
NAME
ddb - interactive kernel debugger

SYNOPSIS
In order to enable kernel debugging facilities include:

options KDB
options DDB

To prevent activation of the debugger on kernel panic(9):

options KDB_UNATTENDED

In order to print a stack trace of the current thread on the console for a panic:

options KDB_TRACE

To print the numerical value of symbols in addition to the symbolic representation, define:

options DDB_NUMSYM

To enable the gdb(4) backend, so that remote debugging with kgdb(1) (ports/devel/gdb) is possible,

include:

options GDB

DESCRIPTION
The ddb kernel debugger is an interactive debugger with a syntax inspired by gdb(1) (ports/devel/gdb).

If linked into the running kernel, it can be invoked locally with the ‘debug’ keymap(5) action, usually

mapped to Ctrl+Alt+Esc, or by setting the debug.kdb.enter sysctl to 1. The debugger is also invoked on

kernel panic(9) if the debug.debugger_on_panic sysctl(8) MIB variable is set non-zero, which is the

default unless the KDB_UNATTENDED option is specified. Similarly, if the

debug.debugger_on_recursive_panic variable is set to 1, then the debugger will be invoked on a

recursive kernel panic. This variable has a default value of 0, and has no effect if

debug.debugger_on_panic is already set non-zero.

The current location is called dot. The dot is displayed with a hexadecimal format at a prompt. The

commands examine and write update dot to the address of the last line examined or the last location

modified, and set next to the address of the next location to be examined or changed. Other commands

do not change dot, and set next to be the same as dot.

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

The general command syntax is: command[/modifier] [addr][,count]

A blank line repeats the previous command from the address next with count 1 and no modifiers.

Specifying addr sets dot to the address. Omitting addr uses dot. A missing count is taken to be 1 for

printing commands or infinity for stack traces. A count of -1 is equivalent to a missing count. Options

that are supplied but not supported by the given command are usually ignored.

The ddb debugger has a pager feature (like the more(1) command) for the output. If an output line

exceeds the number set in the lines variable, it displays "--More--" and waits for a response. The valid

responses for it are:

SPC one more page

RET

one more line

q abort the current command, and return to the command input mode

Finally, ddb provides a small (currently 10 items) command history, and offers simple emacs-style

command line editing capabilities. In addition to the emacs control keys, the usual ANSI arrow keys

may be used to browse through the history buffer, and move the cursor within the current line.

COMMANDS
COMMON DEBUGGER COMMANDS
help Print a short summary of the available commands and command abbreviations.

examine[/AISabcdghilmorsuxz ...] [addr][,count]

x[/AISabcdghilmorsuxz ...] [addr][,count]

Display the addressed locations according to the formats in the modifier. Multiple modifier

formats display multiple locations. If no format is specified, the last format specified for this

command is used.

The format characters are:

b look at by bytes (8 bits)

h look at by half words (16 bits)

l look at by long words (32 bits)

g look at by quad words (64 bits)

a print the location being displayed

A print the location with a line number if possible

x display in unsigned hex

z display in signed hex

o display in unsigned octal

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

d display in signed decimal

u display in unsigned decimal

r display in current radix, signed

c display low 8 bits as a character. Non-printing characters are displayed as an octal escape

code (e.g., ‘\000’).

s display the null-terminated string at the location. Non-printing characters are displayed

as octal escapes.

m display in unsigned hex with character dump at the end of each line. The location is also

displayed in hex at the beginning of each line.

i display as a disassembled instruction

I display as a disassembled instruction with possible alternate formats depending on the

machine. On i386, this selects the alternate format for the instruction decoding (16 bits in

a 32-bit code segment and vice versa).

S display a symbol name for the pointer stored at the address

xf Examine forward: execute an examine command with the last specified parameters to it except

that the next address displayed by it is used as the start address.

xb Examine backward: execute an examine command with the last specified parameters to it except

that the last start address subtracted by the size displayed by it is used as the start address.

print[/acdoruxz]

p[/acdoruxz]

Print addrs according to the modifier character (as described above for examine). Valid formats

are: a, x, z, o, d, u, r, and c. If no modifier is specified, the last one specified to it is used. The

argument addr can be a string, in which case it is printed as it is. For example:

print/x "eax = " $eax "\necx = " $ecx "\n"

will print like:

eax = xxxxxx

ecx = yyyyyy

write[/bhl] addr expr1 [expr2 ...]

w[/bhl] addr expr1 [expr2 ...]

