Otherwise it

contains the highest descriptor number libcurl set. When libcurl returns -1 in max_fd, it is because

libcurl currently does something that is not possible for your application to monitor with a socket and

unfortunately you can then not know exactly when the current action is completed using select(). You

then need to wait a while before you proceed and call curl_multi_perform(3) anyway. How long to

wait? Unless curl_multi_timeout(3) gives you a lower number, we suggest 100 milliseconds or so, but

you may want to test it out in your own particular conditions to find a suitable value.

When doing select(), you should use curl_multi_timeout(3) to figure out how long to wait for action.

Call curl_multi_perform(3) even if no activity has been seen on the fd_sets after the timeout expires as

otherwise internal retries and timeouts may not work as you would think and want.

curl_multi_fdset(3) libcurl curl_multi_fdset(3)

libcurl 8.5.0 December 4, 2023 curl_multi_fdset(3)



If one of the sockets used by libcurl happens to be larger than what can be set in an fd_set, which on

POSIX systems means that the file descriptor is larger than FD_SETSIZE, then libcurl tries to not set

it. Setting a too large file descriptor in an fd_set implies an out of bounds write which can cause

crashes, or worse. The effect of NOT storing it might possibly save you from the crash, but makes your

program NOT wait for sockets it should wait for...

EXAMPLE
int main(void)

{

fd_set fdread;

fd_set fdwrite;

fd_set fdexcep;

int maxfd;

int rc;

CURLMcode mc;

struct timeval timeout = {1, 0};

CURLM *multi = curl_multi_init();

do {

/* call curl_multi_perform() */

/* get file descriptors from the transfers */

mc = curl_multi_fdset(multi, &fdread, &fdwrite, &fdexcep, &maxfd);

if(mc != CURLM_OK) {

fprintf(stderr, "curl_multi_fdset() failed, code %d.\n", mc);

break;

}

/* wait for activity on one of the sockets */

rc = select(maxfd + 1, &fdread, &fdwrite, &fdexcep, &timeout);

} while(!mc);

}

AVAILABILITY
Added in 7.9.6

curl_multi_fdset(3) libcurl curl_multi_fdset(3)

libcurl 8.5.0 December 4, 2023 curl_multi_fdset(3)



RETURN VALUE
CURLMcode type, general libcurl multi interface error code. See libcurl-errors(3)

SEE ALSO
curl_multi_cleanup(3), curl_multi_init(3), curl_multi_perform(3), curl_multi_timeout(3),

curl_multi_wait(3), select(2)

curl_multi_fdset(3) libcurl curl_multi_fdset(3)

libcurl 8.5.0 December 4, 2023 curl_multi_fdset(3)


