
NAME
devctl, devctl_attach, devctl_clear_driver, devctl_delete, devctl_detach, devctl_disable, devctl_enable,

devctl_freeze, devctl_getpath, devctl_rescan, devctl_reset, devctl_resume, devctl_set_driver,

devctl_suspend, devctl_thaw - device control library

LIBRARY
Device Control Library (libdevctl, -ldevctl)

SYNOPSIS
#include <devctl.h>

int

devctl_attach(const char *device);

int

devctl_clear_driver(const char *device, bool force);

int

devctl_delete(const char *device, bool force);

int

devctl_detach(const char *device, bool force);

int

devctl_disable(const char *device, bool force_detach);

int

devctl_enable(const char *device);

int

devctl_freeze(void);

int

devctl_getpath(const char *device, const char *locator, char **buffer);

int

devctl_rescan(const char *device);

int

devctl_reset(const char *device, bool detach);

DEVCTL(3) FreeBSD Library Functions Manual DEVCTL(3)

FreeBSD 14.0-RELEASE-p11 April 4, 2019 FreeBSD 14.0-RELEASE-p11



int

devctl_resume(const char *device);

int

devctl_set_driver(const char *device, const char *driver, bool force);

int

devctl_suspend(const char *device);

int

devctl_thaw(void);

DESCRIPTION
The devctl library adjusts the state of devices in the kernel’s internal device hierarchy. Each control

operation accepts a device argument that identifies the device to adjust. The device may be specified as

either the name of an existing device or as a bus-specific address. The following bus-specific address

formats are currently supported:

pcidomain:bus:slot:function

A PCI device with the specified domain, bus, slot, and function.

pcibus:slot:function

A PCI device in domain zero with the specified bus, slot, and function.

handle

A device with an ACPI handle of handle. The handle must be specified as an absolute path

and must begin with a "\".

The devctl_attach() function probes a device and attaches a suitable device driver if one is found.

The devctl_detach() function detaches a device from its current device driver. The device is left

detached until either a new driver for its parent bus is loaded or the device is explicitly probed via

devctl_attach(). If force is true, the current device driver will be detached even if the device is busy.

The devctl_delete() function deletes a device from the device tree. No If force is true, the device is

deleted even if the device is physically present.

The devctl_disable() function disables a device. If the device is currently attached to a device driver, the

device driver will be detached from the device, but the device will retain its current name. If

force_detach is true, the current device driver will be detached even if the device is busy. The device

DEVCTL(3) FreeBSD Library Functions Manual DEVCTL(3)

FreeBSD 14.0-RELEASE-p11 April 4, 2019 FreeBSD 14.0-RELEASE-p11



will remain disabled and detached until it is explicitly enabled via devctl_enable().

The devctl_enable() function re-enables a disabled device. The device will probe and attach if a suitable

device driver is found.

The devctl_suspend() function suspends a device. This may include placing the device in a reduced

power state, but any device driver currently attached to the device will remain attached.

The devctl_resume() function resumes a suspended device to a fully working state.

The devctl_set_driver() function attaches a device driver named driver to a device. If the device is

already attached and force is false, the request will fail. If the device is already attached and force is

true, the device will be detached from its current device driver before it is attached to the new device

driver.

The devctl_clear_driver() function resets a device so that it can be attached to any valid device driver

rather than only drivers with a previously specified name. This function is used to undo a previous call

to devctl_set_driver(). If the device is already attached and force is false, the request will fail. If the

device is already attached and force is true, the device will be detached from its current device driver.

After the device’s name is reset, it is reprobed and attached to a suitable device driver if one is found.

The devctl_rescan() function rescans a bus device checking for devices that have been added or

removed.

The devctl_getpath() retrieves the path to the device from the kernel using the locator method to

construct the path. The buffer pointer is updated with an allocated buffer that must be freed with free.

The devctl_freeze() function freezes probe and attach processing initiated in response to drivers being

loaded.

The devctl_thaw() function resumes (thaws the freeze) probe and attach processing initiated in response

to drivers being loaded.

The devctl_reset() function resets the specified device using bus-specific reset method. The detach

argument, if true, specifies that the device driver is detached before the reset, and re-attached afterwards.

If false, the device is suspended before the reset, and resumed after.

