
NAME
addch, waddch, mvaddch, mvwaddch, echochar, wechochar - add a curses character to a window and

advance the cursor

SYNOPSIS
#include <curses.h>

int addch(const chtype ch);
int waddch(WINDOW *win, const chtype ch);
int mvaddch(int y, int x, const chtype ch);
int mvwaddch(WINDOW *win, int y, int x, const chtype ch);

int echochar(const chtype ch);
int wechochar(WINDOW *win, const chtype ch);

DESCRIPTION
Adding Characters

waddch puts the character ch at the cursor position of window win, then advances the cursor position,

analogously to the standard C library’s putchar(3). ncurses(3X) describes the variants of this function.

If advancement occurs at the right margin,

+o the cursor automatically wraps to the beginning of the next line; and

+o at the bottom of the current scrolling region, and if scrollok(3X) is enabled for win, the scrolling

region scrolls up one line.

If ch is a backspace, carriage return, line feed, or tab, the cursor moves appropriately within the

window.

+o Backspace moves the cursor one character left; at the left margin of a window, it does nothing.

+o Carriage return moves the cursor to the left margin on the current line of the window.

+o Line feed does a clrtoeol(3X), then moves the cursor to the left margin on the next line of the

window, and if scrollok(3X) is enabled for win, scrolls the window if the cursor was already on

the last line.

+o Tab advances the cursor to the next tab stop (possibly on the next line); these are placed at every

eighth column by default. Alter the tab interval with the TABSIZE extension; see

curs_addch(3X) Library calls curs_addch(3X)

ncurses 6.5 2024-04-20 curs_addch(3X)



curs_variables(3X).

If ch is any other nonprintable character, it is drawn in printable form, using the same convention as

unctrl(3X).

Calling winch(3X) on the location of a nonprintable character does not return the character itself, but

its unctrl(3X) representation.

ch may contain rendering and/or color attributes, and others can be combined with the parameter by

logically "or"ing with it. (A character with its attributes can be copied from place to place using

winch(3X) and waddch.) See curs_attr(3X) for values of predefined video attribute constants that can

be usefully "or"ed with characters.

Echoing Characters
echochar and wechochar are equivalent to calling (w)addch followed by (w)refresh. curses interprets

these functions as a hint that only a single character is being output; for non-control characters, a

considerable performance gain may be enjoyed by employing them.

Forms-Drawing Characters
curses defines macros starting with ACS_ that can be used with waddch to write line-drawing and other

special characters to the screen. ncurses terms these forms-drawing characters. The ACS default listed

below is used if the acs_chars (acsc) terminfo capability does not define a terminal-specific

replacement for it, or if the terminal and locale configuration requires Unicode to access these

characters but the library is unable to use Unicode. The "acsc char" column corresponds to how the

characters are specified in the acs_chars string capability, and the characters in it may appear on the

screen if the terminal’s database entry incorrectly advertises ACS support. The name "ACS" originates

in the Alternate Character Set feature of the DEC VT100 terminal.

ACS acsc
Symbol DefaultcharGlyph

Name
-------------------------------------------------------------------------------------------------------------------------------------

ACS_BLOCK # 0 solid square

block

ACS_BOARD # h board of

squares

ACS_BTEE + v bottom

tee

ACS_BULLET o ~ bullet

ACS_CKBOARD : a checker board

curs_addch(3X) Library calls curs_addch(3X)

ncurses 6.5 2024-04-20 curs_addch(3X)



(stipple)

ACS_DARROW v . arrow pointing

down

ACS_DEGREE ’ f degree

symbol

ACS_DIAMOND + ‘ diamond

ACS_GEQUAL > > greater-than-or-equal-to

ACS_HLINE - q horizontal

line

ACS_LANTERN # i lantern

symbol

ACS_LARROW < , arrow pointing

left

ACS_LEQUAL < y less-than-or-equal-to

ACS_LLCORNER + m lower left-hand

corner

ACS_LRCORNER+ j lower right-hand

corner

ACS_LTEE + t left

tee

ACS_NEQUAL ! | not-equal

ACS_PI * { greek

pi

ACS_PLMINUS # g plus/minus

ACS_PLUS + n plus

ACS_RARROW > + arrow pointing

right

ACS_RTEE + u right

tee

ACS_S1 - o scan line

1

ACS_S3 - p scan line

3

ACS_S7 - r scan line

7

ACS_S9 _ s scan line

9

ACS_STERLING f } pound-sterling

symbol

ACS_TTEE + w top

curs_addch(3X) Library calls curs_addch(3X)

ncurses 6.5 2024-04-20 curs_addch(3X)



tee

ACS_UARROW ^ - arrow pointing

up

ACS_ULCORNER+ l upper left-hand

corner

ACS_URCORNER+ k upper right-hand

corner

ACS_VLINE | x vertical

line

RETURN VALUE
These functions return OK on success and ERR on failure.