Write the expressions specified after addr on the command line at succeeding locations starting

with addr. The write unit size can be specified in the modifier with a letter b (byte), h (half

word) or l (long word) respectively. If omitted, long word is assumed.

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

Warning: since there is no delimiter between expressions, strange things may happen. It is best

to enclose each expression in parentheses.

set $variable [=] expr

Set the named variable or register with the value of expr. Valid variable names are described

below.

break[/u] [addr][,count]

b[/u] [addr][,count]

Set a break point at addr. If count is supplied, the continue command will not stop at this break

point on the first count - 1 times that it is hit. If the break point is set, a break point number is

printed with ‘#’. This number can be used in deleting the break point or adding conditions to it.

If the u modifier is specified, this command sets a break point in user address space. Without the

u option, the address is considered to be in the kernel space, and a wrong space address is

rejected with an error message. This modifier can be used only if it is supported by machine

dependent routines.

Warning: If a user text is shadowed by a normal user space debugger, user space break points

may not work correctly. Setting a break point at the low-level code paths may also cause strange

behavior.

delete [addr]

d [addr]

delete #number

d #number

Delete the specified break point. The break point can be specified by a break point number with

‘#’, or by using the same addr specified in the original break command, or by omitting addr to

get the default address of dot.

halt Halt the system.

watch [addr][,size]

Set a watchpoint for a region. Execution stops when an attempt to modify the region occurs.

The size argument defaults to 4. If you specify a wrong space address, the request is rejected

with an error message.

Warning: Attempts to watch wired kernel memory may cause unrecoverable error in some

systems such as i386. Watchpoints on user addresses work best.

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

hwatch [addr][,size]

Set a hardware watchpoint for a region if supported by the architecture. Execution stops when an

attempt to modify the region occurs. The size argument defaults to 4.

Warning: The hardware debug facilities do not have a concept of separate address spaces like the

watch command does. Use hwatch for setting watchpoints on kernel address locations only, and

avoid its use on user mode address spaces.

dhwatch [addr][,size]

Delete specified hardware watchpoint.

kill sig pid

Send signal sig to process pid. The signal is acted on upon returning from the debugger. This

command can be used to kill a process causing resource contention in the case of a hung system.

See signal(3) for a list of signals. Note that the arguments are reversed relative to kill(2).

step[/p][,count]

s[/p][,count]

Single step count times. If the p modifier is specified, print each instruction at each step.

Otherwise, only print the last instruction.

Warning: depending on machine type, it may not be possible to single-step through some low-

level code paths or user space code. On machines with software-emulated single-stepping (e.g.,

pmax), stepping through code executed by interrupt handlers will probably do the wrong thing.

continue[/c]

c[/c] Continue execution until a breakpoint or watchpoint. If the c modifier is specified, count

instructions while executing. Some machines (e.g., pmax) also count loads and stores.

Warning: when counting, the debugger is really silently single-stepping. This means that single-

stepping on low-level code may cause strange behavior.

until[/p]

Stop at the next call or return instruction. If the p modifier is specified, print the call nesting

depth and the cumulative instruction count at each call or return. Otherwise, only print when the

matching return is hit.

next[/p]

match[/p]

Stop at the matching return instruction. If the p modifier is specified, print the call nesting depth

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

and the cumulative instruction count at each call or return. Otherwise, only print when the

matching return is hit.

trace[/u] [pid | tid][,count]

t[/u] [pid | tid][,count]

where[/u] [pid | tid][,count]

bt[/u] [pid | tid][,count]

Stack trace. The u option traces user space; if omitted, trace only traces kernel space. The

optional argument count is the number of frames to be traced. If count is omitted, all frames are

printed.

