
NAME
dialog - widgets and utilities for the dialog program

SYNOPSIS
cc [flag ...] file ... -ldialog [library ...]

or

cc $(dialog-config --cflags) file ... $(dialog-config --libs)]

#include <dialog.h>

Dialog is a program that will let you present a variety of questions or display messages using dialog

boxes from a shell script. It is built from the dialog library, which consists of several widgets as well

as utility functions that are used by the widgets or the main program.

DESCRIPTION
This manpage documents the features from <dialog.h> which are likely to be important to developers

using the widgets directly. Some hints are also given for developing new widgets.

Here is a dialog version of Hello World:

int main(void)

{

int status;

init_dialog(stdin, stdout);

status = dialog_yesno(

"Hello, in dialog-format",

"Hello World!",

0, 0);

end_dialog();

return status;

}

DEFINITIONS
Exit codes (passed back to the main program for its use) are defined with a "DLG_EXIT_ prefix. The

efined constants can be mapped using environment variables as described in dialog(1), e.g.,

DLG_EXIT_OK corresponds to $DIALOG_OK.

Useful character constants which correspond to user input are named with the "CHR_" prefix, e.g.,

CHR_BACKSPACE.

Colors and video attributes are categorized and associated with settings in the configuration file (see

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

the discussion of $DIALOGRC in dialog(1)). The DIALOG_ATR(n) macro is used for defining the

references to the combined color and attribute table dlg_color_table[].

The dialog application passes its command-line parameters to the widget functions. Some of those

parameters are single values, but some of the widgets accept data as an array of values. Those include

checklist/radiobox, menubox and formbox. When the --item-help option is given, an extra column of

data is expected. The USE_ITEM_HELP(), CHECKBOX_TAGS, MENUBOX_TAGS and

FORMBOX_TAGS macros are used to hide this difference from the calling application.

Most of the other definitions found in <dialog.h> are used for convenience in building the library or

main program. These include definitions based on the generated <dlg_config.h> header.

DATA STRUCTURES
All of the global data for the dialog library is stored in a few structures: DIALOG_STATE,

DIALOG_VARS and DIALOG_COLORS. The corresponding dialog_state, dialog_vars and

dlg_color_table global variables should be initialized to zeros, and then populated with the data to use.

A few of these must be nonzero for the corresponding widgets to function. As as the case with

function names, variables beginning with "dialog_" are designed for use by the calling application

while variables beginning with "dlg_" are intended for lower levels, e.g., by the dialog library.

DIALOG_STATE
The state variables are dialog’s working variables. It initializes those, uses them to manage the

widgets.

.all_subwindows
This is a linked list of all subwindows created by the library. The dlg_del_window function uses this to

free storage for subwindows when deleting a window.

.all_windows
This is a linked list of all windows created by the library. The dlg_del_window function uses this to

locate windows which may be redrawn after deleting a window.

.aspect_ratio
This corresponds to the command-line option "--aspect-ratio". The value gives the application some

control over the box dimensions when using auto sizing (specifying 0 for height and width). It

represents width / height. The default is 9, which means 9 characters wide to every 1 line high.

.finish_string
When set to true, this allows calls to dlg_finish_string to discard the corresponding data which is

created to speed up layout computations for the given string parameter. The gauge widget uses this

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

feature.

.getc_callbacks
This is set up in ui_getc.c to record windows which must be polled for input, e.g., to handle the

background tailbox widget. One window is designated as the foreground or control window.

.getc_redirect
If the control window for DIALOG_STATE.getc_callbacks is closed, the list is transferred to this

variable. Closing all windows causes the application to exit.

.had_resize
This is set to TRUE in dlg_will_resize or dlg_result_key when KEY_RESIZE is read, to tell dialog to

ignore subsequent ERRs.

.no_mouse
This corresponds to the command-line option "--no-mouse". If true, dialog will not initialize (and

enable) the mouse in init_dialog.

.output
This is set in the dialog application to the stream on which the application and library functions may

write text results. Normally that is the standard error, since the curses library prefers to write its data to

the standard output. Some scripts, trading portability for convenience, prefer to write results to the

standard output, e.g., by using the "--stdout" option.

.output_count
This is incremented by dlg_does_output, which is called by each widget that writes text to the output.

The dialog application uses that to decide if it should also write a separator, i.e.,

DIALOG_STATE.separate_str, between calls to each widget.

.pipe_input
This is set in init_dialog to a stream which can be used by the gauge widget, which must be the

application’s standard input. The dialog application calls init_dialog normally with input set to the

standard input, but optionally based on the "--input-fd" option. Since the application cannot read from

a pipe (standard input) and at the same time read the curses input from the standard input, it must allow

for reopening the latter from either a specific file descriptor, or directly from the terminal. The

adjusted pipe stream value is stored in this variable.

.screen_height
The text-formatting functions use this for the number of rows used for formatting a string.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

It is used by dialog for the command-line options "--print-text-size" and "--print-text-only".

.screen_initialized
This is set in init_dialog and reset in end_dialog. It is used to check if curses has been initialized, and

if the endwin function must be called on exit.

.screen_output
This is set in init_dialog to the output stream used by the curses library. Normally that is the standard

output, unless that happens to not be a terminal (and if init_dialog can successfully open the terminal

directly).

.screen_width
The text-formatting functions use this for the number of columns used for formatting a string.

It is used by dialog for the command-line options "--print-text-size" and "--print-text-only".

.separate_str
This corresponds to the command-line option "--separate-widget". The given string specifies a string

that will separate the output on dialog’s output from each widget. This is used to simplify parsing the

result of a dialog with several widgets. If this option is not given, the default separator string is a tab

character.

.tab_len
This corresponds to the command-line option "--tab-len number". Specify the number of spaces that a

tab character occupies if the "--tab-correct" option is given. The default is 8.

.text_height
The text-formatting functions set this to the number of lines used for formatting a string.

It is used by dialog for the command-line options "--print-text-size" and "--print-text-only".

.text_only
Dialog uses this in the command-line option "--print-text-only".

The text-formatting functions (dlg_print_text, dlg_print_line, and dlg_print_autowrap) check this to

decide whether to print the formatted text to dialog’s output or to the curses-display.

Also, dlg_auto_size checks the flag, allowing it to be used before init_dialog is called.

.text_width

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

The text-formatting functions set this to the number of columns used for formatting a string.

It is used by dialog for the command-line options "--print-text-size" and "--print-text-only".

.trace_output
This corresponds to the command-line option "--trace file". It is the file pointer to which trace

messages are written.

.use_colors
This is set in init_dialog if the curses implementation supports color.

.use_scrollbar
This corresponds to the command-line option "--scrollbar". If true, draw a scrollbar to make windows

holding scrolled data more readable.

.use_shadow
This corresponds to the command-line option "--no-shadow". This is set in init_dialog if the curses

implementation supports color. If true, suppress shadows that would be drawn to the right and bottom

of each dialog box.

.visit_items
This corresponds to the command-line option "--visit-items". Modify the tab-traversal of the list-

oriented widgets (buildlist, checklist, radiobox, menubox, inputmenu, and treeview) to include the list

of items as one of the states. This is useful as a visual aid, i.e., the cursor position helps some users.

The dialog application resets the dialog_vars data before accepting options to invoke each widget.

Most of the DIALOG_VARS members are set directly from dialog’s command-line options:

DIALOG_VARS
In contrast to DIALOG_STATE, the members of DIALOG_VARS are set by command-line options in

dialog.

.ascii_lines
This corresponds to the command-line option "--ascii-lines. It causes line-drawing to be done with

ASCII characters, e.g., "+" and "-". See DIALOG_VARS.no_lines.

.backtitle
This corresponds to the command-line option "--backtitle backtitle". It specifies a backtitle string to be

displayed on the backdrop, at the top of the screen.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

.beep_after_signal
This corresponds to the command-line option "--beep-after". If true, beep after a user has completed a

widget by pressing one of the buttons.

.beep_signal
This corresponds to the command-line option "--beep". It is obsolete.

.begin_set
This is true if the command-line option "--begin y x" was used. It specifies the position of the upper

left corner of a dialog box on the screen.

.begin_x
This corresponds to the x value from the command-line option "--begin y x" (second value).

.begin_y
This corresponds to the y value from the command-line option "--begin y x" (first value).

.cancel_label
This corresponds to the command-line option "--cancel-label string". The given string overrides the

label used for "Cancel" buttons.

.cant_kill
This corresponds to the command-line option "--no-kill". If true, this tells dialog to put the tailboxbg
box in the background, printing its process id to dialog’s output. SIGHUP is disabled for the

background process.

.colors
This corresponds to the command-line option "--colors". If true, interpret embedded "\Z" sequences in

the dialog text by the following character, which tells dialog to set colors or video attributes: 0 through

7 are the ANSI codes used in curses: black, red, green, yellow, blue, magenta, cyan and white

respectively. Bold is set by ’b’, reset by ’B’. Reverse is set by ’r’, reset by ’R’. Underline is set by

’u’, reset by ’U’. The settings are cumulative, e.g., "\Zb\Z1" makes the following text bright red.

Restore normal settings with "\Zn".

.column_separator
This corresponds to the command-line option "--column-separator". Dialog splits data for

radio/checkboxes and menus on the occurrences of the given string, and aligns the split data into

columns.

.cr_wrap

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

This corresponds to the command-line option "--cr-wrap". If true, interpret embedded newlines in the

dialog text as a newline on the screen. Otherwise, dialog will only wrap lines where needed to fit

inside the text box. Even though you can control line breaks with this, dialog will still wrap any lines

that are too long for the width of the box. Without cr-wrap, the layout of your text may be formatted to

look nice in the source code of your script without affecting the way it will look in the dialog.

.cursor_off_label
This corresponds to the command-line option "--cursor-off-label". If true, place the terminal cursor at

the end of a button instead of on the first character of the button label. This is useful to reduce visual

confusion when the cursor coloration interacts poorly with the button-label text colors.

