
NAME
dtrace_tcp - a DTrace provider for tracing events related to the tcp(4) protocol

SYNOPSIS
tcp:::accept-established(pktinfo_t *, csinfo_t *, ipinfo_t *, tcpsinfo_t *, tcpinfo_t *);

tcp:::accept-refused(pktinfo_t *, csinfo_t *, ipinfo_t *, tcpsinfo_t *, tcpinfo_t *);

tcp:::connect-established(pktinfo_t *, csinfo_t *, ipinfo_t *, tcpsinfo_t *, tcpinfo_t *);

tcp:::connect-refused(pktinfo_t *, csinfo_t *, ipinfo_t *, tcpsinfo_t *, tcpinfo_t *);

tcp:::connect-request(pktinfo_t *, csinfo_t *, ipinfo_t *, tcpsinfo_t *, tcpinfo_t *);

tcp:::receive(pktinfo_t *, csinfo_t *, ipinfo_t *, tcpsinfo_t *, tcpinfo_t *);

tcp:::send(pktinfo_t *, csinfo_t *, ipinfo_t *, tcpsinfo_t *, tcpinfo_t *);

tcp:::state-change(void *, csinfo_t *, void *, tcpsinfo_t *, void *, tcplsinfo_t *);

tcp:::siftr(siftrinfo_t *);

DESCRIPTION
The DTrace tcp provider allows users to trace events in the tcp(4) protocol implementation. This

provider is similar to the dtrace_ip(4) and dtrace_udp(4) providers, but additionally contains probes

corresponding to protocol events at a level higher than packet reception and transmission. All tcp probes

except for tcp:::state-change() and tcp:::siftr() have the same number and type of arguments. The last

three arguments are used to describe a TCP segment: the ipinfo_t argument exposes the version-agnostic

fields of the IP header, while the tcpinfo_t argument exposes the TCP header, and the tcpsinfo_t

argument describes details of the corresponding TCP connection state, if any. Their fields are described

in the ARGUMENTS section.

The tcp:::accept-established() probe fires when a remotely-initiated active TCP open succeeds. At this

point the new connection is in the ESTABLISHED state, and the probe arguments expose the headers

associated with the final ACK of the three-way handshake. The tcp:::accept-refused() probe fires when

a SYN arrives on a port without a listening socket. The probe arguments expose the headers associated

with the RST to be transmitted to the remote host in response to the SYN segment.

The tcp:::connect-established(), tcp:::connect-refused(), and tcp:::connect-request() probes are similar to

the ‘accept’ probes, except that they correspond to locally-initiated TCP connections. The

DTRACE_TCP(4) FreeBSD Kernel Interfaces Manual DTRACE_TCP(4)

FreeBSD 14.0-RELEASE-p11 July 2, 2023 FreeBSD 14.0-RELEASE-p11



tcp:::connect-established() probe fires when the SYN-ACK segment of a three-way handshake is

received from the remote host and a final ACK is prepared for transmission. This occurs immediately

after the local connection state transitions from SYN-SENT to ESTABLISHED. The probe arguments

describe the headers associated with the received SYN-ACK segment. The tcp:::connect-refused()

probe fires when the local host receives a RST segment in response to a SYN segment, indicating that

the remote host refused to open a connection. The probe arguments describe the IP and TCP headers

associated with the received RST segment. The tcp:::connect-request() probe fires as the kernel prepares

to transmit the initial SYN segment of a three-way handshake.

The tcp:::send() and tcp:::receive() probes fire when the host sends or receives a TCP packet,

respectively. As with the dtrace_udp(4) provider, tcp probes fire only for packets sent by or to the local

host; forwarded packets are handled in the IP layer and are only visible to the dtrace_ip(4) provider.

The tcp:::state-change() probe fires upon local TCP connection state transitions. Its first, third and fifth

arguments are currently always NULL. Its last argument describes the from-state in the transition, and

the to-state can be obtained from args[3]->tcps_state.

The tcp:::siftr() probe fires when a TCP segment is sent or received by the host. For a detailed

description see siftr(4). The siftrinfo_t argument provides the information about the TCP connection.

ARGUMENTS
The pktinfo_t argument is currently unimplemented and is included for compatibility with other

implementations of this provider. Its fields are:

uinptr_t pkt_addr Always set to 0.

