
NAME
dtrace_sched - a DTrace provider for tracing CPU scheduling events

SYNOPSIS
sched:::change-pri(struct thread *, struct proc *, uint8_t);

sched:::dequeue(struct thread *, struct proc *, void *);

sched:::enqueue(struct thread *, struct proc *, void *, int);

sched:::lend-pri(struct thread *, struct proc *, uint8_t, struct thread *);

sched:::load-change(int, int);

sched:::off-cpu(struct thread *, struct proc *);

sched:::on-cpu();

sched:::preempt();

sched:::remain-cpu();

sched:::surrender(struct thread *, struct proc *);

sched:::sleep();

sched:::tick(struct thread *, struct proc *);

sched:::wakeup(struct thread *, struct proc *);

DESCRIPTION
The DTrace sched provider allows the tracing of events related to CPU scheduling in the 4BSD and

ULE schedulers.

The sched:::change-pri() probe fires when a thread’s active scheduling priority is about to be updated.

The first two arguments are the thread whose priority is about to be changed, and the corresponding

process. The third argument is the new absolute priority for the thread, while the current value is given

by args[0]->td_priority. The sched:::lend-pri() probe fires when the currently-running thread elevates

the priority of another thread via priority lending. The first two arguments are the thread whose priority

is about to be changed, and the corresponding process. The third argument is the new absolute priority

DTRACE_SCHED(4) FreeBSD Kernel Interfaces Manual DTRACE_SCHED(4)

FreeBSD 14.0-RELEASE-p6 April 18, 2015 FreeBSD 14.0-RELEASE-p6



for the thread. The fourth argument is the currently-running thread.

The sched:::dequeue() probe fires immediately before a runnable thread is removed from a scheduler run

queue. This may occur when the thread is about to begin execution on a CPU, or because the thread is

being migrated to a different run queue. The latter event may occur in several circumstances: the

scheduler may be attempting to rebalance load between multiple CPUs, the thread’s scheduling priority

may have changed, or the thread’s CPU affinity settings may have changed. The first two arguments to

sched:::dequeue() are the thread and corresponding process. The third argument is currently always

NULL. The sched:::enqueue() probe fires when a runnable thread is about to be added to a scheduler

run queue. Its first two arguments are the thread and corresponding process. The third argument is

currently always NULL. The fourth argument is a boolean value that is non-zero if the thread is

enqueued at the beginning of its run queue slot, and zero if the thread is instead enqueued at the end.

The sched:::load-change() probe fires after the load of a thread queue is adjusted. The first argument is

the cpuid for the CPU associated with the thread queue, and the second argument is the adjusted load of

the thread queue, i.e., the number of elements in the queue.

The sched:::off-cpu() probe is triggered by the scheduler suspending execution of the currently-running

thread, and the sched:::on-cpu() probe fires when the current thread has been selected to run on a CPU

and is about to begin or resume execution. The arguments to sched:::off-cpu() are the thread and

corresponding process selected to run following the currently-running thread. If these two threads are

the same, the sched:::remain-cpu() probe will fire instead.

The sched:::surrender() probe fires when the scheduler is called upon to make a scheduling decision by a

thread running on a different CPU, via an interprocessor interrupt. The arguments to this probe are the

interrupted thread and its corresponding process. This probe currently always fires in the context of the

interrupted thread.

The sched:::preempt() probe will fire immediately before the currently-running thread is preempted.

When this occurs, the scheduler will select a new thread to run, and one of the sched:::off-cpu() or

sched:::remain-cpu() probes will subsequently fire, depending on whether or not the scheduler selects

the preempted thread.

The sched:::sleep() probe fires immediately before the currently-running thread is about to suspend

execution and begin waiting for a condition to be met. The sched:::wakeup() probe fires when a thread

is set up to resume execution after having gone to sleep. Its arguments are the thread being awoken, and

the corresponding process.

The sched:::tick() fires before each scheduler clock tick. Its arguments are the currently-running thread

and its corresponding process.

DTRACE_SCHED(4) FreeBSD Kernel Interfaces Manual DTRACE_SCHED(4)

FreeBSD 14.0-RELEASE-p6 April 18, 2015 FreeBSD 14.0-RELEASE-p6



ARGUMENTS
The sched provider probes use the kernel types struct proc and struct thread to represent processes and

threads, respectively. These structures have many fields and are defined in sys/proc.h. In a probe body,

the currently-running thread can always be obtained with the curthread global variable, which has type

struct thread *. For example, when a running thread is about to sleep, the sched:::sleep() probe fires in

the context of that thread, which can be accessed using curthread. The curcpu global variable contains

the cpuid of the CPU on which the currently-running thread is executing.

EXAMPLES
The following script gives a breakdown of CPU utilization by process name:

sched:::on-cpu

{

self->ts = timestamp;

}

sched:::off-cpu

/self->ts != 0/

{

@[execname] = sum((timestamp - self->ts) / 1000);

self->ts = 0;

}

Here, DTrace stores a timestamp each time a thread is scheduled to run, and computes the time elapsed

in microseconds when it is descheduled. The results are summed by process name.

COMPATIBILITY
This provider is not compatible with the sched provider found in Solaris. In particular, the probe

argument types are native FreeBSD types, and the sched:::cpucaps-sleep(), sched:::cpucaps-wakeup(),

sched:::schedctl-nopreempt(), sched:::schedctl-preempt(), and sched:::schedctl-yield() probes are not

available in FreeBSD.

The sched:::lend-pri() and sched:::load-change() probes are specific to FreeBSD.

SEE ALSO
dtrace(1), sched_4bsd(4), sched_ule(4), SDT(9), sleepqueue(9)

HISTORY
The sched provider first appeared in FreeBSD 8.4 and 9.1.

DTRACE_SCHED(4) FreeBSD Kernel Interfaces Manual DTRACE_SCHED(4)

FreeBSD 14.0-RELEASE-p6 April 18, 2015 FreeBSD 14.0-RELEASE-p6



AUTHORS
This manual page was written by Mark Johnston <markj@FreeBSD.org>.

DTRACE_SCHED(4) FreeBSD Kernel Interfaces Manual DTRACE_SCHED(4)

FreeBSD 14.0-RELEASE-p6 April 18, 2015 FreeBSD 14.0-RELEASE-p6