.date_format
This corresponds to the command-line option "--date-format string". If the host provides strftime, and

the value is nonnull, the calendar widget uses this to format its output.

.default_button
This is set by the command-line option "--default-button. It is used by dlg_default_button.

.default_item
This corresponds to the command-line option "--default-item string". The given string is used as the

default item in a checklist, form or menu box. Normally the first item in the box is the default.

.defaultno
This corresponds to the command-line option "--defaultno". If true, make the default value of the

yes/no box a No. Likewise, treat the default button of widgets that provide "OK" and "Cancel" as a

Cancel. If --no-cancel was given that option overrides this, making the default button always "Yes"

(internally the same as "OK").

.dlg_clear_screen
This corresponds to the command-line option "--clear". This option is implemented in the main

program, not the library. If true, the screen will be cleared on exit. This may be used alone, without

other options.

.erase_on_exit
This corresponds to the command-line option "--erase-on-exit". If true, remove the dialog widget on

program exit, erasing the entire screen to its native background color, and place the terminal cursor at

the lower left corner of the screen. This is useful for making the window contents invisible at the end

of a series of dialog boxes. But it can also be used at earlier stages of a series of invocations of dialog,

if the series may be aborted before it is fully completed.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

.exit_label
This corresponds to the command-line option "--exit-label string". The given string overrides the label

used for "EXIT" buttons.

.extra_button
This corresponds to the command-line option "--extra-button". If true, some widgets show an extra

button, between "OK" and "Cancel" buttons.

.extra_label
This corresponds to the command-line option "--extra-label string". The given string overrides the

label used for "Extra" buttons. Note: for inputmenu widgets, this defaults to "Rename".

.formitem_type
This is set by the command-line option "--passwordform" to tell the form widget that its text fields

should be treated like password widgets.

.help_button
This corresponds to the command-line option "--help-button". If true, some widgets show a help-

button after "OK" and "Cancel" buttons, i.e., in checklist, radiolist and menu boxes. If --item-help is

also given, on exit the return status will be the same as for the "OK" button, and the item-help text will

be written to dialog’s output after the token "HELP". Otherwise, the return status will indicate that the

Help button was pressed, and no message printed.

.help_file
This corresponds to the command-line option "--hfile string". The given filename is passed to

dialog_helpfile when the user presses F1.

.help_label
This corresponds to the command-line option "--help-label string". The given string overrides the label

used for "Help" buttons.

.help_line
This corresponds to the command-line option "--hline string". The given string is displayed in the

bottom of dialog windows, like a subtitle.

.help_status
This corresponds to the command-line option "--help-status". If true, and the the help-button is

selected, writes the checklist or radiolist information after the item-help "HELP" information. This can

be used to reconstruct the state of a checklist after processing the help request.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

.help_tags
This corresponds to the command-line option "--help-tags". If true, dlg_add_help_formitem and

dlg_add_help_listitem use the item’s tag value consistently rather than using the tag’s help-text value

when DIALOG_VARS.item_help is set.

.input_length
This is nonzero if DIALOG_VARS.input_result is allocated, versus being a pointer to the user’s local

variables.

.input_menu
This flag is set to denote whether the menubox widget implements a menu versus a inputmenu widget.

.input_result
This may be either a user-supplied buffer, or a buffer dynamically allocated by the library, depending

on DIALOG_VARS.input_length:

+o If DIALOG_VARS.input_length is zero, this is a pointer to user buffer (on the stack, or static).

The buffer size is assumed to be MAX_LEN, which is defined in <dialog.h>.

+o When DIALOG_VARS.input_length is nonzero, this is a dynamically-allocated buffer used by the

widgets to return printable results to the calling application.

Certain widgets copy a result to this buffer. If the pointer is NULL, or if the length is insufficient for

the result, then the dialog library allocates a buffer which is large enough, and sets

DIALOG_VARS.input_length. Callers should check for this case if they have supplied their own

buffer.

.insecure
This corresponds to the command-line option "--insecure". If true, make the password widget

friendlier but less secure, by echoing asterisks for each character.

.in_helpfile
This variable is used to prevent dialog_helpfile from showing anything, e.g., if F1 were pressed within

a help-file display.

.iso_week
This corresponds to the command-line option "--iso-week". It is used in the calendar widget to tell how

to compute the starting week for the year:

+o by default, the calendar treats January 1 as the first week of the year.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

+o If this variable is true, the calendar uses ISO 8601’s convention. ISO 8601 numbers weeks

starting with the first week in January with a Thursday in the current year. January 1 may be in

the previous year.

.item_help
This corresponds to the command-line option "--item-help". If true, interpret the tags data for

checklist, radiolist and menu boxes adding a column whose text is displayed in the bottom line of the

screen, for the currently selected item.

.keep_tite
This is set by the command-line option "--keep-tite" to tell dialog to not attempt to cancel the terminal

initialization (termcap ti/te) sequences which correspond to xterm’s alternate-screen switching.

Normally dialog does this to avoid flickering when run several times in a script.

.keep_window
This corresponds to the command-line option "--keep-window". If true, do not remove/repaint the

window on exit. This is useful for keeping the window contents visible when several widgets are run

in the same process. Note that curses will clear the screen when starting a new process.

.last_key
This corresponds to the command-line option "--last-key".

.max_input
This corresponds to the command-line option "--max-input size". Limit input strings to the given size.

If not specified, the limit is 2048.

.no_hot_key
This corresponds to the command-line option "--no-hot-list".

Some widgets (buildlist, checklist, inputmenu, menu, radiolist, treeview) display a list for which the

leading capital letter in each entry is accepted as a hot-key, to quickly move the focus to that entry.

Setting this variable to TRUE disables the feature.

.no_items
This corresponds to the command-line option "--no-items". Some widgets (checklist, inputmenu,

radiolist, menu) display a list with two columns (a "tag" and "item", i.e., "description"). This tells

dialog to read shorter rows from data, omitting the "list".

.no_label

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

This corresponds to the command-line option "--no-label string". The given string overrides the label

used for "No" buttons.

.no_lines
This corresponds to the command-line option "--no-lines. It suppresses line-drawing. See

DIALOG_VARS.ascii_lines.

.no_nl_expand
This corresponds to the command-line option "--no-nl-expand". If false, dlg_trim_string converts

literal "\n" substrings in a message into newlines.

.no_tags
This corresponds to the command-line option "--no-tags". Some widgets (checklist, inputmenu,

radiolist, menu) display a list with two columns (a "tag" and "item", also known as "description"). The

tag is useful for scripting, but may not help the user. The --no-tags option (from Xdialog) may be used

to suppress the column of tags from the display.

Normally dialog allows you to quickly move to entries on the displayed list, by matching a single

character to the first character of the tag. When the --no-tags option is given, dialog matches against

the first character of the description. In either case, the matchable character is highlighted.

Here is a table showing how the no_tags and no_items values interact:

Widget Fields ShownFields Read.no_items.no_tags

--

buildlist item tag,item 0 0*

buildlist item tag,item 0 1

buildlist tag tag 1 0*

buildlist tag tag 1 1

checklist tag,item tag,item 0 0

checklist item tag,item 0 1

checklist tag tag 1 0

checklist tag tag 1 1

inputmenutag,item tag,item 0 0

inputmenuitem tag,item 0 1

inputmenutag tag 1 0

inputmenutag tag 1 1

menu tag,item tag,item 0 0

menu item tag,item 0 1

menu tag tag 1 0

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

menu tag tag 1 1

radiolist tag,item tag,item 0 0

radiolist item tag,item 0 1

radiolist tag tag 1 0

radiolist tag tag 1 1

treeview item tag,item 0 0*

treeview item tag,item 0 1

treeview tag tag 1 0*

treeview tag tag 1 1

--

* Xdialog does not display the tag column for the analogous buildlist and treeview widgets. Dialog
does the same on the command-line. However the library interface defaults to displaying the tag

column. Your application can enable or disable the tag column as needed for each widget.

.nocancel
This corresponds to the command-line option "--no-cancel". If true, suppress the "Cancel" button in

checklist, inputbox and menu box modes. A script can still test if the user pressed the ESC key to

cancel to quit.

.nocollapse
This corresponds to the command-line option "--no-collapse". Normally dialog converts tabs to spaces

and reduces multiple spaces to a single space for text which is displayed in a message boxes, etc. It

true, that feature is disabled. Note that dialog will still wrap text, subject to the --cr-wrap option.

.nook
This corresponds to the command-line option "--no-ok. Dialog will suppress the "ok" (or "yes") button

from the widget.

.ok_label
This corresponds to the command-line option "--ok-label string". The given string overrides the label

used for "OK" buttons.

.pause_secs
When set, force dlg_set_timeout to use 10 milliseconds rather than using the

DIALOG_VARS.timeout_secs value.

.print_siz
This corresponds to the command-line option "--print-size". If true, each widget prints its size to

dialog’s output when it is invoked.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

.quoted
This corresponds to the command-line option "--quoted. Normally dialog quotes the strings returned

by checklist’s as well as the item-help text. If true, dialog will quote all string results.

.reorder
This corresponds to the command-line option "--reorder. By default, the buildlist widget uses the same

order for the output (right) list as for the input (left). If true, dialog will use the order in which a user

adds selections to the output list.

.separate_output
This corresponds to the command-line option "--separate-output". If true, checklist widgets output

result one line at a time, with no quoting. This facilitates parsing by another program.

.single_quoted
This corresponds to the command-line option "--single-quoted". If true, use single-quoting as needed

(and no quotes if unneeded) for the output of checklist’s as well as the item-help text. If this option is

not set, dialog uses double quotes around each item. The latter requires occasional use of backslashes

to make the output useful in shell scripts.

