
NAME
devstat, devstat_getnumdevs, devstat_getgeneration, devstat_getversion, devstat_checkversion,

devstat_getdevs, devstat_selectdevs, devstat_buildmatch, devstat_compute_statistics,

devstat_compute_etime - device statistics utility library

LIBRARY
Device Statistics Library (libdevstat, -ldevstat)

SYNOPSIS
#include <devstat.h>

int

devstat_getnumdevs(kvm_t *kd);

long

devstat_getgeneration(kvm_t *kd);

int

devstat_getversion(kvm_t *kd);

int

devstat_checkversion(kvm_t *kd);

int

devstat_getdevs(kvm_t *kd, struct statinfo *stats);

int

devstat_selectdevs(struct device_selection **dev_select, int *num_selected, int *num_selections,

long *select_generation, long current_generation, struct devstat *devices, int numdevs,

struct devstat_match *matches, int num_matches, char **dev_selections, int num_dev_selections,

devstat_select_mode select_mode, int maxshowdevs, int perf_select);

int

devstat_buildmatch(char *match_str, struct devstat_match **matches, int *num_matches);

int

devstat_compute_statistics(struct devstat *current, struct devstat *previous, long double etime, ...);

long double

devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time);

DEVSTAT(3) FreeBSD Library Functions Manual DEVSTAT(3)

FreeBSD 14.0-RELEASE-p6 December 15, 2012 FreeBSD 14.0-RELEASE-p6

DESCRIPTION
The devstat library is a library of helper functions for dealing with the kernel devstat(9) interface, which

is accessible to users via sysctl(3) and kvm(3). All functions that take a kvm_t * as first argument can

be passed NULL instead of a kvm handle as this argument, which causes the data to be read via

sysctl(3). Otherwise, it is read via kvm(3) using the supplied handle. The devstat_checkversion()

function should be called with each kvm handle that is going to be used (or with NULL if sysctl(3) is

going to be used).

The devstat_getnumdevs() function returns the number of devices registered with the devstat subsystem

in the kernel.

The devstat_getgeneration() function returns the current generation of the devstat list of devices in the

kernel.

The devstat_getversion() function returns the current kernel devstat version.

The devstat_checkversion() function checks the userland devstat version against the kernel devstat
version. If the two are identical, it returns zero. Otherwise, it prints an appropriate error in

devstat_errbuf and returns -1.

The devstat_getdevs() function fetches the current list of devices and statistics into the supplied statinfo

structure. The statinfo structure can be found in <devstat.h>:

struct statinfo {

long cp_time[CPUSTATES];

long tk_nin;

long tk_nout;

struct devinfo *dinfo;

long double snap_time;

};

The devstat_getdevs() function expects the statinfo structure to be allocated, and it also expects the dinfo

subelement to be allocated and zeroed prior to the first invocation of devstat_getdevs(). The dinfo

subelement is used to store state between calls, and should not be modified after the first call to

devstat_getdevs(). The dinfo subelement contains the following elements:

struct devinfo {

struct devstat *devices;

uint8_t *mem_ptr;

long generation;

DEVSTAT(3) FreeBSD Library Functions Manual DEVSTAT(3)

FreeBSD 14.0-RELEASE-p6 December 15, 2012 FreeBSD 14.0-RELEASE-p6

int numdevs;

};

The kern.devstat.all sysctl(8) variable contains an array of devstat structures, but at the head of the array

is the current devstat generation. The reason the generation is at the head of the buffer is so that

userland software accessing the devstat statistics information can atomically get both the statistics

information and the corresponding generation number. If client software were forced to get the

generation number via a separate sysctl(8) variable (which is available for convenience), the list of

devices could change between the time the client gets the generation and the time the client gets the

device list.

The mem_ptr subelement of the devinfo structure is a pointer to memory that is allocated, and resized if

necessary, by devstat_getdevs(). The devices subelement of the devinfo structure is basically a pointer

to the beginning of the array of devstat structures from the kern.devstat.all sysctl(8) variable (or the

corresponding values read via kvm(3)). The generation subelement of the devinfo structure contains the

corresponding generation number. The numdevs subelement of the devinfo structure contains the

current number of devices registered with the kernel devstat subsystem.