In ncurses, waddch returns ERR if it is not possible to add a complete character at the cursor position,

as when conversion of a multibyte character to a byte sequence fails, or at least one of the resulting

bytes cannot be added to the window. See section "PORTABILITY" below regarding the use of

waddch with multibyte characters.

waddch can successfully write a character at the bottom right location of the window. However,

ncurses returns ERR if scrollok(3X) is not enabled in that event, because it is not possible to wrap to a

new line.

Functions prefixed with "mv" first perform cursor movement and fail if the position (y, x) is outside the

window boundaries.

NOTES
addch, mvaddch, mvwaddch, and echochar may be implemented as macros.

PORTABILITY
X/Open Curses, Issue 4 describes these functions. It specifies no error conditions for them.

SVr4 curses describes a successful return value only as "an integer value other than ERR".

The defaults specified for forms-drawing characters apply in the POSIX locale.

ACS Symbols
X/Open Curses states that the ACS_ definitions are char constants.

Some implementations are problematic.

curs_addch(3X) Library calls curs_addch(3X)

ncurses 6.5 2024-04-20 curs_addch(3X)



+o Solaris curses, for example, define the ACS symbols as constants; others define them as elements

of an array.

This implementation uses an array, acs_map, as did SVr4 curses. NetBSD also uses an array,

actually named _acs_char, with a #define for compatibility.

+o HP-UX curses equates some of the ACS_ symbols to the analogous WACS_ symbols as if the

ACS_ symbols were wide characters (see curs_add_wch(3X)). The misdefined symbols are the

arrows and others that are not used for line drawing.

+o X/Open Curses (Issues 2 through 7) has a typographical error for the ACS_LANTERN symbol,

equating its "VT100+ Character" to "I" (capital I), while the header files for SVr4 curses and other

implementations use "i" (small i).

None of the terminal descriptions on Unix platforms use uppercase I, except for Solaris (in its

terminfo entry for screen(1), apparently based on the X/Open documentation around 1995). On

the other hand, its gs6300 (AT&T PC6300 with EMOTS Terminal Emulator) description uses

lowercase i.

Some ACS symbols (ACS_S3, ACS_S7, ACS_LEQUAL, ACS_GEQUAL, ACS_PI, ACS_NEQUAL,

and ACS_STERLING) were not documented in any publicly released System V. However, many

publicly available terminfo entries include acsc strings in which their key characters (pryz{|}) are

embedded, and a second-hand list of their character descriptions has come to light. The ncurses

developers invented ACS-prefixed names for them.

The displayed values of ACS_ constants depend on

+o the ncurses ABI--for example, wide-character versus non-wide-character configurations (the

former is capable of displaying Unicode while the latter is not), and

+o whether the locale uses UTF-8 encoding.

In certain cases, the terminal is unable to display forms-drawing characters except by using UTF-8; see

the discussion of the NCURSES_NO_UTF8_ACS environment variable in ncurses(3X)).

Character Set
X/Open Curses assumes that the parameter passed to waddch contains a single character. As discussed

in curs_attr(3X), that character may have been more than eight bits wide in an SVr3 or SVr4

implementation, but in the X/Open Curses model, the details are not given. The important distinction

between SVr4 curses and X/Open Curses is that the latter separates non-character information

curs_addch(3X) Library calls curs_addch(3X)

ncurses 6.5 2024-04-20 curs_addch(3X)



(attributes and color) from the character code, which SVr4 packs into a chtype for passage to waddch.

In ncurses, chtype holds an eight-bit character. But the library allows a multibyte character to be

passed in a succession of calls to waddch. Other implementations do not; a waddch call transmits

exactly one character, which may be rendered in one or more screen locations depending on whether it

is printable.

Depending on the locale settings, ncurses inspects the byte passed in each waddch call, and checks

whether the latest call continues a multibyte sequence. When a character is complete, ncurses displays

the character and advances the cursor.

If the calling application interrupts the succession of bytes in a multibyte character sequence by

changing the current location--for example, with wmove(3X)--ncurses discards the incomplete

character.

For portability to other implementations, do not rely upon this behavior. Check whether a character

can be represented as a single byte in the current locale.

+o If it can, call either waddch or wadd_wch(3X).

+o If it cannot, use only wadd_wch(3X).

TABSIZE
SVr4 and other versions of curses implement the TABSIZE variable, but X/Open Curses does not

specify it (see curs_variables(3X)).

SEE ALSO
curs_add_wch(3X) describes comparable functions of the ncurses library in its wide-character

configuration (ncursesw).

curses(3X), curs_addchstr(3X), curs_addstr(3X), curs_attr(3X), curs_clear(3X), curs_inch(3X),

curs_outopts(3X), curs_refresh(3X), curs_variables(3X), putchar(3)

curs_addch(3X) Library calls curs_addch(3X)

ncurses 6.5 2024-04-20 curs_addch(3X)


