
NAME
dpv - dialog progress view library

LIBRARY
library "libdpv"

SYNOPSIS
#include <dpv.h>

int

dpv(struct dpv_config *config, struct dpv_file_node *file_list);

void

dpv_free(void);

DESCRIPTION
The dpv library provides an interface for creating complex "gauge" widgets for displaying progress on

various actions. The dpv library can display progress with one of dialog(3), dialog(1), or Xdialog(1)

(ports/x11/xdialog).

The dpv() config argument properties for configuring global display features:

struct dpv_config {

uint8_t keep_tite; /* Cleaner exit for scripts */

enum dpv_display display_type; /* Def. DPV_DISPLAY_LIBDIALOG */

enum dpv_output output_type; /* Default DPV_OUTPUT_NONE */

int debug; /* Enable debug on stderr */

int display_limit; /* Files/page. Default -1 */

int label_size; /* Label size. Default 28 */

int pbar_size; /* Mini-progress size */

int dialog_updates_per_second; /* Default 16 */

int status_updates_per_second; /* Default 2 */

uint16_t options; /* Default 0 (none) */

char *title; /* Widget title */

char *backtitle; /* Widget backtitle */

char *aprompt; /* Append. Default NULL */

char *pprompt; /* Prefix. Default NULL */

char *msg_done; /* Default ‘Done’ */

char *msg_fail; /* Default ‘Fail’ */

char *msg_pending; /* Default ‘Pending’ */

DPV(3) FreeBSD Library Functions Manual DPV(3)

FreeBSD 14.0-RELEASE-p11 March 13, 2018 FreeBSD 14.0-RELEASE-p11

char *output; /* Output format string */

const char *status_solo; /* dialog(3) solo-status format.

* Default DPV_STATUS_SOLO */

const char *status_many; /* dialog(3) many-status format.

* Default DPV_STATUS_MANY */

/*

* Function pointer; action to perform data transfer

*/

int (*action)(struct dpv_file_node *file, int out);

};

enum dpv_display {

DPV_DISPLAY_LIBDIALOG = 0, /* Use dialog(3) (default) */

DPV_DISPLAY_STDOUT, /* Use stdout */

DPV_DISPLAY_DIALOG, /* Use spawned dialog(1) */

DPV_DISPLAY_XDIALOG, /* Use spawned Xdialog(1) */

};

enum dpv_output {

DPV_OUTPUT_NONE = 0, /* No output (default) */

DPV_OUTPUT_FILE, /* Read ‘output’ member as file path */

DPV_OUTPUT_SHELL, /* Read ‘output’ member as shell cmd */

};

The options member of the dpv() config argument is a mask of bit fields indicating various processing

options. Possible flags are:

DPV_TEST_MODE Enable test mode. In test mode, the action() callback of the config argument is

not called but instead simulated-data is used to drive progress. Appends

"[TEST MODE]" to the status line (to override, set the status_format member of

the dpv() config argument; for example, to DPV_STATUS_DEFAULT).

DPV_WIDE_MODE Enable wide mode. In wide mode, the length of the aprompt and pprompt

members of the dpv() config argument will bump the width of the gauge widget.

Prompts wider than the maximum width will wrap (unless using Xdialog(1)

(ports/x11/xdialog); see BUGS section below).

DPV_NO_LABELS Disables the display of labels associated with each transfer (label_size member

of dpv() config argument is ignored).

DPV(3) FreeBSD Library Functions Manual DPV(3)

FreeBSD 14.0-RELEASE-p11 March 13, 2018 FreeBSD 14.0-RELEASE-p11

DPV_USE_COLOR Force the use of color even if the display_type does not support color

(USE_COLOR environment variable is ignored).

DPV_NO_OVERRUN When enabled, callbacks for the current dpv_file_node are terminated when

action() returns 100 or greater (alleviates the need to change the status of the

current dpv_file_node but may also cause file truncation if the stream exceeds

expected length).

The file_list argument to dpv() is a pointer to a "linked-list", described in <dpv.h>:

struct dpv_file_node {

enum dpv_status status; /* status of read operation */

char *msg; /* display instead of "Done/Fail" */

char *name; /* name of file to read */

char *path; /* path to file */

long long length; /* expected size */

long long read; /* number units read (e.g., bytes) */

struct dpv_file_node *next;/* pointer to next (end with NULL) */

};

For each of the items in the file_list "linked-list" argument, the action() callback member of the dpv()

config argument is called. The action() function performs a "nominal" action on the file and return. The

return value of int represents the current progress percentage (0-100) for the current file.

The action() callback provides two variables for each call. file provides a reference to the current

dpv_file_node being processed. out provides a file descriptor where the data goes.

If the output member of the dpv() config argument was set to DPV_OUTPUT_NONE (default; when

invoking dpv()), the out file descriptor of action() will be zero and can be ignored. If output was set to

DPV_OUTPUT_FILE, out will be an open file descriptor to a file. If output was set to

DPV_OUTPUT_SHELL, out will be an open file descriptor to a pipe for a spawned shell program.

When out is greater than zero, write data that has been read back to out.