The csinfo_t argument is currently unimplemented and is included for compatibility with other

implementations of this provider. Its fields are:

uintptr_t cs_addr Always set to 0.

uint64_t cs_cid A pointer to the struct inpcb for this packet, or NULL.

pid_t cs_pid Always set to 0.

The ipinfo_t type is a version-agnostic representation of fields from an IP header. Its fields are

described in the dtrace_ip(4) manual page.

The tcpsinfo_t type is used to provide a stable representation of TCP connection state. Some tcp probes,

such as tcp:::accept-refused(), fire in a context where there is no TCP connection; this argument is

DTRACE_TCP(4) FreeBSD Kernel Interfaces Manual DTRACE_TCP(4)

FreeBSD 14.0-RELEASE-p11 July 2, 2023 FreeBSD 14.0-RELEASE-p11



NULL in that case. Its fields are:

uintptr_t tcps_addr The address of the corresponding TCP control block. This is currently a

pointer to a struct tcpcb.

int tcps_local A boolean indicating whether the connection is local to the host. Currently

unimplemented and always set to -1.

int tcps_active A boolean indicating whether the connection was initiated by the local host.

Currently unimplemented and always set to -1.

uint16_t tcps_lport Local TCP port.

uint16_t tcps_rport

Remote TCP port.

string tcps_laddr Local address.

string tcps_raddr Remote address.

int32_t tcps_state Current TCP state. The valid TCP state values are given by the constants

prefixed with ‘TCPS_’ in /usr/lib/dtrace/tcp.d.

uint32_t tcps_iss Initial send sequence number.

uint32_t tcps_suna Initial sequence number of sent but unacknowledged data.

uint32_t tcps_snxt Next sequence number for send.

uint32_t tcps_rack Sequence number of received and acknowledged data.

uint32_t tcps_rnxt Next expected sequence number for receive.

u_long tcps_swnd TCP send window size.

int32_t tcps_snd_ws

Window scaling factor for the TCP send window.

u_long tcps_rwnd TCP receive window size.

DTRACE_TCP(4) FreeBSD Kernel Interfaces Manual DTRACE_TCP(4)

FreeBSD 14.0-RELEASE-p11 July 2, 2023 FreeBSD 14.0-RELEASE-p11



int32_t tcps_rcv_ws

Window scaling factor for the TCP receive window.

u_long tcps_cwnd TCP congestion window size.

u_long tcps_cwnd_ssthresh

Congestion window threshold at which slow start ends and congestion

avoidance begins.

uint32_t tcps_sack_fack

Last sequence number selectively acknowledged by the receiver.

uint32_t tcps_sack_snxt

Next selectively acknowledge sequence number at which to begin

retransmitting.

uint32_t tcps_rto Round-trip timeout, in milliseconds.

uint32_t tcps_mss Maximum segment size.

int tcps_retransmit A boolean indicating that the local sender is retransmitting data.

int tcps_srtt Smoothed round-trip time.

The tcpinfo_t type exposes the fields in a TCP segment header in host order. Its fields are:

uint16_t tcp_sport Source TCP port.

uint16_t tcp_dport Destination TCP port.

uint32_t tcp_seq Sequence number.

uint32_t tcp_ack Acknowledgement number.

uint8_t tcp_offset Data offset, in bytes.

uint8_t tcp_flags TCP flags.

uint16_t tcp_window TCP window size.

DTRACE_TCP(4) FreeBSD Kernel Interfaces Manual DTRACE_TCP(4)

FreeBSD 14.0-RELEASE-p11 July 2, 2023 FreeBSD 14.0-RELEASE-p11



uint16_t tcp_checksum

Checksum.

uint16_t tcp_urgent Urgent data pointer.

struct tcphdr *tcp_hdr A pointer to the raw TCP header.

The tcplsinfo_t type is used by the tcp:::state-change() probe to provide the from-state of a transition. Its

fields are:

int32_t tcps_state A TCP state. The valid TCP state values are given by the constants prefixed

with ‘TCPS_’ in /usr/lib/dtrace/tcp.d.