Warning: User space stack trace is valid only if the machine dependent code supports it.

search[/bhl] addr value [mask][,count]

Search memory for value. The optional count argument limits the search.

reboot[/s] [seconds]

reset[/s] [seconds]

Hard reset the system. If the optional argument seconds is given, the debugger will wait for this

long, at most a week, before rebooting. When the s modifier is given, the command will skip

running any registered shutdown handlers and attempt the most basic reset.

thread addr | tid

Switch the debugger to the thread with ID tid, if the argument is a decimal number, or address

addr, otherwise.

watchdog [exp]

Program the watchdog(4) timer to fire in 2^exp seconds. If no argument is provided, the

watchdog timer is disabled.

SPECIALIZED HELPER COMMANDS
findstack addr

Prints the address of the thread whose kernel-mode stack contains addr, if any.

show active trace
acttrace

Show a stack trace for every thread running on a CPU.

show all procs[/a]

ps[/a] Display all process information. The process information may not be shown if it is not supported

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

in the machine, or the bottom of the stack of the target process is not in the main memory at that

time. The a modifier will print command line arguments for each process.

show all trace
alltrace

Show a stack trace for every thread in the system.

show all ttys
Show all TTY’s within the system. Output is similar to pstat(8), but also includes the address of

the TTY structure.

show all vnets
Show the same output as "show vnet" does, but lists all virtualized network stacks within the

system.

show allchains
Show the same information like "show lockchain" does, but for every thread in the system.

show alllocks
Show all locks that are currently held. This command is only available if witness(4) is included

in the kernel.

show allpcpu
The same as "show pcpu", but for every CPU present in the system.

show allrman
Show information related with resource management, including interrupt request lines, DMA

request lines, I/O ports, I/O memory addresses, and Resource IDs.

show apic
Dump data about APIC IDT vector mappings.

show badstacks
Walk the witness(4) graph and print any lock-order violations. This command is only available

if witness(4) is included in the kernel.

show breaks
Show breakpoints set with the "break" command.

show bio addr

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

Show information about the bio structure struct bio present at addr. See the sys/bio.h header file

and g_bio(9) for more details on the exact meaning of the structure fields.

show buffer addr

Show information about the buf structure struct buf present at addr. See the sys/buf.h header file

for more details on the exact meaning of the structure fields.

show callout addr

Show information about the callout structure struct callout present at addr.

show cdev [addr]

Show the internal devfs state of the cdev structure located at addr. If no argument is provided,

show the list of all created cdevs, consisting of the devfs node name and the struct cdev address.

show conifhk
Lists hooks currently waiting for completion in run_interrupt_driven_config_hooks().

show cpusets
Print numbered root and assigned CPU affinity sets. See cpuset(2) for more details.

show cyrixreg
Show registers specific to the Cyrix processor.

show devmap
Prints the contents of the static device mapping table. Currently only available on the ARM

architecture.

show domain addr

Print protocol domain structure struct domain at address addr. See the sys/domain.h header file

for more details on the exact meaning of the structure fields.

show ffs [addr]

Show brief information about ffs mount at the address addr, if argument is given. Otherwise,

provides the summary about each ffs mount.

show file addr

Show information about the file structure struct file present at address addr.

show files
Show information about every file structure in the system.

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

show freepages
Show the number of physical pages in each of the free lists.

show geom [addr]

If the addr argument is not given, displays the entire GEOM topology. If addr is given, displays

details about the given GEOM object (class, geom, provider or consumer).

show idt
Show IDT layout. The first column specifies the IDT vector. The second one is the name of the

interrupt/trap handler. Those functions are machine dependent.

show igi_list addr

Show information about the IGMP structure struct igmp_ifsoftc present at addr.

show iosched addr

Show information about the I/O scheduler struct cam_iosched_softc located at addr.

show inodedeps [addr]

Show brief information about each inodedep structure. If addr is given, only inodedeps

belonging to the fs located at the supplied address are shown.

show inpcb addr

Show information on IP Control Block struct in_pcb present at addr.

show intr
Dump information about interrupt handlers.

show intrcnt
Dump the interrupt statistics.