.size_err
This corresponds to the command-line option "--size-err". If true, check the resulting size of a dialog

box before trying to use it, printing the resulting size if it is larger than the screen. (This option is

obsolete, since all new-window calls are checked).

.sleep_secs
This corresponds to the command-line option "--sleep secs". This option is implemented in the main

program, not the library. If nonzero, this is the number of seconds after to delay after processing a

dialog box.

.tab_correct
This corresponds to the command-line option "--tab-correct". If true, convert each tab character of the

text to one or more spaces. Otherwise, tabs are rendered according to the curses library’s

interpretation.

.time_format
This corresponds to the command-line option "--time-format string". If the host provides strftime, and

the value is nonnull, the timebox widget uses this to format its output.

.timeout_secs
This corresponds to the command-line option "--timeout secs". If nonzero, timeout input requests (exit

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

with error code) if no user response within the given number of seconds.

.title
This corresponds to the command-line option "--title title". Specifies a title string to be displayed at the

top of the dialog box.

.trim_whitespace
This corresponds to the command-line option "--trim". If true, eliminate leading blanks, trim literal

newlines and repeated blanks from message text.

.week_start
This corresponds to the command-line option "--week-start". It is used in the calendar widget to set the

starting day for the week. The string value can be

+o a number (0 to 6, Sunday through Saturday using POSIX) or

+o the special value "locale" (this works with systems using glibc, providing an extension to the

locale command, the first_weekday value).

+o a string matching one of the abbreviations for the day of the week shown in the calendar widget,

e.g., "Mo" for "Monday".

.yes_label
This corresponds to the command-line option "--yes-label string". The given string overrides the label

used for "Yes" buttons.

WIDGETS
Functions that implement major functionality for the command-line dialog program, e.g., widgets, have

names beginning "dialog_".

All dialog boxes have at least three parameters:

title the caption for the box, shown on its top border.

height

the height of the dialog box.

width

the width of the dialog box.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

Other parameters depend on the box type.

dialog_buildlist
implements the "--buildlist" option.

const char * title

is the title on the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width

is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int list_height

is the minimum height to reserve for displaying the list. If zero, it is computed based on the

given height and width.

int item_no

is the number of rows in items.

char ** items

is an array of strings which is viewed either as a list of rows

tag item status

or

tag item status help

depending on whether dialog_vars.item_help is set.

int order_mode

is reserved for future enhancements

dialog_calendar
implements the "--calendar" option.

const char * title

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

is the title on the top of the widget.

const char * subtitle

is the prompt text shown within the widget.

int height

is the height excluding the fixed-height calendar grid.

int width

is the overall width of the box, which is adjusted up to the calendar grid’s minimum width if

needed.

int day

is the initial day of the week shown, counting zero as Sunday. If the value is negative, the

current day of the week is used.

int month

is the initial month of the year shown, counting one as January. If the value is negative, the

current month of the year is used.

int year

is the initial year shown. If the value is negative, the current year is used.

dialog_checklist
implements the "--checklist" and "--radiolist" options depending on the flag parameter.

const char * title

is the title on the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width

is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int list_height

is the minimum height to reserve for displaying the list. If zero, it is computed based on the

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

given height and width.

int item_no

is the number of rows in items.

int items

is an array of strings which is viewed either as a list of rows

tag item status

or

tag item status help

depending on whether dialog_vars.item_help is set.

flag is either FLAG_CHECK, for checklists, or FLAG_RADIO for radiolists.

dialog_dselect
implements the "--dselect" option.

const char * title

is the title on the top of the widget.

const char * path

is the preselected value to show in the input-box, which is used also to set the directory- and file-

windows.

int height

is the height excluding the minimum needed to show the dialog box framework. If zero, the

height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

dialog_editbox
implements the "--editbox" option.

const char * title

is the title on the top of the widget.

const char * file

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

is the name of the file from which to read.

int height

is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width

is the desired width of the box. If zero, the height is adjusted to use the available screen size.

dialog_form
implements the "--form" option.

const char * title

is the title on the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width

is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int form_height

is the minimum height to reserve for displaying the list. If zero, it is computed based on the

given height and width.

int item_no

is the number of rows in items.

int items

is an array of strings which is viewed either as a list of rows

Name NameY NameX Text TextY TextX FLen ILen

or

Name NameY NameX Text TextY TextX FLen ILen Help

depending on whether dialog_vars.item_help is set.

dialog_fselect

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

implements the "--fselect" option.

const char * title

is the title on the top of the widget.

const char * path

is the preselected value to show in the input-box, which is used also to set the directory- and file-

windows.

int height

is the height excluding the minimum needed to show the dialog box framework. If zero, the

height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

dialog_gauge
implements the "--gauge" option. Alternatively, a simpler or customized gauge widget can be set up

using dlg_allocate_gauge, dlg_reallocate_gauge, dlg_update_gauge and dlg_free_gauge.

const char * title

is the title on the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

int percent

is the percentage to show in the progress bar.

dialog_inputbox
implements the "--inputbox" or "--password" option, depending on the value of password.

const char * title

is the title on the top of the widget.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

const char * init

is the initial value of the input box, whose length is taken into account when auto-sizing the

width of the dialog box.

int password

if true, causes typed input to be echoed as asterisks.

dialog_helpfile
implements the "--hfile" option.

const char * title

is the title on the top of the widget.

const char * file

is the name of a file containing the text to display. This function is internally bound to F1

(function key "1"), passing dialog_vars.help_file as a parameter. The dialog program sets that

variable when the --hfile option is given.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

dialog_menu
implements the "--menu" or "--inputmenu" option depending on whether dialog_vars.input_menu is

set.

const char * title

is the title on the top of the widget.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

int menu_height

is the minimum height to reserve for displaying the list. If zero, it is computed based on the

given height and width.

int item_no

is the number of rows in items.

int items

is an array of strings which is viewed either as a list of rows

tag item

or

tag item help

depending on whether dialog_vars.item_help is set.

dialog_mixedform
implements the "--mixedform" option.

const char * title

is the title on the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width

is the desired width of the box. If zero, the height is adjusted to use the available screen size.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int form_height

is the minimum height to reserve for displaying the list. If zero, it is computed based on the

given height and width.

int item_no

is the number of rows in items.

int items

is an array of strings which is viewed either as a list of rows

Name NameY NameX Text TextY TextX FLen ILen Ityp

or

Name NameY NameX Text TextY TextX FLen ILen Ityp Help

depending on whether dialog_vars.item_help is set.

dialog_mixedgauge
implements the "--mixedgauge" option

const char * title

is the title on the top of the widget.

const char * cprompt

is the caption text shown within the widget.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

int percent

is the percentage to show in the progress bar.

int item_no

is the number of rows in items.

int items

is an array of strings which is viewed as a list of tag and item values. The tag values are listed,

one per row, in the list at the top of the widget.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

The item values are decoded: digits 0 through 9 are the following strings

0 Succeeded

1 Failed

2 Passed

3 Completed

4 Checked

5 Done

6 Skipped

7 In Progress

8 (blank)

9 N/A

A string with a leading "-" character is centered, marked with "%". For example, "-75" is

displayed as "75%". Other strings are displayed as is.

dialog_msgbox
implements the "--msgbox" or "--infobox" option depending on whether pauseopt is set.

const char * title

is the title on the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int pauseopt

if true, an "OK" button will be shown, and the dialog will wait for it to complete. With an "OK"

button, it is denoted a "msgbox", without an "OK" button, it is denoted an "infobox".

dialog_pause
implements the "--pause" option.

const char * title

is the title on the top of the widget.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

int seconds

is the timeout to use for the progress bar.

dialog_prgbox
implements the "--prgbox" option.

const char * title

is the title on the top of the widget.

const char * cprompt

is the prompt text shown within the widget. If empty or null, no prompt is shown.

const char * command

is the name of the command to execute.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

int pauseopt

if true, an "OK" button will be shown, and the dialog will wait for it to complete.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

dialog_progressbox
implements the "--progressbox" option.

const char * title

is the title on the top of the widget.

const char * cprompt

is the prompt text shown within the widget. If empty or null, no prompt is shown.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

dialog_rangebox
implements the "--rangebox" option.

const char * title

is the title on the top of the widget.

const char * cprompt

is the prompt text shown within the widget. If empty or null, no prompt is shown.

int height

is the desired height of the widget. If zero, the height is based on the screen size.

int width

is the desired width of the widget. If zero, the height is based on the screen size.

int min_value

is the minimum value to allow.

int max_value

is the maximum value to allow.

int default_value

is the default value, if no change is made.

dialog_tailbox

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

implements the "--tailbox" or "--tailboxbg" option depending on whether bg_task is set.

const char * title

is the title on the top of the widget.

const char * file

is the name of the file to display in the dialog.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

int bg_task

if true, the window is added to the callback list in dialog_state, and the application will poll for

the window to be updated. Otherwise an "OK" button is added to the window, and it will be

closed when the button is activated.

dialog_textbox
implements the "--textbox" option.

const char * title

is the title on the top of the widget.

const char * file

is the name of the file to display in the dialog.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

dialog_timebox
implements the "--timebox" option.

const char * title

is the title on the top of the widget.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

const char * subtitle

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

int hour

is the initial hour shown. If the value is negative, the current hour is used. Returns

DLG_EXIT_ERROR if the value specified is greater than or equal to 24.

int minute

is the initial minute shown. If the value is negative, the current minute is used. Returns

DLG_EXIT_ERROR if the value specified is greater than or equal to 60.

int second

is the initial second shown. If the value is negative, the current second is used. Returns

DLG_EXIT_ERROR if the value specified is greater than or equal to 60.

dialog_treeview
implements the "--treeview" option.

const char * title

is the title on the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

int list_height

is the minimum height to reserve for displaying the list. If zero, it is computed based on the

given height and width.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int item_no

is the number of rows in items.

char ** items

is the list of items, contain tag, name, and optionally help strings (if dialog_vars.item_help is

set). The initial selection state for each item is also in this list.

int flag

flag is either FLAG_CHECK, for checklists (multiple selections), or FLAG_RADIO for radiolists (a

single selection).

dialog_yesno
implements the "--yesno" option.

const char * title

is the title on the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

UTILITY FUNCTIONS
Most functions that implement lower-level functionality for the command-line dialog program or

widgets, have names beginning "dlg_". Bowing to longstanding usage, the functions that initialize the

display and end it are named init_dialog and end_dialog.

