
NAME
condvar, cv_init, cv_destroy, cv_wait, cv_wait_sig, cv_wait_unlock, cv_timedwait, cv_timedwait_sbt,
cv_timedwait_sig, cv_timedwait_sig_sbt, cv_signal, cv_broadcast, cv_broadcastpri, cv_wmesg - kernel

condition variable

SYNOPSIS
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/condvar.h>

void

cv_init(struct cv *cvp, const char *desc);

void

cv_destroy(struct cv *cvp);

void

cv_wait(struct cv *cvp, lock);

int

cv_wait_sig(struct cv *cvp, lock);

void

cv_wait_unlock(struct cv *cvp, lock);

int

cv_timedwait(struct cv *cvp, lock, int timo);

int

cv_timedwait_sbt(struct cv *cvp, lock, sbintime_t sbt, sbintime_t pr, int flags);

int

cv_timedwait_sig(struct cv *cvp, lock, int timo);

int

cv_timedwait_sig_sbt(struct cv *cvp, lock, sbintime_t sbt, sbintime_t pr, int flags);

void

cv_signal(struct cv *cvp);

CONDVAR(9) FreeBSD Kernel Developer’s Manual CONDVAR(9)

FreeBSD 14.2-RELEASE February 19, 2013 FreeBSD 14.2-RELEASE



void

cv_broadcast(struct cv *cvp);

void

cv_broadcastpri(struct cv *cvp, int pri);

const char *

cv_wmesg(struct cv *cvp);

DESCRIPTION
Condition variables are used in conjunction with mutexes to wait for conditions to occur. Condition

variables are created with cv_init(), where cvp is a pointer to space for a struct cv, and desc is a pointer

to a null-terminated character string that describes the condition variable. Condition variables are

destroyed with cv_destroy(). Threads wait on condition variables by calling cv_wait(), cv_wait_sig(),

cv_wait_unlock(), cv_timedwait(), or cv_timedwait_sig(). Threads unblock waiters by calling

cv_signal() to unblock one waiter, or cv_broadcast() or cv_broadcastpri() to unblock all waiters. In

addition to waking waiters, cv_broadcastpri() ensures that all of the waiters have a priority of at least pri

by raising the priority of any threads that do not. cv_wmesg() returns the description string of cvp, as set

by the initial call to cv_init().

The lock argument is a pointer to either a mutex(9), rwlock(9), or sx(9) lock. A mutex(9) argument

must be initialized with MTX_DEF and not MTX_SPIN. A thread must hold lock before calling

cv_wait(), cv_wait_sig(), cv_wait_unlock(), cv_timedwait(), or cv_timedwait_sig(). When a thread

waits on a condition, lock is atomically released before the thread is blocked, then reacquired before the

function call returns. In addition, the thread will fully drop the Giant mutex (even if recursed) while the

it is suspended and will reacquire the Giant mutex before the function returns. The cv_wait_unlock()

function does not reacquire the lock before returning. Note that the Giant mutex may be specified as

lock. However, Giant may not be used as lock for the cv_wait_unlock() function. All waiters must pass

the same lock in conjunction with cvp.

When cv_wait(), cv_wait_sig(), cv_wait_unlock(), cv_timedwait(), and cv_timedwait_sig() unblock,

their calling threads are made runnable. cv_timedwait() and cv_timedwait_sig() wait for at most timo /

HZ seconds before being unblocked and returning EWOULDBLOCK; otherwise, they return 0.

cv_wait_sig() and cv_timedwait_sig() return prematurely with a value of EINTR or ERESTART if a

signal is caught, or 0 if signaled via cv_signal() or cv_broadcast().

cv_timedwait_sbt() and cv_timedwait_sig_sbt() functions take sbt argument instead of timo. It allows to

specify relative or absolute unblock time with higher resolution in form of sbintime_t. The parameter pr

allows to specify wanted absolute event precision. The parameter flags allows to pass additional

callout_reset_sbt() flags.

CONDVAR(9) FreeBSD Kernel Developer’s Manual CONDVAR(9)

FreeBSD 14.2-RELEASE February 19, 2013 FreeBSD 14.2-RELEASE



RETURN VALUES
If successful, cv_wait_sig(), cv_timedwait(), and cv_timedwait_sig() return 0. Otherwise, a non-zero

error code is returned.

cv_wmesg() returns the description string that was passed to cv_init().

ERRORS
cv_wait_sig() and cv_timedwait_sig() will fail if:

[EINTR] A signal was caught and the system call should be interrupted.

[ERESTART] A signal was caught and the system call should be restarted.

cv_timedwait() and cv_timedwait_sig() will fail if:

[EWOULDBLOCK] Timeout expired.

SEE ALSO
callout(9), locking(9), mtx_pool(9), mutex(9), rwlock(9), sema(9), sleep(9), sx(9)

CONDVAR(9) FreeBSD Kernel Developer’s Manual CONDVAR(9)

FreeBSD 14.2-RELEASE February 19, 2013 FreeBSD 14.2-RELEASE