show irqs
Show interrupt lines and their respective kernel threads.

show ktr[/avV]

Print the contents of the ktr(4) trace buffer. The v modifier will request fully verbose output,

causing the file, line number, and timestamp to be printed for each trace entry. The V modifier

will request only the timestamps to be printed. The a modifier will request that the output be

unpaginated.

show lapic

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

Show information from the local APIC registers for this CPU.

show lock addr

Show lock structure. The output format is as follows:

class:

Class of the lock. Possible types include mutex(9), rmlock(9), rwlock(9), sx(9).

name:

Name of the lock.

flags:

Flags passed to the lock initialization function. flags values are lock class specific.

state:

Current state of a lock. state values are lock class specific.

owner:

Lock owner.

show lockchain addr

Show all threads a particular thread at address addr is waiting on based on non-spin locks.

show lockedbufs
Show the same information as "show buf", but for every locked struct buf object.

show lockedvnods
List all locked vnodes in the system.

show locks
Prints all locks that are currently acquired. This command is only available if witness(4) is

included in the kernel.

show locktree

show malloc[/i]
Prints malloc(9) memory allocator statistics. If the i modifier is specified, format output as

machine-parseable comma-separated values ("CSV"). The output columns are as follows:

Type Specifies a type of memory. It is the same as a description string used while

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

defining the given memory type with MALLOC_DECLARE(9).

InUse Number of memory allocations of the given type, for which free(9) has not been

called yet.

MemUse
Total memory consumed by the given allocation type.

Requests Number of memory allocation requests for the given memory type.

The same information can be gathered in userspace with "vmstat -m".

show map[/f] addr

Prints the VM map at addr. If the f modifier is specified the complete map is printed.

show msgbuf
Print the system’s message buffer. It is the same output as in the "dmesg" case. It is useful if

you got a kernel panic, attached a serial cable to the machine and want to get the boot messages

from before the system hang.

show mount [addr]

Displays details about the mount point located at addr. If no addr is specified, displays short info

about all currently mounted file systems.

show object[/f] addr

Prints the VM object at addr. If the f option is specified the complete object is printed.

show panic
Print the panic message if set.

show page
Show statistics on VM pages.

show pageq
Show statistics on VM page queues.

show pciregs
Print PCI bus registers. The same information can be gathered in userspace by running "pciconf
-lv".

show pcpu
Print current processor state. The output format is as follows:

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

cpuid Processor identifier.

curthread Thread pointer, process identifier and the name of the process.

curpcb Control block pointer.

fpcurthread FPU thread pointer.

idlethread Idle thread pointer.

APIC ID CPU identifier coming from APIC.

currentldt LDT pointer.

spin locks held Names of spin locks held.

show pgrpdump
Dump process groups present within the system.

show prison [addr]

Show the prison structure located at addr. If no addr argument is specified, show information

about all prisons in the system.

show proc [addr]

Show information about the process structure located at address addr, or the current process if no

argument is specified.

show procvm [addr]

Show process virtual memory layout for the process located at addr, or the current process if no

argument is specified.

show protosw addr

Print protocol switch structure struct protosw at address addr.

show registers[/u]

Display the register set. If the u modifier is specified, the register contents of the thread’s

previous trapframe are displayed instead. Usually, this corresponds to the saved state from

userspace.

show rman addr

Show resource manager object struct rman at address addr. Addresses of particular pointers can

be gathered with "show allrman" command.

show route addr

Show route table result for destination addr. At this time, INET and INET6 formatted addresses

are supported.