The only non-widget function whose name begins with "dialog_" is dialog_version, which returns the

version number of the library as a string.

A few functions are prefixed "_dlg_", because they are required for internal use, but not intended as

part of the library application programming interface.

Here is a brief summary of the utility functions and their parameters:

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

dlg_add_callback
Add a callback, used to allow polling input from multiple tailbox widgets.

DIALOG_CALLBACK *p

contains the callback information.

dlg_add_callback_ref
Like dlg_add_callback, but passes a reference to the DIALOG_CALLBACK as well as a pointer to a

cleanup function which will be called when the associated input ends.

DIALOG_CALLBACK **p

points to the callback information. This is a reference to the pointer so that the caller’s pointer

can be zeroed when input ends.

DIALOG_FREEBACK func

function to call when input ends, e.g., to free caller’s additional data.

dlg_add_help_formitem
This is a utility function used enforce consistent behavior for the DIALOG_VARS.help_tags and

DIALOG_VARS.item_help variables.

int *result

this is updated to DLG_EXIT_ITEM_HELP if DIALOG_VARS.item_help is set.

char **tag

the tag- or help-text is stored here.

DIALOG_FORMITEM *item

contains the list item to use for tag- or help-text.

dlg_add_help_listitem
This is a utility function used enforce consistent behavior for the DIALOG_VARS.help_tags and

DIALOG_VARS.item_help variables.

int *result

this is updated to DLG_EXIT_ITEM_HELP if DIALOG_VARS.item_help is set.

char **tag

the tag- or help-text is stored here.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

DIALOG_LISTITEM *item

contains the list item to use for tag- or help-text.

dlg_add_last_key
Report the last key entered by the user. This implements the --last-key command-line option, using

dialog_vars.last_key.

int mode

controls the way the last key report is separated from other results:

-2 (no separator)

-1 (separator after the key name)

0 (separator is optionally before the key name)

1 (same as -1)

dlg_add_quoted
Add a quoted string to the result buffer (see dlg_add_result). If no quotes are necessary, none are used.

If dialog_vars.single_quoted is set, single-quotes are used. Otherwise, double-quotes are used.

char * string

is the string to add.

dlg_add_result
Add a string to the result buffer dialog_vars.input_result.

char * string

is the string to add.

dlg_add_separator
Add an output-separator to the result buffer dialog_vars.input_result. If dialog_vars.output_separator
is set, use that. Otherwise, if dialog_vars.separate_output is set, use newline. If neither is set, use a

space.

dlg_add_string
Add a quoted or unquoted string to the result buffer (see dlg_add_quoted) and dlg_add_result),
according to whether dialog_vars.quoted is true.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

char * string

is the string to add.

dlg_align_columns
Copy and reformat an array of pointers to strings, aligning according to the column separator

dialog_vars.column_separator. If no column separator is set, the array will be unmodified; otherwise it

is copied and reformatted.

Caveat: This function is only implemented for 8-bit characters.

char **target

This is the array to reformat. It points to the first string to modify.

int per_row

This is the size of the struct for each row of the array.

int num_rows

This is the number of rows in the array.

dlg_allocate_gauge
Allocates a gauge widget. Use dlg_update_gauge to display the result.

const char * title

is the title string to display at the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width

is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int percent

is the percentage to show in the progress bar.

dlg_asciibox
returns its parameter transformed to the corresponding "+" or "-", etc., for the line-drawing characters

used in dialog. If the parameter is not a line-drawing or other special character such as

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

ACS_DARROW, it returns 0.

chtype ch

is the parameter, usually one of the ACS_xxx constants.

dlg_attr_clear
Set window to the given attribute.

WINDOW * win

is the window to update.

int height

is the number of rows to update.

int width

is the number of columns to update.

chtype attr

is the attribute, e.g., A_BOLD.

dlg_auto_size
Compute window size based on the size of the formatted prompt and minimum dimensions for a given

widget.

Dialog sets dialog_state.text_height and dialog_state.text_width for the formatted prompt as a side-

effect.

Normally dialog writes the formatted prompt to the curses window, but it will write the formatted

prompt to the output stream if dialog_state.text_only is set.

const char * title

is the title string to display at the top of the widget.

const char * prompt

is the message text which will be displayed in the widget, used here to determine how large the

widget should be.

If the value is NULL, dialog allows the widget to use the whole screen, i.e., if the values

referenced by height and/or width are zero.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int * height

is the nominal height. Dialog checks the referenced value and may update it:

+o if the value is negative, dialog updates it to the available height of the screen, after reserving

rows for the window border and shadow, as well as taking into account dialog_vars.begin_y
and dialog_vars.begin_set.

+o if the value is zero, dialog updates it to the required height of the window, taking into

account a (possibly) multi-line prompt.

+o if the value is greater than zero, dialog uses it internally, but restores the value on return.

int * width

is the nominal width. Dialog checks the referenced value and may update it:

+o if the value is negative, dialog updates it to the available width of the screen, after reserving

rows for the window border and shadow, as well as taking into account dialog_vars.begin_x
and dialog_vars.begin_set.

+o if the value is zero, dialog updates it to the required width of the window, taking into

account a (possibly) multi-line prompt.

+o if the value is greater than zero, dialog uses it internally, but restores the value on return.

int boxlines

is the number of lines to reserve in the vertical direction.

int mincols

is the minimum number of columns to use.

dlg_auto_sizefile
Like dlg_auto_size, but use a file contents to decide how large the widget should be.

const char * title

is the title string to display at the top of the widget.

const char * file

is the name of the file.

int * height

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

is the nominal height.

If it is -1, use the screen’s height (after subtracting dialog_vars.begin_y if dialog_vars.begin_set
is true).

If it is greater than zero, limit the referenced value to the screen-height after verifying that the

file exists.

int * width

is the nominal width.

If it is -1, use the screen’s width (after subtracting dialog_vars.begin_x if dialog_vars.begin_set
is true).

If it is greater than zero, limit the referenced value to the screen-width after verifying that the file

exists.

int boxlines

is the number of lines to reserve on the screen for drawing boxes.

int mincols

is the number of columns to reserve on the screen for drawing boxes.

dlg_beeping
If dialog_vars.beep_signal is nonzero, this calls beep once and sets dialog_vars.beep_signal to zero.

dlg_boxchar
returns its chtype parameter transformed as follows:

+o if neither dialog_vars.ascii_lines nor dialog_vars.no_lines is set.

+o if dialog_vars.ascii_lines is set, returns the corresponding "+" or "-", etc., for the line-drawing

characters used in dialog.

+o otherwise, if dialog_vars.no_lines is set, returns a space for the line-drawing characters.

+o if the parameter is not a line-drawing or other special character such as ACS_DARROW, it

returns the parameter unchanged.

dlg_box_x_ordinate

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

returns a suitable x-ordinate (column) for a new widget. If dialog_vars.begin_set is 1, use

dialog_vars.begin_x; otherwise center the widget on the screen (using the width parameter).

int width

is the width of the widget.

dlg_box_y_ordinate
returns a suitable y-ordinate (row) for a new widget. If dialog_vars.begin_set is 1, use

dialog_vars.begin_y; otherwise center the widget on the screen (using the height parameter).

int height

is the height of the widget.

dlg_buildlist
This is an alternate interface to the buildlist widget which allows the application to read the list item

states back directly without putting them in the output buffer.

const char * title

is the title string to display at the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width

is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int list_height

is the minimum height to reserve for displaying the list. If zero, it is computed based on the

given height and width.

int item_no

is the number of rows in items.

DIALOG_LISTITEM * items

is the list of items, contain tag, name, and optionally help strings (if dialog_vars.item_help is

set). The initial selection state for each item is also in this list.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

const char * states

This is a list of characters to display for the given states. Normally a buildlist provides true (1)

and false (0) values, which the widget displays as "*" and space, respectively. An application

may set this parameter to an arbitrary null-terminated string. The widget determines the number

of states from the length of this string, and will cycle through the corresponding display

characters as the user presses the space-bar.

int order_mode

is reserved for future enhancements

int * current_item

The widget sets the referenced location to the index of the current display item (cursor) when it

returns.

dlg_button_count
Count the buttons in the list.

const char ** labels

is a list of (pointers to) button labels terminated by a null pointer.

dlg_button_key
If a key was bound to one of the button-codes in dlg_result_key, fake a button-value and an "Cancel"

key to cause the calling widget to return the corresponding status.

See dlg_ok_buttoncode, which maps settings for ok/extra/help and button number into exit-code.

dlg_button_layout
Make sure there is enough space for the buttons by computing the width required for their labels,

adding margins and limiting based on the screen size.

const char ** labels

is a list of (pointers to) button labels terminated by a null pointer.

int * limit

the function sets the referenced limit to the width required for the buttons (limited by the screen

size) if that is wider than the passed-in limit.

dlg_button_sizes
Compute the size of the button array in columns.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

const char ** labels

is a list of (pointers to) button labels terminated by a null pointer.

int vertical

is true if the buttons are arranged in a column rather than a row.

int * longest

Return the total number of columns in the referenced location.

int * length

Return the longest button’s columns in the referenced location.

dlg_button_to_char
Find the first uppercase character in the label, which we may use for an abbreviation. If the label is

empty, return -1. If no uppercase character is found, return 0. Otherwise return the uppercase

character.