The devstat_selectdevs() function selects devices to display based upon a number of criteria:

specified devices

Specified devices are the first selection priority. These are generally devices specified by name

by the user e.g. da0, da1, cd0.

match patterns

These are pattern matching expressions generated by devstat_buildmatch() from user input.

performance

If performance mode is enabled, devices will be sorted based on the bytes field in the

device_selection structure passed in to devstat_selectdevs(). The bytes value currently must be

maintained by the user. In the future, this may be done for him in a devstat library routine. If no

devices have been selected by name or by pattern, the performance tracking code will select

every device in the system, and sort them by performance. If devices have been selected by

name or pattern, the performance tracking code will honor those selections and will only sort

among the selected devices.

order in the devstat list

If the selection mode is set to DS_SELECT_ADD, and if there are still less than maxshowdevs

devices selected, devstat_selectdevs() will automatically select up to maxshowdevs devices.

DEVSTAT(3) FreeBSD Library Functions Manual DEVSTAT(3)

FreeBSD 14.0-RELEASE-p6 December 15, 2012 FreeBSD 14.0-RELEASE-p6

The devstat_selectdevs() function performs selections in four different modes:

DS_SELECT_ADD In "add" mode, devstat_selectdevs() will select any unselected devices

specified by name or matching pattern. It will also select more devices, in

devstat list order, until the number of selected devices is equal to

maxshowdevs or until all devices are selected.

DS_SELECT_ONLY In "only" mode, devstat_selectdevs() will clear all current selections, and

will only select devices specified by name or by matching pattern.

DS_SELECT_REMOVE In "remove" mode, devstat_selectdevs() will remove devices specified by

name or by matching pattern. It will not select any additional devices.

DS_SELECT_ADDONLY In "add only" mode, devstat_selectdevs() will select any unselected devices

specified by name or matching pattern. In this respect it is identical to

"add" mode. It will not, however, select any devices other than those

specified.

In all selection modes, devstat_selectdevs() will not select any more than maxshowdevs devices. One

exception to this is when you are in "top" mode and no devices have been selected. In this case,

devstat_selectdevs() will select every device in the system. Client programs must pay attention to

selection order when deciding whether to pay attention to a particular device. This may be the wrong

behavior, and probably requires additional thought.

The devstat_selectdevs() function handles allocation and resizing of the dev_select structure passed in

by the client. The devstat_selectdevs() function uses the numdevs and current_generation fields to track

the current devstat generation and number of devices. If num_selections is not the same as numdevs or

if select_generation is not the same as current_generation, devstat_selectdevs() will resize the selection

list as necessary, and re-initialize the selection array.

The devstat_buildmatch() function takes a comma separated match string and compiles it into a

devstat_match structure that is understood by devstat_selectdevs(). Match strings have the following

format:

device,type,if

The devstat_buildmatch() function takes care of allocating and reallocating the match list as necessary.

Currently known match types include:

device type:

DEVSTAT(3) FreeBSD Library Functions Manual DEVSTAT(3)

FreeBSD 14.0-RELEASE-p6 December 15, 2012 FreeBSD 14.0-RELEASE-p6

da Direct Access devices

sa Sequential Access devices

printer Printers

proc Processor devices

worm Write Once Read Multiple devices

cd CD devices

scanner Scanner devices

optical Optical Memory devices

changer Medium Changer devices

comm Communication devices

array Storage Array devices

enclosure Enclosure Services devices

floppy Floppy devices

interface:

IDE Integrated Drive Electronics devices

SCSI Small Computer System Interface devices

other Any other device interface

passthrough:

pass Passthrough devices

The devstat_compute_statistics() function provides complete statistics calculation. There are four

arguments for which values must be supplied: current, previous, etime, and the terminating argument for

the varargs list, DSM_NONE. For most applications, the user will want to supply valid devstat

structures for both current and previous. In some instances, for instance when calculating statistics since

system boot, the user may pass in a NULL pointer for the previous argument. In that case,

devstat_compute_statistics() will use the total stats in the current structure to calculate statistics over

etime. For each statistics to be calculated, the user should supply the proper enumerated type (listed

below), and a variable of the indicated type. All statistics are either integer values, for which a uint64_t

is used, or floating point, for which a long double is used. The statistics that may be calculated are:

DSM_NONE type: N/A

This must be the last argument passed to

devstat_compute_statistics(). It is an argument list

terminator.