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

show routetable [af]

Show full route table or tables. If af is specified, show only routes for the given numeric address

family. If no argument is specified, dump the route table for all address families.

show rtc
Show real time clock value. Useful for long debugging sessions.

show sleepchain
Deprecated. Now an alias for show lockchain.

show sleepq addr

show sleepqueue addr

Show the sleepqueue(9) structure located at addr.

show sockbuf addr

Show the socket buffer struct sockbuf located at addr.

show socket addr

Show the socket object struct socket located at addr.

show sysregs
Show system registers (e.g., cr0-4 on i386.) Not present on some platforms.

show tcpcb addr

Print TCP control block struct tcpcb lying at address addr. For exact interpretation of output,

visit netinet/tcp.h header file.

show thread [addr | tid]

If no addr or tid is specified, show detailed information about current thread. Otherwise, print

information about the thread with ID tid or kernel address addr. (If the argument is a decimal

number, it is assumed to be a tid.)

show threads
Show all threads within the system. Output format is as follows:

First column Thread identifier (TID)

Second column Thread structure address

Third column Backtrace.

show tty addr

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

Display the contents of a TTY structure in a readable form.

show turnstile addr

Show turnstile struct turnstile structure at address addr. Turnstiles are structures used within the

FreeBSD kernel to implement synchronization primitives which, while holding a specific type of

lock, cannot sleep or context switch to another thread. Currently, those are: mutex(9), rwlock(9),

rmlock(9).

show uma[/i]
Show UMA allocator statistics. If the i modifier is specified, format output as machine-parseable

comma-separated values ("CSV"). The output contains the following columns:

Zone Name of the UMA zone. The same string that was passed to uma_zcreate(9)

as a first argument.

Size Size of a given memory object (slab).

Used Number of slabs being currently used.

Free Number of free slabs within the UMA zone.

Requests Number of allocations requests to the given zone.

Total Mem Total memory in use (either allocated or free) by a zone, in bytes.

XFree Number of free slabs within the UMA zone that were freed on a different

NUMA domain than allocated. (The count in the Free column is inclusive of

XFree.)

The same information might be gathered in the userspace with the help of "vmstat -z".

show unpcb addr

Shows UNIX domain socket private control block struct unpcb present at the address addr.

show vmochk
Prints, whether the internal VM objects are in a map somewhere and none have zero ref counts.

show vmopag
Walk the list of VM objects in the system, printing the indices and physical addresses of the VM

pages belonging to each object.

show vnet addr

Prints virtualized network stack struct vnet structure present at the address addr.

show vnode addr

Prints vnode struct vnode structure lying at addr. For the exact interpretation of the output, look

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

at the sys/vnode.h header file.

show vnodebufs addr

Shows clean/dirty buffer lists of the vnode located at addr.

show vpath addr

Walk the namecache to lookup the pathname of the vnode located at addr.

show watches
Displays all watchpoints. Shows watchpoints set with "watch" command.

show witness
Shows information about lock acquisition coming from the witness(4) subsystem.

OFFLINE DEBUGGING COMMANDS
dump Initiate a kernel core dump to the device(s) configured by dumpon(8).

gdb Switches to remote GDB mode. In remote GDB mode, another machine is required that runs

gdb(1) (ports/devel/gdb) using the remote debug feature, with a connection to the serial console

port on the target machine.

netdump -s server [-g gateway -c client -i iface]

Configure netdump(4) with the provided parameters, and immediately perform a netdump.

There are some known limitations. Principally, netdump(4) only supports IPv4 at this time. The

address arguments to the netdump command must be dotted decimal IPv4 addresses.

(Hostnames are not supported.) At present, the command only works if the machine is in a panic

state. Finally, the ddb netdump command does not provide any way to configure compression or

encryption.

netgdb -s server [-g gateway -c client -i iface]

Initiate a netgdb(4) session with the provided parameters.

netgdb has identical limitations to netdump.

capture on
capture off
capture reset
capture status

ddb supports a basic output capture facility, which can be used to retrieve the results of

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

debugging commands from userspace using sysctl(3). capture on enables output capture; capture
off disables capture. capture reset will clear the capture buffer and disable capture. capture
status will report current buffer use, buffer size, and disposition of output capture.

Userspace processes may inspect and manage ddb capture state using sysctl(8):

debug.ddb.capture.bufsize may be used to query or set the current capture buffer size.

debug.ddb.capture.maxbufsize may be used to query the compile-time limit on the capture buffer

size.

debug.ddb.capture.bytes may be used to query the number of bytes of output currently in the

capture buffer.

debug.ddb.capture.data returns the contents of the buffer as a string to an appropriately

privileged process.