Normally dlg_draw_buttons and dlg_char_to_button use the first uppercase character. However, they

keep track of all of the labels and if the first has already been used in another label, they will continue

looking for another uppercase character. This function does not have enough information to make that

check.

const char * label

is the label to test.

dlg_button_x_step
Compute the step-size needed between elements of the button array.

const char ** labels

is a list of (pointers to) button labels terminated by a null pointer.

int limit

is the maximum number of columns to allow for the buttons.

int * gap

store the nominal gap between buttons in the referenced location. This is constrained to be at

least one.

int * margin

store the left+right total margins (for the list of buttons) in the referenced location.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int * step

store the step-size in the referenced location.

dlg_calc_list_width
Calculate the minimum width for the list, assuming none of the items are truncated.

int item_no

is the number of items.

DIALOG_LISTITEM * items

contains a name and text field, e.g., for checklists or radiobox lists. The function returns the sum

of the widest columns needed for of each of these fields.

If dialog_vars.no_items is set, the text fields in the list are ignored.

dlg_calc_listh
Calculate new height and list_height values.

int * height

on input, is the height without adding the list-height. On return, this contains the total list-height

and is the actual widget’s height.

int * list_height

on input, is the requested list-height. On return, this contains the number of rows available for

displaying the list after taking into account the screen size and the dialog_vars.begin_set and

dialog_vars.begin_y variables.

int item_no

is the number of items in the list.

dlg_calc_listw
This function is obsolete, provided for library-compatibility. It is replaced by dlg_calc_list_width.

int item_no

is the number of items.

char ** items

is a list of character pointers.

int group

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

is the number of items in each group, e.g., the second array index.

dlg_char_to_button
Given a list of button labels, and a character which may be the abbreviation for one, find it, if it exists.

An abbreviation will be the first character which happens to be capitalized in the label. If the character

is found, return its index within the list of labels. Otherwise, return DLG_EXIT_UNKNOWN.

int ch is the character to find.

const char ** labels

is a list of (pointers to) button labels terminated by a null pointer.

dlg_checklist
This entrypoint provides the --checklist or --radiolist functionality without the limitations of dialog’s

command-line syntax (compare to dialog_checklist).

const char * title

is the title string to display at the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width

is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int list_height

is the minimum height to reserve for displaying the list. If zero, it is computed based on the

given height and width.

int item_no

is the number of items.

DIALOG_LISTITEM * items

This is a list of the items to display in the checklist.

const char * states

This is a list of characters to display for the given states. Normally a checklist provides true (1)

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

and false (0) values, which the widget displays as "*" and space, respectively. An application

may set this parameter to an arbitrary null-terminated string. The widget determines the number

of states from the length of this string, and will cycle through the corresponding display

characters as the user presses the space-bar.

int flag

This is should be one of FLAG_CHECK or FLAG_RADIO, depending on whether the widget

should act as a checklist or radiobox.

int * current_item

The widget sets the referenced location to the index of the current display item (cursor) when it

returns.

dlg_check_scrolled
given a function key (or other key that was mapped to a function key), check if it is one of the up/down

scrolling functions:

DLGK_PAGE_FIRST,

DLGK_PAGE_LAST,

DLGK_GRID_UP,

DLGK_GRID_DOWN,

DLGK_PAGE_PREV or

DLGK_PAGE_NEXT.

Some widgets use these key bindings for scrolling the prompt-text up and down, to allow for display in

very small windows.

The function returns 0 (zero) if it finds one of these keys, and -1 if not.

int key

is the function-key to check

int last

is the number of lines which would be used to display the scrolled prompt in an arbitrarily tall

window. It is used here to check limits for the offset value.

int page

this is the available height for writing scrolled text, which is smaller than the window if it

contains buttons.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

bool * show

on return, holds TRUE if dlg_print_scrolled should be used to redisplay the prompt text.

int * offset

on entry, holds the starting line number (counting from zero) last used for dlg_print_scrolled. On

return, holds the updated starting line number.

dlg_clear
Set window to the default dialog screen attribute. This is set in the rc-file with screen_color.

dlg_clr_result
Free storage used for the result buffer (dialog_vars.input_result). The corresponding pointer is set to

NULL.

dlg_color_count
Return the number of colors that can be configured in dialog.

dlg_color_setup
Initialize the color pairs used in dialog.

dlg_count_argv
Count the entries in an argument vector.

argv Points to the argument vector.

dlg_count_columns
Returns the number of columns used for a string. This is not necessarily the number of bytes in a

string.

const char * string

is the string to measure.

dlg_count_real_columns
Returns the number of columns used for a string, accounting for "\Z" sequences which can be used for

coloring the text if dialog_vars.colors is set. This is not necessarily the number of bytes in a string.

const char * string

is the string to measure.

dlg_count_wchars

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

Returns the number of wide-characters in the string.

const char * string

is the string to measure.

dlg_create_rc
Create a configuration file, i.e., write internal tables to a file which can be read back by dialog as an rc-

file.

const char * filename

is the name of the file to write to.

dlg_ctl_size
If dialog_vars.size_err is true, check if the given window size is too large to fit on the screen. If so,

exit with an error reporting the size of the window.

int height

is the window’s height

int width

is the window’s width

dlg_default_button
If dialog_vars.default_button is positive, return the button-index for that button code, using

dlg_ok_buttoncode to test indices starting with zero. Otherwise (or if no match was found for the

button code), return zero.

dlg_default_formitem
If dialog_vars.default_item is not null, find that name by matching the name field in the list of form

items. If found, return the index of that item in the list. Otherwise, return zero.

DIALOG_FORMITEM * items

is the list of items to search. It is terminated by an entry with a null name field.

dlg_default_item
This function is obsolete, provided for library-compatibility. It is replaced by dlg_default_formitem
and dlg_default_listitem.

char ** items

is the list of items to search.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int llen

is the number of items in each group, e.g., the second array index.

dlg_defaultno_button
If dialog_vars.defaultno is true, and dialog_vars.nocancel is not, find the button-index for the "Cancel"

button. Otherwise, return the index for "OK" (always zero).

dlg_del_window
Remove a window, repainting everything else.

WINDOW * win

is the window to remove.

dlg_der_window
create a derived window, e.g., for an input area of a widget

WINDOW * win

is the parent window

int height

is the subwindow’s height

int width

is the subwindow’s width

int y is the subwindow’s top-row

int x is the subwindow’s left-column

dlg_does_output
This is called each time a widget is invoked which may do output. It increments

dialog_state.output_count, so the output function in dialog can test this and add a separator.

dlg_draw_arrows
Draw up/down arrows on a window, e.g., for scrollable lists. It calls dlg_draw_arrows2 using the

menubox_color and menubox_border_color attributes.

WINDOW * dialog

is the window on which to draw an arrow.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int top_arrow

is true if an up-arrow should be drawn at the top of the window.

int bottom_arrow

is true if an down-arrow should be drawn at the bottom of the window.

int x is the zero-based column within the window on which to draw arrows.

int top

is the zero-based row within the window on which to draw up-arrows as well as a horizontal line

to show the window’s top.

int bottom

is the zero-based row within the window on which to draw down-arrows as well as a horizontal

line to show the window’s bottom.

dlg_draw_arrows2
Draw up/down arrows on a window, e.g., for scrollable lists.

WINDOW * dialog

is the window on which to draw an arrow.

int top_arrow

is true if an up-arrow should be drawn at the top of the window.

int bottom_arrow

is true if an down-arrow should be drawn at the bottom of the window.

int x is the zero-based column within the window on which to draw arrows.

int top

is the zero-based row within the window on which to draw up-arrows as well as a horizontal line

to show the window’s top.

int bottom

is the zero-based row within the window on which to draw down-arrows as well as a horizontal

line to show the window’s bottom.

chtype attr

is the window’s background attribute.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

chtype borderattr

is the window’s border attribute.

dlg_draw_bottom_box
Draw a partial box at the bottom of a window, e.g., to surround a row of buttons. It is designed to

merge with an existing box around the whole window (see dlg_draw_box), so it uses tee-elements

rather than corner-elements on the top corners of this box.

WINDOW * win

is the window to update.

dlg_draw_bottom_box2
Draw a partial box at the bottom of a window, e.g., to surround a row of buttons. It is designed to

merge with an existing box around the whole window (see dlg_draw_box2), so it uses tee-elements

rather than corner-elements on the top corners of this box.

WINDOW * win

is the window to update.

chtype on_left

is used to color the upper/left edges of the box, i.e., the tee-element and horizontal line

chtype on_right

is used to color the right edge of the box, i.e., the tee-element

chtype on_inside

is used to fill-color the inside of the box

dlg_draw_box
Draw a rectangular box with line drawing characters.

WINDOW * win

is the window to update.

int y is the top row of the box.

int x is the left column of the box.

int height

is the height of the box.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int width

is the width of the box.

chtype boxchar

is used to color the right/lower edges. It also is fill-color used for the box contents.

chtype borderchar

is used to color the upper/left edges.

dlg_draw_box2
Draw a rectangular box with line drawing characters.

WINDOW * win

is the window to update.

int y is the top row of the box.

int x is the left column of the box.

int height

is the height of the box.

int width

is the width of the box.

chtype boxchar

is used to fill-color for the box contents.

chtype borderchar

is used to color the upper/left edges.

chtype borderchar2

is used to color the right/lower edges.

dlg_draw_buttons
Print a list of buttons at the given position.

WINDOW * win

is the window to update.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int y is the starting row.

int x is the starting column.

const char ** labels

is a list of (pointers to) button labels terminated by a null pointer.

int selected

is the index within the list of the selected button.

int vertical

is true if the buttons are arranged in a column rather than a row.

int limit

is the number of columns (or rows if vertical) allowed for the display.

dlg_draw_helpline
draw the text in dialog_vars.help_line at the bottom of the given window.