To abort dpv(), either from the action() callback or asynchronously from a signal handler, two globals

are provided via <dpv.h>:

extern int dpv_interrupt; /* Set to TRUE in interrupt handler */

extern int dpv_abort; /* Set to true in callback to abort */

These globals are not automatically reset and must be manually maintained. Do not forget to reset these

DPV(3) FreeBSD Library Functions Manual DPV(3)

FreeBSD 14.0-RELEASE-p11 March 13, 2018 FreeBSD 14.0-RELEASE-p11

globals before subsequent invocations of dpv() when making multiple calls from the same program.

In addition, the status member of the action() file argument can be used to control callbacks for the

current file. The status member can be set to any of the below from <dpv.h>:

enum dpv_status {

DPV_STATUS_RUNNING = 0, /* Running (default) */

DPV_STATUS_DONE, /* Completed */

DPV_STATUS_FAILED, /* Oops, something went wrong */

};

The default status is zero, DPV_STATUS_RUNNING, which keeps the callbacks coming for the current

file(). Setting ‘file->status’ to anything other than DPV_STATUS_RUNNING will cause dpv() to loop

to the next file, effecting the next callback, if any.

The action() callback is responsible for calculating percentages and (recommended) maintaining a dpv
global counter so dpv() can display throughput statistics. Percentages are reported through the int return

value of the action() callback. Throughput statistics are calculated from the below global int in <dpv.h>:

extern int dpv_overall_read;

Set this to the number of bytes that have been read for all files. Throughput information is displayed in

the status line (only available when using dialog(3)) at the bottom of the screen. See

DPV_DISPLAY_LIBDIALOG above.

Note that dpv_overall_read does not have to represent bytes. For example, the status_format can be

changed to display something other than "bytes" and increment dpv_overall_read accordingly (for

example, counting lines).

When dpv() is processing the current file, the length and read members of the action() file argument are

used for calculating the display of mini progress bars (if enabled; see pbar_size above). If the length

member of the current file is less than zero (indicating an unknown file length), a humanize_number(3)

version of the read member is used instead of a traditional progress bar. Otherwise a progress bar is

calculated as percentage read to file length. action() callback must maintain these member values for

mini-progress bars.

The dpv_free() function performs free(3) on private global variables initialized by dpv().

ENVIRONMENT
The below environment variables are referenced by dpv:

DPV(3) FreeBSD Library Functions Manual DPV(3)

FreeBSD 14.0-RELEASE-p11 March 13, 2018 FreeBSD 14.0-RELEASE-p11

DIALOG Override command string used to launch dialog(1) (requires DPV_DISPLAY_DIALOG)

or Xdialog(1) (ports/x11/xdialog) (requires DPV_DISPLAY_XDIALOG); default is

either ‘dialog’ (for DPV_DISPLAY_DIALOG) or ‘Xdialog’ (for

DPV_DISPLAY_XDIALOG).

DIALOGRC If set and non-NULL, path to ‘.dialogrc’ file.

HOME If ‘$DIALOGRC’ is either not set or NULL, used as a prefix to ‘.dialogrc’ (that is,

‘$HOME/.dialogrc’).

USE_COLOR If set and NULL, disables the use of color when using dialog(1). Does not apply to

Xdialog(1) (ports/x11/xdialog).

msg_done msg_fail msg_pending

Internationalization strings for overriding the default English strings ‘Done’, ‘Fail’, and

‘Pending’ respectively. To prevent their usage, explicitly set the msg_done, msg_fail,

and msg_pending members of dpv() config argument to default macros

(DPV_DONE_DEFAULT, DPV_FAIL_DEFAULT, and DPV_PENDING_DEFAULT)

or desired values.

FILES
$HOME/.dialogrc

SEE ALSO
dialog(1), Xdialog(1) (ports/x11/xdialog), dialog(3)

HISTORY
The dpv library first appeared in FreeBSD 10.2.

AUTHORS
Devin Teske <dteske@FreeBSD.org>

BUGS
Xdialog(1) (ports/x11/xdialog), when given both ‘--title title’ (see above ‘title’ member of struct

dpv_config) and ‘--backtitle backtitle’ (see above ‘backtitle’ member of struct dpv_config), displays the

backtitle in place of the title and vice-versa.

Xdialog(1) (ports/x11/xdialog) does not wrap long prompt texts received after initial launch. This is a

known issue with the ‘--gauge’ widget in Xdialog(1) (ports/x11/xdialog). Embed escaped newlines

within prompt text to force line breaks.

DPV(3) FreeBSD Library Functions Manual DPV(3)

FreeBSD 14.0-RELEASE-p11 March 13, 2018 FreeBSD 14.0-RELEASE-p11

dialog(1) does not display the first character after a series of escaped escape-sequences (for example,

‘‘\\n’’ produces ‘‘\’’ instead of ‘‘\n’’). This is a known issue with dialog(1) and does not affect dialog(3)

or Xdialog(1) (ports/x11/xdialog).

If an application ignores USE_COLOR when set and NULL before calling dpv() with color escape

sequences anyway, dialog(3) and dialog(1) may not render properly. Workaround is to detect when

USE_COLOR is set and NULL and either not use color escape sequences at that time or use unsetenv(3)

to unset USE_COLOR, forcing interpretation of color sequences. This does not effect Xdialog(1)

(ports/x11/xdialog), which renders the color escape sequences as plain text. See "embedded "\Z"

sequences" in dialog(1) for additional information.

DPV(3) FreeBSD Library Functions Manual DPV(3)

FreeBSD 14.0-RELEASE-p11 March 13, 2018 FreeBSD 14.0-RELEASE-p11