DSM_TOTAL_BYTES type: uint64_t *

DEVSTAT(3) FreeBSD Library Functions Manual DEVSTAT(3)

FreeBSD 14.0-RELEASE-p6 December 15, 2012 FreeBSD 14.0-RELEASE-p6

The total number of bytes transferred between the

acquisition of previous and current.

DSM_TOTAL_BYTES_READ

DSM_TOTAL_BYTES_WRITE

DSM_TOTAL_BYTES_FREE type: uint64_t *

The total number of bytes in transactions of the

specified type between the acquisition of previous and

current.

DSM_TOTAL_TRANSFERS type: uint64_t *

The total number of transfers between the acquisition of

previous and current.

DSM_TOTAL_TRANSFERS_OTHER

DSM_TOTAL_TRANSFERS_READ

DSM_TOTAL_TRANSFERS_WRITE

DSM_TOTAL_TRANSFERS_FREE type: uint64_t *

The total number of transactions of the specified type

between the acquisition of previous and current.

DSM_TOTAL_DURATION type: long double *

The total duration of transactions, in seconds, between

the acquisition of previous and current.

DSM_TOTAL_DURATION_OTHER

DSM_TOTAL_DURATION_READ

DSM_TOTAL_DURATION_WRITE

DEVSTAT(3) FreeBSD Library Functions Manual DEVSTAT(3)

FreeBSD 14.0-RELEASE-p6 December 15, 2012 FreeBSD 14.0-RELEASE-p6

DSM_TOTAL_DURATION_FREE type: long double *

The total duration of transactions of the specified type

between the acquisition of previous and current.

DSM_TOTAL_BUSY_TIME type: long double *

Total time the device had one or more transactions

outstanding between the acquisition of previous and

current.

DSM_TOTAL_BLOCKS type: uint64_t *

The total number of blocks transferred between the

acquisition of previous and current. This number is in

terms of the blocksize reported by the device. If no

blocksize has been reported (i.e., the block size is 0), a

default blocksize of 512 bytes will be used in the

calculation.

DSM_TOTAL_BLOCKS_READ

DSM_TOTAL_BLOCKS_WRITE

DSM_TOTAL_BLOCKS_FREE type: uint64_t *

The total number of blocks of the specified type

between the acquisition of previous and current. This

number is in terms of the blocksize reported by the

device. If no blocksize has been reported (i.e., the

block size is 0), a default blocksize of 512 bytes will be

used in the calculation.

DSM_KB_PER_TRANSFER type: long double *

The average number of kilobytes per transfer between

the acquisition of previous and current.

DSM_KB_PER_TRANSFER_READ

DEVSTAT(3) FreeBSD Library Functions Manual DEVSTAT(3)

FreeBSD 14.0-RELEASE-p6 December 15, 2012 FreeBSD 14.0-RELEASE-p6

DSM_KB_PER_TRANSFER_WRITE

DSM_KB_PER_TRANSFER_FREE type: long double *

The average number of kilobytes in the specified type

transaction between the acquisition of previous and

current.

DSM_TRANSFERS_PER_SECOND type: long double *

The average number of transfers per second between

the acquisition of previous and current.

DSM_TRANSFERS_PER_SECOND_OTHER

DSM_TRANSFERS_PER_SECOND_READ

DSM_TRANSFERS_PER_SECOND_WRITE

DSM_TRANSFERS_PER_SECOND_FREE type: long double *

The average number of transactions of the specified

type per second between the acquisition of previous and

current.

DSM_MB_PER_SECOND type: long double *

The average number of megabytes transferred per

second between the acquisition of previous and current.

DSM_MB_PER_SECOND_READ

DSM_MB_PER_SECOND_WRITE

DSM_MB_PER_SECOND_FREE type: long double *

The average number of megabytes per second in the

specified type of transaction between the acquisition of

previous and current.