RETURN VALUES
The devctl_attach(), devctl_clear_driver(), devctl_delete(), devctl_detach(), devctl_disable(),

devctl_enable(), devctl_suspend(), devctl_rescan(), devctl_resume(), and devctl_set_driver() functions

DEVCTL(3) FreeBSD Library Functions Manual DEVCTL(3)

FreeBSD 14.0-RELEASE-p11 April 4, 2019 FreeBSD 14.0-RELEASE-p11



return the value 0 if successful; otherwise the value -1 is returned and the global variable errno is set to

indicate the error.

ERRORS
In addition to specific errors noted below, all of the devctl functions may fail for any of the errors

described in open(2) as well as:

[EINVAL] The device name is too long.

[ENOENT] No existing device matches the specified name or location.

[EPERM] The current process is not permitted to adjust the state of device.

The devctl_attach() function may fail if:

[EBUSY] The device is already attached.

[ENOMEM] An internal memory allocation request failed.

[ENXIO] The device is disabled.

[ENXIO] No suitable driver for the device could be found, or the driver failed to attach.

The devctl_detach() function may fail if:

[EBUSY] The current device driver for device is busy and cannot detach at this time. Note

that some drivers may return this even if force is true.

[ENXIO] The device is not attached to a driver.

[ENXIO] The current device driver for device does not support detaching.

The devctl_enable() function may fail if:

[EBUSY] The device is already enabled.

[ENOMEM] An internal memory allocation request failed.

[ENXIO] No suitable driver for the device could be found, or the driver failed to attach.

DEVCTL(3) FreeBSD Library Functions Manual DEVCTL(3)

FreeBSD 14.0-RELEASE-p11 April 4, 2019 FreeBSD 14.0-RELEASE-p11



The devctl_disable() function may fail if:

[EBUSY] The current device driver for device is busy and cannot detach at this time. Note

that some drivers may return this even if force_detach is true.

[ENXIO] The device is already disabled.

[ENXIO] The current device driver for device does not support detaching.

The devctl_suspend() function may fail if:

[EBUSY] The device is already suspended.

[EINVAL] The device to be suspended is the root bus device.

The devctl_resume() function may fail if:

[EINVAL] The device is not suspended.

[EINVAL] The device to be resumed is the root bus device.

The devctl_set_driver() function may fail if:

[EBUSY] The device is currently attached to a device driver and force is false.

[EBUSY] The current device driver for device is busy and cannot detach at this time.

[EFAULT] The driver argument points outside the process’ allocated address space.

[ENOENT] No device driver with the requested name exists.

[ENOMEM] An internal memory allocation request failed.

[ENXIO] The device is disabled.

[ENXIO] The new device driver failed to attach.

The devctl_clear_driver() function may fail if:

[EBUSY] The device is currently attached to a device driver and force is false.

DEVCTL(3) FreeBSD Library Functions Manual DEVCTL(3)

FreeBSD 14.0-RELEASE-p11 April 4, 2019 FreeBSD 14.0-RELEASE-p11



[EBUSY] The current device driver for device is busy and cannot detach at this time.

[EINVAL] The device is not configured for a specific device driver name.

[ENXIO] The device driver chosen after reprobing failed to attach.

The devctl_rescan() function may fail if:

[ENXIO] The device is not attached to a driver.

[ENXIO] The bus driver does not support rescanning.

The devctl_delete() function may fail if:

[EBUSY] The device is physically present and force is false.

[EINVAL] dev is the root device of the device tree.

The devctl_reset() function may fail if:

[ENXIO] The bus does not implement the reset method.

[ETIMEDOUT] The device failed to respond after the reset in the time limits specific to the bus.

The devctl_reset() function may also return errors caused by the attach, detach, suspend, and resume

methods of the device driver.

SEE ALSO
devinfo(3), devstat(3), devctl(8)

HISTORY
The devctl library first appeared in FreeBSD 10.3.

BUGS
If a device is suspended individually via devctl_suspend() and the entire machine is subsequently

suspended, the device will be resumed when the machine resumes.

Similarly, if the device is suspended, and devctl_reset() is called on the device with detach set to false,

the device is resumed by the devctl_reset() call. Or, if the driver for the device is detached manually,

and devctl_reset() is called on the device with detach set to true, device reset re-attaches the driver.

DEVCTL(3) FreeBSD Library Functions Manual DEVCTL(3)

FreeBSD 14.0-RELEASE-p11 April 4, 2019 FreeBSD 14.0-RELEASE-p11