WINDOW * dialog

is the window to modify.

bool decorations

if true, allow room for the scrolling arrows.

dlg_draw_scrollbar
If dialog_state.use_scrollbar is set, draw a scrollbar on the right margin of windows holding scrollable

data. Also (whether or not the scrollbar is drawn), annotate the bottom margin of the window with the

percentage of data by the bottom of that window, and call dlg_draw_arrows2 to put markers on the

window showing when more data is available.

WINDOW * win

is the window in which the data is scrolled. Because left, right, top, bottom are passed as

parameters, this window can contain additional data.

long first_data

is the zero-based index to the first row of data in the current window.

long this_data

is the zero-based index to the current row of data.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

long next_data

is the zero-based index to the next data after the current row.

long total_data

is the total number of rows of data.

int left

is the zero-based left margin/column of the window. The up/down arrows are draw inset by 5

columns from this point.

int right

is the zero-based right margin/column of the window. The scrollbar is drawn flush against this

column.

int top

is the zero-based row within the window on which to draw up-arrows as well as a horizontal line

to show the window’s top.

int bottom

is the zero-based row within the window on which to draw down-arrows as well as a horizontal

line to show the window’s bottom.

chtype attr

is the window’s background attribute.

chtype borderattr

is the window’s border attribute.

dlg_draw_shadow
Draw shadows along the right and bottom edge of a window to give it a 3-dimensional look. (The

height, etc., may not be the same as the window’s actual values).

WINDOW * win

is the window to update.

int height

is the height of the window.

int width

is the width of the window.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int y is the top row of the window.

int x is the left column of the window.

dlg_draw_title
Draw a title centered at the top of the window.

WINDOW * win

is the window to update.

const char * title

is the title string to display at the top of the widget.

dlg_dummy_menutext
This is a utility function which supports the --inputmenu option of the dialog program. If

dialog_vars.input_menu is set, dialog_menu passes this pointer to dlg_menu as the rename_menutext

parameter. Otherwise, it passes dlg_dummy_menutext.

The function should only return DLG_EXIT_ERROR.

DIALOG_LISTITEM * items

is the list of menu items

int current

is the index of the currently-selected item

char * newtext

is the updated text for the menu item

dlg_dump_keys
Write all user-defined key-bindings to the given stream, e.g., as part of dlg_create_rc.

FILE * fp

is the stream on which to write the bindings.

dlg_dump_window_keys
Write all user-defined key-bindings to the given stream, e.g., as part of dlg_create_rc.

FILE * fp

is the stream on which to write the bindings.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

WINDOW * win

is the window for which bindings should be dumped. If it is null, then only built-in bindings are

dumped.

dlg_eat_argv
Remove one or more items from an argument vector.

int * argcp

in/out parameter giving the length of the argument vector. char *** argvp in/out parameter

pointing to the argument vector. int start starting index. int count number of arguments to

remove.

dlg_edit_offset
Given the character-offset in the string, returns the display-offset where dialog should position the

cursor. In this context, "characters" may be multicolumn, since the string can be a multibyte character

string.

char * string

is the string to analyze

int offset

is the character-offset

int x_last

is a limit on the column positions that can be used, e.g., the window’s size.

dlg_edit_string
Updates the string and character-offset, given various editing characters or literal characters which are

inserted at the character-offset. Returns true if an editing change was made (and the display should be

updated), and false if the key was something like KEY_ENTER, which is a non-editing action outside

this function.

char * string

is the (multibyte) string to update

int * offset

is the character-offset

int key

is the editing key

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int fkey

is true if the editing key is a function-key

bool force

is used in a special loop case by calling code to force the return value of this function when a

function-key code 0 is passed in.

dlg_exit
Given an internal exit code, check if the corresponding environment variable is set. If so, remap the

exit code to match the environment variable. Finally call exit with the resulting exit code.

int code

is the internal exit code, e.g., DLG_EXIT_OK, which may be remapped.

The dialog program uses this function to allow shell scripts to remap the exit codes so they can

distinguish ESC from ERROR.

dlg_exitcode2s
Returns the name of an exit-code, e.g., "OK" for DLG_EXIT_OK.

int code

is an exit-code for dialog as defined in <dialog.h>.

dlg_exitname2n
Returns an exit-code as the reverse of dlg_exitcode2n, e.g., 0 (DLG_EXIT_OK) for the "OK" string.

const char * name

is the name of an exit-code for dialog as defined in <dialog.h> but omitting the "DLG_EXIT_"

prefix.

dlg_exit_buttoncode
Map the given button index for dlg_exit_label into dialog’s exit-code.

int button

is the button index

dlg_exit_label
Return a list of button labels. If dialog_vars.extra_button is true, return the result of dlg_ok_labels.

Otherwise, return a list with the "Exit" label and (if dialog_vars.help_button is set) the "Help" button as

well.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

dlg_exiterr
Quit program killing all tailboxbg widgets.

const char * fmt

is the format of the printf-like message to write.

...
are the variables to apply to the fmt format.

dlg_find_index
Given the character-offset to find in the list, return the corresponding array index.

const int *list

contains a list of character-offsets, i.e., indices into a string that denote the beginning of

multibyte characters.

int limit

is the last index into list to search.

int to_find

is the character-offset to find.

dlg_finish_string
If DIALOG_STATE.finish_string is true, this function discards data used to speed up layout

computations.

const char * string

is the address of the string whose data should be discarded. The address rather than contents is

used as the unique identifier because some of the caching is used for editable input-fields.

dlg_flush_getc
Cancel the local data saved by dlg_last_getc.

dlg_editbox
This entrypoint provides the --editbox functionality without the limitations of dialog’s command-line

syntax (compare to dialog_editbox).

const char * title

is the title string to display at the top of the widget.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

char *** list

is a pointer to an array of char * pointers. The array is allocated by the caller, and so are the

strings to which it points. The dlg_editbox function may reallocate the array and the strings.

int * rows

points to the nominal length of list. The referenced value is updated iflist is reallocated.

int height

is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width

is the desired width of the box. If zero, the height is adjusted to use the available screen size.

dlg_form
This entrypoint provides the --form functionality without the limitations of dialog’s command-line

syntax (compare to dialog_form).

const char * title

is the title string to display at the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width

is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int form_height

is the minimum height to reserve for displaying the list. If zero, it is computed based on the

given height and width.

int item_no

is the number of items.

DIALOG_FORMITEM * items

This is a list of the items to display in the form.

int * current_item

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

The widget sets the referenced location to the index of the current display item (cursor) when it

returns.

dlg_free_columns
Free data allocated by dlg_align_columns.

char **target

This is the array which was reformatted. It points to the first string to free.

int per_row

This is the size of the struct for each row of the array.

int num_rows

This is the number of rows in the array.

dlg_free_formitems
Free memory owned by a list of DIALOG_FORMITEM’s.

DIALOG_FORMITEM * items

is the list to free.

dlg_free_gauge
Remove the gauge widget from the screen and free its associated memory.

void *objptr

points to the gauge widget.

dlg_getc
Read a character from the given window. Handle repainting here (to simplify things in the calling

application). Also, if input-callback(s) are set up, poll the corresponding files and handle the updates,

e.g., for displaying a tailbox. Returns the key-code.

WINDOW * win

is the window within which to read.

int * fkey

as a side-effect, set this to true if the key-code is really a function-key.

dlg_getenv_num
Get a number from the environment:

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

+o If the caller provides a pointer in the second parameter, return success/failure for the function

return, and the actual value via the pointer. Use this for decoding arbitrary numbers, e.g., negative

or zero.

+o If the caller does not provide a pointer, return the decoded value for the function-return. Use this

when only values greater than zero are useful.

char * name

is the name of the environment-variable to retrieve.

int * value

is the optional pointer to a return-value.

dlg_getenv_str
Get a string from the environment, rejecting those which are entirely blank.

char * name

is the name of the environment-variable to retrieve.

dlg_get_attrs
extract the video attributes from the given window.

WINDOW * win

is the window from which to get attributes.

dlg_getc_callbacks
passes the given key-code ch to the current window that has established a callback. If the callback

returns zero, remove it and try the next window. If no more callbacks remain, return. If any callbacks

were found, return true, otherwise false.

int ch is the key-code

int fkey

is true if the key is a function-key

int * result

is used to pass an exit-code to the caller, which should pass that via dlg_exit.

dlg_index_columns
Build a list of the display-columns for the given multibyte string’s characters.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

const char * string

is the string to analyze

dlg_index_wchars
Build an index of the wide-characters in the string, so the caller can easily tell which byte-offset begins

a given wide-character.

const char * string

is the string to analyze

dlg_item_help
Draw the string for the dialog_vars.item_help feature.

const char * txt

is the help-message

dlg_keep_tite
This performs the check and modifications for the command-line option "--keep-tite", used in

init_dialog as well as for the command-line option --erase-on-exit.

FILE * output

is the output stream used for displaying widgets. It is either stdout or stderr, depending on the

--stdout option.

dlg_killall_bg
If dialog has callbacks active, purge the list of all that are not marked to keep in the background. If any

remain, run those in a background process.

int * retval

stores the exit-code to pass back to the caller.

dlg_last_getc
returns the most recent character that was read via dlg_getc.

dlg_limit_columns
Given a column limit, count the number of wide characters that can fit into that limit. The offset is

used to skip over a leading character that was already written.

const char * string

is the string to analyze

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int limit

is the column limit

int offset

is the starting offset from which analysis should continue

dlg_lookup_key
Check for a key-binding. If there is no binding associated with the widget, it simply returns the given

curses-key. Otherwise, it returns the result of the binding

WINDOW * win

is the window on which the binding is checked

int curses_key

is the curses key-code

int * dialog_key

is the corresponding dialog internal code (see DLG_KEYS_ENUM in dlg_key.h).

dlg_max_input
Limit the parameter according to dialog_vars.max_input

int max_len

is the value to limit

dlg_match_char
Match a given character against the beginning of the string, ignoring case of the given character. The

matching string must begin with an uppercase character.

int ch is the character to check

const char * string

is the string to search

dlg_menu
This entrypoint provides the --menu functionality without the limitations of dialog’s command-line

syntax (compare to dialog_menu).

const char * title

is the title string to display at the top of the widget.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width

is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int menu_height

is the minimum height to reserve for displaying the list. If zero, it is computed based on the

given height and width.

int item_no

is the number of items.