The siftrinfo_t type is used by the tcp:::siftr() probe to provide the state of the TCP connection. Its fields

are:

uint8_t direction Direction of packet that triggered the log message. Either "0" for in, or

"1" for out.

uint8_t ipver The version of the IP protocol being used. Either "1" for IPv4, or "2"

for IPv6.

uint16_t lport The TCP port that the local host is communicating via.

uint16_t rport The TCP port that the remote host is communicating via.

string laddr The IPv4 or IPv6 address of the local host.

string raddr The IPv4 or IPv6 address of the remote host.

uint32_t snd_cwnd The current congestion window (CWND) for the flow, in bytes.

uint32_t snd_wnd The current sending window for the flow, in bytes. The post scaled

value is reported, except during the initial handshake (first few packets),

during which time the unscaled value is reported.

uint32_t rcv_wnd The current receive window for the flow, in bytes. The post scaled

value is always reported.

uint32_t t_flags2 The current value of the t_flags2 for the flow.

DTRACE_TCP(4) FreeBSD Kernel Interfaces Manual DTRACE_TCP(4)

FreeBSD 14.0-RELEASE-p11 July 2, 2023 FreeBSD 14.0-RELEASE-p11



uint32_t snd_ssthresh The slow start threshold (SSTHRESH) for the flow, in bytes.

int conn_state A TCP state. The valid TCP state values are given by the constants

prefixed with ‘TCPS_’ in /usr/lib/dtrace/tcp.d.

uint32_t mss The maximum segment size (MSS) for the flow, in bytes.

uint32_t srtt The current smoothed RTT (SRTT) for the flow in microseconds.

u_char sack_enabled SACK enabled indicator. 1 if SACK enabled, 0 otherwise.

u_char snd_scale The current window scaling factor for the sending window.

u_char rcv_scale The current window scaling factor for the receiving window.

u_int t_flags The current value of the t_flags for the flow.

uint32_t rto The current retransmission timeout (RTO) for the flow in microseconds.

Divide by HZ to get the timeout length in seconds.

u_int snd_buf_hiwater The current size of the socket send buffer in bytes.

u_int snd_buf_cc The current number of bytes in the socket send buffer.

u_int rcv_buf_hiwater The current size of the socket receive buffer in bytes.

u_int rcv_buf_cc The current number of bytes in the socket receive buffer.

u_int sent_inflight_bytes The current number of unacknowledged bytes in-flight. Bytes

acknowledged via SACK are not excluded from this count.

int t_segqlen The current number of segments in the reassembly queue.

u_int flowid Flowid for the connection. A caveat: Zero ’0’ either represents a valid

flowid or a default value when the flowid is not being set.

u_int flowtype Flow type for the connection. Flowtype defines which protocol fields

are hashed to produce the flowid. A complete listing is available in

/usr/include/sys/mbuf.h under M_HASHTYPE_*.

DTRACE_TCP(4) FreeBSD Kernel Interfaces Manual DTRACE_TCP(4)

FreeBSD 14.0-RELEASE-p11 July 2, 2023 FreeBSD 14.0-RELEASE-p11



FILES
/usr/lib/dtrace/tcp.d DTrace type and translator definitions for all the probes of the tcp provider except

the siftr probe.

/usr/lib/dtrace/siftr.d DTrace type and translator definitions for the siftr probe of the tcp provider.

EXAMPLES
The following script logs TCP segments in real time:

#pragma D option quiet

#pragma D option switchrate=10hz

dtrace:::BEGIN

{

printf(" %3s %15s:%-5s %15s:%-5s %6s %s\n", "CPU",

"LADDR", "LPORT", "RADDR", "RPORT", "BYTES", "FLAGS");

}

tcp:::send

{

this->length = args[2]->ip_plength - args[4]->tcp_offset;

printf(" %3d %16s:%-5d -> %16s:%-5d %6d (", cpu, args[2]->ip_saddr,

args[4]->tcp_sport, args[2]->ip_daddr, args[4]->tcp_dport,

this->length);

printf("%s", args[4]->tcp_flags & TH_FIN ? "FIN|" : "");

printf("%s", args[4]->tcp_flags & TH_SYN ? "SYN|" : "");

printf("%s", args[4]->tcp_flags & TH_RST ? "RST|" : "");

printf("%s", args[4]->tcp_flags & TH_PUSH ? "PUSH|" : "");

printf("%s", args[4]->tcp_flags & TH_ACK ? "ACK|" : "");

printf("%s", args[4]->tcp_flags & TH_URG ? "URG|" : "");

printf("%s", args[4]->tcp_flags == 0 ? "null " : "");

printf("\b)\n");