This facility is particularly useful in concert with the scripting and textdump(4) facilities,

allowing scripted debugging output to be captured and committed to disk as part of a textdump

for later analysis. The contents of the capture buffer may also be inspected in a kernel core dump

using kgdb(1) (ports/devel/gdb).

run
script
scripts
unscript

Run, define, list, and delete scripts. See the SCRIPTING section for more information on the

scripting facility.

textdump dump
textdump set
textdump status
textdump unset

Use the textdump dump command to immediately perform a textdump. More information may

be found in textdump(4). The textdump set command may be used to force the next kernel core

dump to be a textdump rather than a traditional memory dump or minidump. textdump status
reports whether a textdump has been scheduled. textdump unset cancels a request to perform a

textdump as the next kernel core dump.

VARIABLES

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

The debugger accesses registers and variables as $name. Register names are as in the "show registers"

command. Some variables are suffixed with numbers, and may have some modifier following a colon

immediately after the variable name. For example, register variables can have a u modifier to indicate

user register (e.g., "$eax:u").

Built-in variables currently supported are:

radix Input and output radix.

maxoff Addresses are printed as "symbol+offset" unless offset is greater than maxoff.

maxwidth

The width of the displayed line.

lines The number of lines. It is used by the built-in pager. Setting it to 0 disables paging.

tabstops Tab stop width.

workxx Work variable; xx can take values from 0 to 31.

EXPRESSIONS
Most expression operators in C are supported except ‘~’, ‘^’, and unary ‘&’. Special rules in ddb are:

Identifiers The name of a symbol is translated to the value of the symbol, which is the address of the

corresponding object. ‘.’ and ‘:’ can be used in the identifier. If supported by an object

format dependent routine, [filename:]func:lineno, [filename:]variable, and [filename:]lineno

can be accepted as a symbol.

Numbers Radix is determined by the first two letters: ‘0x’: hex, ‘0o’: octal, ‘0t’: decimal; otherwise,

follow current radix.

. dot

+ next

.. address of the start of the last line examined. Unlike dot or next, this is only changed by

examine or write command.

’ last address explicitly specified.

$variable Translated to the value of the specified variable. It may be followed by a ‘:’ and modifiers as

described above.

a#b A binary operator which rounds up the left hand side to the next multiple of right hand side.

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

*expr Indirection. It may be followed by a ‘:’ and modifiers as described above.

SCRIPTING
ddb supports a basic scripting facility to allow automating tasks or responses to specific events. Each

script consists of a list of DDB commands to be executed sequentially, and is assigned a unique name.

Certain script names have special meaning, and will be automatically run on various ddb events if scripts

by those names have been defined.

The script command may be used to define a script by name. Scripts consist of a series of ddb
commands separated with the ‘;’ character. For example:

script kdb.enter.panic=bt; show pcpu

script lockinfo=show alllocks; show lockedvnods

The scripts command lists currently defined scripts.

The run command execute a script by name. For example:

run lockinfo

The unscript command may be used to delete a script by name. For example:

unscript kdb.enter.panic

These functions may also be performed from userspace using the ddb(8) command.

Certain scripts are run automatically, if defined, for specific ddb events. The follow scripts are run when

various events occur:

kdb.enter.acpi The kernel debugger was entered as a result of an acpi(4) event.

kdb.enter.bootflags The kernel debugger was entered at boot as a result of the debugger boot flag being

set.

kdb.enter.break The kernel debugger was entered as a result of a serial or console break.

kdb.enter.cam The kernel debugger was entered as a result of a CAM(4) event.

kdb.enter.mac The kernel debugger was entered as a result of an assertion failure in the

mac_test(4) module of the TrustedBSD MAC Framework.