DIALOG_LISTITEM * items

This is a list of the items to display in the form.

int * current_item

The widget sets the referenced location to the index of the current display item (cursor) when it

returns.

DIALOG_INPUTMENU rename_menutext

If this is not dlg_dummy_menutext, the widget acts like an inputmenu widget, providing an extra

"Rename" button, which activates an edit feature on the selected menu item.

dlg_move_window
Moves/resizes the given window to the given position and size.

WINDOW *win

is the window to move/resize.

WINDOW *height

is the height of the resized window.

WINDOW *width

is the width of the resized window.

WINDOW *y

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

y-ordinate to use for the repositioned window.

WINDOW *x

x-ordinate to use for the repositioned window.

dlg_mouse_bigregion
Retrieve the big-region under the pointer.

int y is the row on which the mouse click occurred

int x is the column on which the mouse click occurred

dlg_mouse_free_regions
Free the memory associated with mouse regions.

dlg_mouse_mkbigregion
Creates a region on which the mouse-clicks will return a specified code.

int y is the top-row of the region.

int x is the left-column of the region.

int height

is the height of the region.

int width

is the width of the region.

int code

is a code used to make the region unique within a widget

int step_x

is used in modes 2 (columns) and 3 (cells) to determine the width of a column/cell.

int step_y

is currently unused

int mode

is used to determine how the mouse position is translated into a code (like a function-key):

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

1 index by lines

2 index by columns

3 index by cells

dlg_mouse_mkregion
int y is the top-row of the region.

int x is the left-column of the region.

int height

is the height of the region.

int width

is the width of the region.

int code

is a code used to make the region unique within a widget

dlg_mouse_region
Retrieve the frame under the mouse pointer

int y is the row of the mouse-click

int x is the column of the mouse-click

dlg_mouse_setbase
Sets a base for subsequent calls to dlg_mouse_mkregion, so they can make regions relative to the start

of a given window.

int x is the left-column for the base

int y is the top-row for the base

dlg_mouse_setcode
Sets a value used internally by dlg_mouse_mkregion which is added to the code parameter. By

providing different values, e.g., multiples of KEY_MAX, it is possible to support multiple "big"

regions in a widget. The buildlist widget uses this feature to recognize mouse-clicks in the left/right

panes.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int code

is the value to add to dlg_mouse_mkregion’s code parameter.

dlg_mouse_wgetch
is a wrapper for dlg_getc which additionally maps mouse-clicks (if the curses library supports those)

into extended function-keys which encode the position according to the mode in

dlg_mouse_mkbigregion. Returns the corresponding key-code.

WINDOW * win

is the window on which to perform the input

int * fkey

the referenced location is set to true if the key-code is an actual or extended (mouse) function-

key.

dlg_mouse_wgetch_nowait
This is a non-blocking variant of dlg_mouse_wgetch.

WINDOW * win

is the window on which to perform the input

int * fkey

the referenced location is set to true if the key-code is an actual or extended (mouse) function-

key.

dlg_need_separator
Check if an output-separator is needed. If dialog_vars.output_separator is set, return true. Otherwise,

if dialog_vars.input_result is nonempty, return true. If neither, return false.

dlg_new_modal_window
Create a modal window, optionally with a shadow. The shadow is created if dialog_state.use_shadow
is true.

WINDOW * parent

is the parent window (usually the top-level window of a widget)

int height

is the window’s height

int width

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

is the window’s width

int y is the window’s top-row

int x is the window’s left-column

dlg_new_window
Create a window, optionally with a shadow. The shadow is created if dialog_state.use_shadow is true.

int height

is the window’s height

int width

is the window’s width

int y is the window’s top-row

int x is the window’s left-column

dlg_next_button
Return the next index in the list of labels.

const char ** labels

is a list of (pointers to) button labels terminated by a null pointer.

int button

is the current button-index.

dlg_next_ok_buttonindex
Assuming that the caller is using dlg_ok_labels to list buttons, find the next index in the list of buttons.

int current

is the current index in the list of buttons

int extra

if negative, provides a way to enumerate extra active areas on the widget.

dlg_ok_buttoncode
Map the given button index for dlg_ok_labels into dialog’s exit-code.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int button

is the button-index (which is not necessarily the same as the index in the list of labels).

dlg_ok_button_key
Calls dlg_button_key with the "Cancel" button disabled, e.g., for the textbox widget.

dlg_ok_label
Returns a list with the "Ok" label, and if dialog_vars.help_button is true, the "Help" label as well.

dlg_ok_labels
Return a list of button labels for the OK/Cancel group of widgets.

dlg_ordinate
Decode the string as an integer, decrement if greater than zero to make a curses-ordinate from a dialog-

ordinate.

dlg_parse_bindkey
Parse the parameters of the "bindkeys" configuration-file entry. This expects widget name which may

be "*", followed by curses key definition and then dialog key definition.

char * params

is the parameter string to parse.

dlg_parse_rc
Parse the configuration file and set up variables.

dlg_popen
Open a pipe which ties the standard error and output together. The popen function captures only the

standard output of a command.

const char *command

The shell command to run.

const char *type

Like popen, "r" is used to read, and "w" is used to write.

dlg_prev_button
Return the previous index in the list of labels.

const char ** labels

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

is a list of (pointers to) button labels terminated by a null pointer.

int button

is the current button index

dlg_print_listitem
This is a helper function used for the various "list" widgets, e.g., checklist, menu, buildlist, treeview.

Each list-widget has "tag" and "description" values for each item which can be displayed. If

dialog_vars.no_tags is true, the "tag" value is not shown. The first character of the first value shown

(tag or description) is highlighted to indicate that the widget will match it for quick navigation.

WINDOW *win

the window in which to display the text

const char *text

the value to display

int climit

the number of columns available for printing the text

bool first

true if this is the first call (for "tag" and "description"), and the first character of the value should

be highlighted.

int selected

nonzero if the text should be displayed using the "selected" colors

dlg_print_scrolled
This is a wrapper for dlg_print_autowrap which allows the user to scroll too-long prompt text up/down.

See dlg_check_scrolled for a function which updates the offset variable used as a parameter here. It

complements this function; you need both. If pauseopt is set, this function returns an updated last

parameter, needed for dlg_check_scrolled calls.

WINDOW * win

is the window to update.

const char * prompt

is the string to print

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int offset

is the starting line-number to write wrapped text.

int height

is the available height for writing the wrapped text

int width

is the width that the wrapping should occur in

int pauseopt

is true if the extra functionality for scrolling should be enabled. If false, this calls

dlg_print_autowrap without doing any scrolling.

dlg_print_line
Print one line of the prompt in the window within the limits of the specified right margin. The line will

end on a word boundary and a pointer to the start of the next line is returned, or a NULL pointer if the

end of *prompt is reached.

WINDOW *win

is the window to update.

chtype *attr

holds the starting attributes, and is updated to reflect the final attributes applied to the string.

const char *prompt

is the string to print

int lm

is the left margin.

int rm

is the right margin

int *x

returns the ending x-ordinate.

dlg_prev_ok_buttonindex
Find the previous button index in the list from dlg_ok_labels.

int current

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

is the current index

int extra

if negative provides a way to enumerate extra active areas on the widget.

dlg_print_autowrap
Print a string of text in a window, automatically wrap around to the next line if the string is too long to

fit on one line. Note that the string may contain embedded newlines. The text is written starting at the

top of the window.

WINDOW * win

is the window to update.

const char * prompt

is the string to print

int height

is the nominal height the wrapped string is limited to

int width

is the width that the wrapping should occur in

dlg_print_size
If dialog_vars.print_siz is true, print the given height/width (from a widget) to dialog_state.output, e.g.,

Size: height, width.

int height

is the window’s height

int width

is the window’s width

dlg_print_text
Print up to cols columns from text, optionally rendering dialog’s escape sequences for attributes and

color.

WINDOW * win

is the window to update.

const char * txt

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

is the string to print

int col

is the column limit

chtype * attr

holds the starting attributes, and is updated to reflect the final attributes applied to the string.

dlg_progressbox
implements the "--prgbox" and "--progressbox" options.

const char * title

is the title on the top of the widget.

const char * cprompt

is the prompt text shown within the widget. If empty or null, no prompt is shown.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

int pauseopt

if true, an "OK" button will be shown, and the dialog will wait for it to complete. With an "OK"

button, it is denoted a "programbox", without an "OK" button, it is denoted a "progressbox".

FILE * fp

is the file pointer, which may be a pipe or a regular file.

dlg_put_backtitle
Display the background title if dialog_vars.backtitle is non-null. The background title is shown at the

top of the screen.

dlg_reallocate_gauge
Allocates or reallocates a gauge widget (see dlg_allocate_gauge). Use dlg_update_gauge to display the

result.

void ** objptr

If the pointer referenced by this parameter is null, the function creates a new gauge widget using

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

dlg_allocate_gauge. Otherwise, it updates the title and cprompt values, reusing the window from

the previous call on this function. As a side-effect, the function stores the updated object-pointer

via the objptr parameter.

const char * title

is the title string to display at the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width

is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int percent

is the percentage to show in the progress bar.

dlg_register_buttons
The widget developer should call this function after dlg_register_window, for the list of button labels

associated with the widget. One may bind a key to a button, e.g., "OK" for DLGK_OK,

WINDOW * win

is the window with which to associate the buttons

const char * name

is the widget’s binding name (usually the name of the widget).

const char ** buttons

is the list of buttons

dlg_register_window
For a given named widget’s window, associate a binding table.