}

tcp:::receive

{

this->length = args[2]->ip_plength - args[4]->tcp_offset;

printf(" %3d %16s:%-5d <- %16s:%-5d %6d (", cpu,

args[2]->ip_daddr, args[4]->tcp_dport, args[2]->ip_saddr,

args[4]->tcp_sport, this->length);

printf("%s", args[4]->tcp_flags & TH_FIN ? "FIN|" : "");

DTRACE_TCP(4) FreeBSD Kernel Interfaces Manual DTRACE_TCP(4)

FreeBSD 14.0-RELEASE-p11 July 2, 2023 FreeBSD 14.0-RELEASE-p11



printf("%s", args[4]->tcp_flags & TH_SYN ? "SYN|" : "");

printf("%s", args[4]->tcp_flags & TH_RST ? "RST|" : "");

printf("%s", args[4]->tcp_flags & TH_PUSH ? "PUSH|" : "");

printf("%s", args[4]->tcp_flags & TH_ACK ? "ACK|" : "");

printf("%s", args[4]->tcp_flags & TH_URG ? "URG|" : "");

printf("%s", args[4]->tcp_flags == 0 ? "null " : "");

printf("\b)\n");

}

The following script logs TCP connection state changes as they occur:

#pragma D option quiet

#pragma D option switchrate=25hz

int last[int];

dtrace:::BEGIN

{

printf(" %12s %-20s %-20s %s\n",

"DELTA(us)", "OLD", "NEW", "TIMESTAMP");

}

tcp:::state-change

{

this->elapsed = (timestamp - last[args[1]->cs_cid]) / 1000;

printf(" %12d %-20s -> %-20s %d\n", this->elapsed,

tcp_state_string[args[5]->tcps_state],

tcp_state_string[args[3]->tcps_state], timestamp);

last[args[1]->cs_cid] = timestamp;

}

tcp:::state-change

/last[args[1]->cs_cid] == 0/

{

printf(" %12s %-20s -> %-20s %d\n", "-",

tcp_state_string[args[5]->tcps_state],

tcp_state_string[args[3]->tcps_state], timestamp);

last[args[1]->cs_cid] = timestamp;

}

The following script uses the siftr probe to show the current value of CWND and SSTHRESH when a

packet is sent or received:

DTRACE_TCP(4) FreeBSD Kernel Interfaces Manual DTRACE_TCP(4)

FreeBSD 14.0-RELEASE-p11 July 2, 2023 FreeBSD 14.0-RELEASE-p11



#pragma D option quiet

#pragma D option switchrate=10hz

dtrace:::BEGIN

{

printf(" %3s %16s:%-5s %16s:%-5s %10s %10s\n",

"DIR", "LADDR", "LPORT", "RADDR", "RPORT", "CWND", "SSTHRESH");

}

tcp:::siftr

{

printf(" %3s %16s:%-5d %16s:%-5d %10u %10u\n",

siftr_dir_string[args[0]->direction],

args[0]->laddr, args[0]->lport, args[0]->raddr, args[0]->rport,

args[0]->snd_cwnd, args[0]->snd_ssthresh);

}

COMPATIBILITY
This provider is compatible with the tcp provider in Solaris.

SEE ALSO
dtrace(1), dtrace_ip(4), dtrace_sctp(4), dtrace_udp(4), dtrace_udplite(4), siftr(4), tcp(4), SDT(9)

HISTORY
The tcp provider first appeared in FreeBSD 10.0.

AUTHORS
This manual page was written by Mark Johnston <markj@FreeBSD.org>.

BUGS
The tcps_local and tcps_active fields of tcpsinfo_t are not filled in by the translator.

DTRACE_TCP(4) FreeBSD Kernel Interfaces Manual DTRACE_TCP(4)

FreeBSD 14.0-RELEASE-p11 July 2, 2023 FreeBSD 14.0-RELEASE-p11