DEVSTAT(3) FreeBSD Library Functions Manual DEVSTAT(3)

FreeBSD 14.0-RELEASE-p6 December 15, 2012 FreeBSD 14.0-RELEASE-p6

DSM_BLOCKS_PER_SECOND type: long double *

The average number of blocks transferred per second

between the acquisition of previous and current. This

number is in terms of the blocksize reported by the

device. If no blocksize has been reported (i.e., the

block size is 0), a default blocksize of 512 bytes will be

used in the calculation.

DSM_BLOCKS_PER_SECOND_READ

DSM_BLOCKS_PER_SECOND_WRITE

DSM_BLOCKS_PER_SECOND_FREE type: long double *

The average number of blocks per second in the

specified type of transaction between the acquisition of

previous and current. This number is in terms of the

blocksize reported by the device. If no blocksize has

been reported (i.e., the block size is 0), a default

blocksize of 512 bytes will be used in the calculation.

DSM_MS_PER_TRANSACTION type: long double *

The average duration of transactions between the

acquisition of previous and current.

DSM_MS_PER_TRANSACTION_OTHER

DSM_MS_PER_TRANSACTION_READ

DSM_MS_PER_TRANSACTION_WRITE

DSM_MS_PER_TRANSACTION_FREE type: long double *

The average duration of transactions of the specified

type between the acquisition of previous and current.

DSM_BUSY_PCT type: long double *

DEVSTAT(3) FreeBSD Library Functions Manual DEVSTAT(3)

FreeBSD 14.0-RELEASE-p6 December 15, 2012 FreeBSD 14.0-RELEASE-p6

The percentage of time the device had one or more

transactions outstanding between the acquisition of

previous and current.

DSM_QUEUE_LENGTH type: uint64_t *

The number of not yet completed transactions at the

time when current was acquired.

DSM_SKIP type: N/A

If you do not need a result from

devstat_compute_statistics(), just put DSM_SKIP as

first (type) parameter and NULL as second parameter.

This can be useful in scenarios where the statistics to be

calculated are determined at run time.

The devstat_compute_etime() function provides an easy way to find the difference in seconds between

two bintime structures. This is most commonly used in conjunction with the time recorded by the

devstat_getdevs() function (in struct statinfo) each time it fetches the current devstat list.

RETURN VALUES
The devstat_getnumdevs(), devstat_getgeneration(), and devstat_getversion() function return the

indicated sysctl variable, or -1 if there is an error fetching the variable.

The devstat_checkversion() function returns 0 if the kernel and userland devstat versions match. If they

do not match, it returns -1.

The devstat_getdevs() and devstat_selectdevs() functions return -1 in case of an error, 0 if there is no

error, and 1 if the device list or selected devices have changed. A return value of 1 from

devstat_getdevs() is usually a hint to re-run devstat_selectdevs() because the device list has changed.

The devstat_buildmatch() function returns -1 for error, and 0 if there is no error.

The devstat_compute_etime() function returns the computed elapsed time.

The devstat_compute_statistics() function returns -1 for error, and 0 for success.

If an error is returned from one of the devstat library functions, the reason for the error is generally

printed in the global string devstat_errbuf which is DEVSTAT_ERRBUF_SIZE characters long.

DEVSTAT(3) FreeBSD Library Functions Manual DEVSTAT(3)

FreeBSD 14.0-RELEASE-p6 December 15, 2012 FreeBSD 14.0-RELEASE-p6

SEE ALSO
systat(1), kvm(3), sysctl(3), iostat(8), rpc.rstatd(8), sysctl(8), vmstat(8), devstat(9)

HISTORY
The devstat statistics system first appeared in FreeBSD 3.0. The new interface (the functions prefixed

with devstat_) first appeared in FreeBSD 5.0.

AUTHORS
Kenneth Merry <ken@FreeBSD.org>

BUGS
There should probably be an interface to de-allocate memory allocated by devstat_getdevs(),

devstat_selectdevs(), and devstat_buildmatch().

The devstat_selectdevs() function should probably not select more than maxshowdevs devices in "top"

mode when no devices have been selected previously.

There should probably be functions to perform the statistics buffer swapping that goes on in most of the

clients of this library.

The statinfo and devinfo structures should probably be cleaned up and thought out a little more.

DEVSTAT(3) FreeBSD Library Functions Manual DEVSTAT(3)

FreeBSD 14.0-RELEASE-p6 December 15, 2012 FreeBSD 14.0-RELEASE-p6