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

kdb.enter.netgraph The kernel debugger was entered as a result of a netgraph(4) event.

kdb.enter.panic panic(9) was called.

kdb.enter.powerpc The kernel debugger was entered as a result of an unimplemented interrupt type on

the powerpc platform.

kdb.enter.sysctl The kernel debugger was entered as a result of the debug.kdb.enter sysctl being set.

kdb.enter.unionfs The kernel debugger was entered as a result of an assertion failure in the union file

system.

kdb.enter.unknown The kernel debugger was entered, but no reason has been set.

kdb.enter.vfslock The kernel debugger was entered as a result of a VFS lock violation.

kdb.enter.watchdog

The kernel debugger was entered as a result of a watchdog firing.

kdb.enter.witness The kernel debugger was entered as a result of a witness(4) violation.

In the event that none of these scripts is found, ddb will attempt to execute a default script:

kdb.enter.default The kernel debugger was entered, but a script exactly matching the reason for

entering was not defined. This can be used as a catch-all to handle cases not

specifically of interest; for example, kdb.enter.witness might be defined to have

special handling, and kdb.enter.default might be defined to simply panic and reboot.

HINTS
On machines with an ISA expansion bus, a simple NMI generation card can be constructed by

connecting a push button between the A01 and B01 (CHCHK# and GND) card fingers. Momentarily

shorting these two fingers together may cause the bridge chipset to generate an NMI, which causes the

kernel to pass control to ddb. Some bridge chipsets do not generate a NMI on CHCHK#, so your

mileage may vary. The NMI allows one to break into the debugger on a wedged machine to diagnose

problems. Other bus’ bridge chipsets may be able to generate NMI using bus specific methods. There

are many PCI and PCIe add-in cards which can generate NMI for debugging. Modern server systems

typically use IPMI to generate signals to enter the debugger. The devel/ipmitool port can be used to

send the chassis power diag command which delivers an NMI to the processor. Embedded systems

often use JTAG for debugging, but rarely use it in combination with ddb.

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

Serial consoles can break to the debugger by sending a BREAK condition on the serial line. This

requires a kernel built with options BREAK_TO_DEBUGGER is specified in the kernel. Most terminal

emulation programs can send a break sequence with a special key sequence or menu selection. Sending

the break can be difficult or even happen spuriously in some setups. An alternative method is to build a

kernel with options ALT_BREAK_TO_DEBUGGER then the sequence of CR TILDE CTRL-B enters

the debugger; CR TILDE CTRL-P causes a panic; and CR TILDE CTRL-R causes an immediate reboot.

In all these sequences, CR represents Carriage Return and is usually sent by pressing the Enter or Return

key. TILDE is the ASCII tilde character (~). CTRL-x is Control x, sent by pressing the Control key,

then x, then releasing both.

The break-to-debugger behavior can be enabled by setting sysctl(8) debug.kdb.break_to_debugger to 1.

The alt-break-to-debugger behavior can be enabled by setting sysctl(8)

debug.kdb.alt_break_to_debugger to 1. The debugger can be entered by setting sysctl(8)

debug.kdb.enter to 1.

Output can be interrupted, paused, and resumed with the control characters CTRL-C, CTRL-S, and

CTRL-Q. Because these control characters are received as in-band data from the console, there is an

input buffer, and once that buffer fills ddb must either stop responding to control characters or drop

additional input while continuing to search for control characters. This behavior is controlled by the

tunable sysctl(8) debug.ddb.prioritize_control_input, which defaults to 1. The input buffer size is 512

bytes.

FILES
Header files mentioned in this manual page can be found below /usr/include directory.

- sys/buf.h

- sys/domain.h

- netinet/in_pcb.h

- sys/socket.h

- sys/vnode.h

SEE ALSO
gdb(1) (ports/devel/gdb), kgdb(1) (ports/devel/gdb), acpi(4), CAM(4), gdb(4), mac_ddb(4), mac_test(4),

netgraph(4), textdump(4), witness(4), ddb(8), sysctl(8), panic(9)

HISTORY
The ddb debugger was developed for Mach, and ported to 386BSD-0.1. This manual page translated

from man(7) macros by Garrett Wollman.

Robert N. M. Watson added support for ddb output capture, textdump(4) and scripting in FreeBSD 7.1.

DDB(4) FreeBSD Kernel Interfaces Manual DDB(4)

FreeBSD 14.2-RELEASE November 10, 2022 FreeBSD 14.2-RELEASE