WINDOW * win

is the window with which to associate the buttons

const char * name

is the widget’s binding name (usually the name of the widget).

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

DLG_KEYS_BINDING * binding

is the binding table

dlg_remove_callback
Remove a callback.

DIALOG_CALLBACK * p

contains the callback information.

dlg_renamed_menutext
This is a utility function which supports the --inputmenu option of the dialog program. If

dialog_vars.input_menu is set, dialog_menu passes this pointer to dlg_menu as the rename_menutext

parameter. Otherwise, it passes dlg_dummy_menutext.

The function should add "RENAMED" to dialog_vars.input_result , followed by the menu item’s name

and the newtext value (with a space separating the three items), and return DLG_EXIT_EXTRA.

DIALOG_LISTITEM * items

is the list of menu items

int current

is the index of the currently-selected item

char * newtext

is the updated text for the menu item

dlg_reset_timeout
Calls wtimeout with the value saved for a window in the last call to dlg_set_timeout.

dlg_restore_vars
Restore dialog’s variables from the given variable (see dialog_save_vars).

DIALOG_VARS * save

is the variable from which to restore.

The DIALOG_VARS.input_length and DIALOG_VARS.input_result members are treated specially,

since these are used by a widget to pass data to the caller. They are not modified by this function.

dlg_result_key
Test a dialog internal keycode to see if it corresponds to one of the push buttons on the widget such as

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

"OK". This is only useful if there are user-defined key bindings, since there are no built-in bindings

that map directly to DLGK_OK, etc. Return true if a mapping was done.

int dialog_key

is the dialog key to test

int fkey

is true if this is a function key

int * resultp

store the result of the mapping in the referenced location.

dlg_save_vars
Save dialog’s variables into the given variable (see dlg_restore_vars).

DIALOG_VARS * save

is the variable into which to save.

dlg_set_focus
Set focus on the given window, making it display above other windows on the screen.

WINDOW * parent

is the parent window (usually the top-level window of a widget)

WINDOW * win

is the window on which to place focus (usually a subwindow of a widget)

dlg_set_result
Setup a fixed-buffer for the result in dialog_vars.input_result

const char * string

is the new contents for the result

dlg_set_timeout
Calls wtimeout to establish a preferred timeout for nonblocking reads, e.g., to allow the gauge widget

to handle window-resizing events. The dlg_may_resize function temporarily overrides this value, to

allow it to skip over the error codes returned while the ncurses library processes window-resizing

events. It restores the value established in this call by calling dlg_restore_timeout.

WINDOW * win

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

is the window whose input-timeout should be set

bool will_getc

is true if the widget is expected to read keyboard characters. Some (such as the gauge widget) do

not.

dlg_show_string
Displays the string, shifted as necessary, to fit within the box and show the current character-offset.

WINDOW * win

is the window within which to display

const char * string

is the string to display

int offset

is the starting (character, not bytes) offset

chtype attr

is the window attribute to use for the string

int y_base

beginning row on screen

int x_base

beginning column on screen

int x_last

number of columns on screen

bool hidden

if true, do not echo input

bool force

if true, force repaint

dlg_strclone
duplicate the string, like strdup.

const char * cprompt

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

is the string to duplicate

dlg_strcmp
compare two strings, ignoring case.

const char * a

is one string

const char * b

is the other string

dlg_string_to_argv
Convert a string to an argument vector returning an index (which must be freed by the caller). The

string is modified:

+o Blanks between arguments are replaced by nulls.

+o Normally arguments are separated by blanks; however you can double-quote an argument to

enclose blanks. The surrounding double-quotes are removed from the string.

+o A backslash preceding a double-quote within double-quotes is removed.

+o A backslash preceding a newline outside double-quotes is removed.

+o Except for special cases, backslashes are preserved in the strings, since other dialog functions

interpret backslashes, e.g., for colors.

char *blob

is the string to convert.

dlg_sub_window
create a subwindow, e.g., for an input area of a widget

WINDOW * win

is the parent window

int height

is the subwindow’s height

int width

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

is the subwindow’s width

int y is the subwindow’s top-row

int x is the subwindow’s left-column

dlg_tab_correct_str
If the dialog_vars.tab_correct is true, convert tabs to single spaces. Return the converted result. The

caller is responsible for freeing the string.

char * prompt

is the string to convert

dlg_trace
If the parameter is non-null, opens a trace file with that name and stores the file pointer in

dialog_state.trace.

dlg_trace_2n
logs a numeric value as a comment.

char * name

is the name to log in the comment.

int value

is the value to log in the comment.

dlg_trace_2s
logs a string value as a comment. If the value contains embedded newlines, the comment is continued

with "#+" markers.

char * name

is the name to log in the comment.

int value

is the value to log in the comment.

dlg_trace_chr
If dialog_state.trace is set, translate the parameters into a printable representation, log it on a "chr" line.

int ch is the nominal keycode value.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int fkey

is nonzero if the value is really a function key. Some of these may be values declared in the

DLG_KEYS_ENUM.

dlg_trace_msg
Write a formatted message to the trace file.

const char * fmt

is the format of the printf-like message to write.

...
are the variables to apply to the fmt format.

Use the DLG_TRACE macro for portability, in case the trace feature is not compiled into the library.

It uses an extra level of parentheses to work with a variable number of parameters, e.g.,

DLG_TRACE(("this is dialog version %s\n", dialog_version()));

dlg_trace_va_msg
Write a formatted message to the trace file.

const char *fmt

is the format of the printf-like message to write.

va_list ap

are the variables to apply to the fmt format.

This is used in dlg_exiterr to capture error messages in the trace file:

va_start(ap, fmt);

dlg_trace_msg("## Error: ");

dlg_trace_va_msg(fmt, ap);

va_end(ap);

Unlike dlg_trace_msg, an extra macro is not needed.

dlg_ttysize
Returns the screensize without using curses. That allows the function to be used before initializing the

screen.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

dlg_trace_win
If dialog_state.trace is set, log a printable picture of the given window.

dlg_treeview
This is an alternate interface to ’treeview’ which allows the application to read the list item states back

directly without putting them in the output buffer.

const char * title

is the title on the top of the widget.

const char * cprompt

is the prompt text shown within the widget.

int height

is the desired height of the box. If zero, the height is based on the screen size.

int width

is the desired width of the box. If zero, the height is based on the screen size.

int list_height

is the minimum height to reserve for displaying the list. If zero, it is computed based on the

given height and width.

int item_no

is the number of rows in items.

DIALOG_LISTITEM * items

is the list of items, contain tag, name, and optionally help strings (if dialog_vars.item_help is

set). The initial selection state for each item is also in this list.

const char * states

This is a list of characters to display for the given states. Normally a buildlist provides true (1)

and false (0) values, which the widget displays as "*" and space, respectively. An application

may set this parameter to an arbitrary null-terminated string. The widget determines the number

of states from the length of this string, and will cycle through the corresponding display

characters as the user presses the space-bar.

int * depths

This is a list of depths of each item in the tree. It is a separate parameter from items to allow

reuse of the existing functions.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

int flag

is either FLAG_CHECK, for checklists (multiple selections), or FLAG_RADIO for radiolists (a

single selection).

int * current_item

The widget sets the referenced location to the index of the current display item (cursor) when it

returns.

dlg_trim_string
The dialog program uses this in each widget to adjust the message string, which may contain the

newline character (referred to as ’\n’) and/or the special substring "\n" (which can be translated into a

newline character).

There are several optional features:

+o Unless dialog_vars.nocollapse is set, each tab is converted to a space before other processing.

+o If dialog_vars.no_nl_expand is not set, and the string has "\n" substrings:

+o The function changes embedded "\n" substrings to ’\n’ characters.

The function preserves extra spaces after these substitutions. For instance, spaces following

a newline (substring or character) are preserved to use as an indentation.

+o If dialog_vars.cr_wrap is set, the function preserves ’\n’ newline characters. Otherwise, each

’\n’ newline character is converted to a space.

+o Otherwise, if dialog_vars.trim_whitespace is set:

+o This function strips all extra spaces to simplify justification.

+o If dialog_vars.cr_wrap is set, the function preserves ’\n’ newline characters. Otherwise, each

’\n’ newline character is converted to a space.

+o Finally (if dialog_vars.no_nl_expand is set, or the string does not contain "\n" substrings, and

dialog_vars.trim_whitespace is not set):

+o Unless dialog_vars.nocollapse is set, sequences of spaces are reduced to a single space.

char * src

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

is the string to trim

dlg_unregister_window
Remove the bindings for a given window.

WINDOW * win

is the window from which to remove bindings

dlg_update_gauge
Update a gauge widget to show a different percentage value.

void *objptr

points to the gauge object to update.

int percent

is the new percentage value to display.

dlg_will_resize
This filters out bursts of KEY_RESIZE values. Call this after dlg_getc returns KEY_RESIZE, to

improve performance.

dlg_yes_buttoncode
Map the given button index for dlg_yes_labels into dialog’s exit-code.

int button

is the button index

dlg_yes_labels
Return a list of buttons for Yes/No labels.

end_dialog
End use of dialog functions.

init_dialog
Do some initialization for dialog.

FILE *input

is the real tty input of dialog. Usually it is the standard input, but if --input-fd option is used, it

may be anything.

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

FILE *output

is where dialog will send its result. Usually it is the standard error, but if --stdout or --output-fd
is used, it may be anything.

SEE ALSO
dialog (1).

AUTHOR
Thomas E. Dickey

DIALOG(3) FreeBSD Library Functions Manual DIALOG(3)

$Date: 2021/01/17 18:02:44 $ DIALOG(3)

