
NAME
editline - line editing user interface

DESCRIPTION
When a program using the editline(3) library prompts for an input string using the function el_wgets(3),

it reads characters from the terminal. Invalid input bytes that do not form characters are silently

discarded. For each character read, one editor command is executed. The mapping of input characters

to editor commands depends on the editing mode. There are three editing modes: vi insert mode, vi

command mode, and emacs mode. The default is vi insert mode. The program can switch the default to

emacs mode by using the el_set(3) or el_parse(3) functions, and the user can switch to emacs mode

either in the editrc(5) configuration file or interactively with the ed-command editor command, in all

three cases executing the bind -e builtin command.

If trying to read from the terminal results in end of file or an error, the library signals end of file to the

program and does not return a string.

Input character bindings
All default bindings described below can be overridden by individual programs and can be changed with

the editrc(5) bind builtin command.

In the following tables, ‘Ctrl-’ indicates a character with the bit 0x40 flipped, and ‘Meta-’ indicates a

character with the bit 0x80 set. In vi insert mode and in emacs mode, all Meta-characters considered

printable by the current locale(1) are bound to ed-insert instead of to the editor command listed below.

Consequently, in UTF-8 mode, most of the Meta-characters are not directly accessible because their

code points are occupied by printable Unicode characters, and Meta-characters are usually input using

the em-meta-next editor command. For example, to enter ‘Meta-B’ in order to call the ed-prev-word
editor command in emacs mode, call em-meta-next by pressing and releasing the escape key (or

equivalently, Ctrl-[), then press and release the ‘B’ key. If you have configured a Meta-key on your

keyboard, for example with ‘setxkbmap -option altwin:left_meta_win’, the Ctrl-Meta-characters are

directly accessible. For example, to enter ‘Ctrl-Meta-H’ in order to call the ed-delete-prev-word editor

command in emacs mode, hold down the keys ‘Ctrl’, ‘Meta’, and ‘H’ at the same time. Alternatively,

press and release the escape key, then press and release ‘Ctrl-H’.

In vi input mode, input characters are bound to the following editor commands by default:

Ctrl-D, EOF vi-list-or-eof
Ctrl-H, BS vi-delete-prev-char
Ctrl-J, LF ed-newline
Ctrl-M, CR ed-newline
Ctrl-Q ed-tty-start-output

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

Ctrl-S ed-tty-stop-output
Ctrl-U vi-kill-line-prev
Ctrl-V ed-quoted-insert
Ctrl-W ed-delete-prev-word
Ctrl-[, ESC vi-command-mode
Ctrl-\, QUIT ed-tty-sigquit
Ctrl-?, DEL vi-delete-prev-char

All other input characters except the NUL character (Ctrl-@) are bound to ed-insert.

In vi command mode, input characters are bound to the following editor commands by default:

Ctrl-A ed-move-to-beg
Ctrl-C, INT ed-tty-sigint
Ctrl-E ed-move-to-end
Ctrl-H, BS ed-delete-prev-char
Ctrl-J, LF ed-newline
Ctrl-K ed-kill-line
Ctrl-L, FF ed-clear-screen
Ctrl-M, CR ed-newline
Ctrl-N ed-next-history
Ctrl-O ed-tty-flush-output
Ctrl-P ed-prev-history
Ctrl-Q ed-tty-start-output
Ctrl-R ed-redisplay
Ctrl-S ed-tty-stop-output
Ctrl-U vi-kill-line-prev
Ctrl-W ed-delete-prev-word
Ctrl-[, ESC em-meta-next
Ctrl-\, QUIT ed-tty-sigquit
Space ed-next-char
vi-comment-out
$ ed-move-to-end
% vi-match
+ ed-next-history
, vi-repeat-prev-char
- ed-prev-history
. vi-redo
/ vi-search-prev
0 vi-zero

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

1 to 9 ed-argument-digit
: ed-command
; vi-repeat-next-char
? vi-search-next
@ vi-alias
A vi-add-at-eol
B vi-prev-big-word
C vi-change-to-eol
D ed-kill-line
E vi-end-big-word
F vi-prev-char
G vi-to-history-line
I vi-insert-at-bol
J ed-search-next-history
K ed-search-prev-history
N vi-repeat-search-prev
O ed-sequence-lead-in
P vi-paste-prev
R vi-replace-mode
S vi-substitute-line
T vi-to-prev-char
U vi-undo-line
W vi-next-big-word
X ed-delete-prev-char
Y vi-yank-end
[ed-sequence-lead-in
^ ed-move-to-beg
_ vi-history-word
a vi-add
b vi-prev-word
c vi-change-meta
d vi-delete-meta
e vi-end-word
f vi-next-char
h ed-prev-char
i vi-insert
j ed-next-history
k ed-prev-history
l ed-next-char
n vi-repeat-search-next

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

p vi-paste-next
r vi-replace-char
s vi-substitute-char
t vi-to-next-char
u vi-undo
v vi-histedit
w vi-next-word
x ed-delete-next-char
y vi-yank
| vi-to-column
~ vi-change-case
Ctrl-?, DEL ed-delete-prev-char
Meta-O ed-sequence-lead-in
Meta-[ed-sequence-lead-in

In emacs mode, input characters are bound to the following editor commands by default:

0 to 9 ed-digit
Ctrl-@, NUL em-set-mark
Ctrl-A ed-move-to-beg
Ctrl-B ed-prev-char
Ctrl-C, INT ed-tty-sigint
Ctrl-D, EOF em-delete-or-list
Ctrl-E ed-move-to-end
Ctrl-F ed-next-char
Ctrl-H, BS em-delete-prev-char
Ctrl-J, LF ed-newline
Ctrl-K ed-kill-line
Ctrl-L, FF ed-clear-screen
Ctrl-M, CR ed-newline
Ctrl-N ed-next-history
Ctrl-O ed-tty-flush-output
Ctrl-P ed-prev-history
Ctrl-Q ed-tty-start-output
Ctrl-R ed-redisplay
Ctrl-S ed-tty-stop-output
Ctrl-T ed-transpose-chars
Ctrl-U ed-kill-line
Ctrl-V ed-quoted-insert
Ctrl-W em-kill-region

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

Ctrl-X ed-sequence-lead-in
Ctrl-Y em-yank
Ctrl-Z, TSTP ed-tty-sigtstp
Ctrl-[, ESC em-meta-next
Ctrl-\, QUIT ed-tty-sigquit
Ctrl-] ed-tty-dsusp
Ctrl-?, DEL em-delete-prev-char
Ctrl-Meta-H ed-delete-prev-word
Ctrl-Meta-L ed-clear-screen
Ctrl-Meta-_ em-copy-prev-word
Meta-0 to 9 ed-argument-digit
Meta-B ed-prev-word
Meta-C em-capitol-case
Meta-D em-delete-next-word
Meta-F em-next-word
Meta-L em-lower-case
Meta-N ed-search-next-history
Meta-O ed-sequence-lead-in
Meta-P ed-search-prev-history
Meta-U em-upper-case
Meta-W em-copy-region
Meta-X ed-command
Meta-[ed-sequence-lead-in
Meta-b ed-prev-word
Meta-c em-capitol-case
Meta-d em-delete-next-word
Meta-f em-next-word
Meta-l em-lower-case
Meta-n ed-search-next-history
Meta-p ed-search-prev-history
Meta-u em-upper-case
Meta-w em-copy-region
Meta-x ed-command
Ctrl-Meta-? ed-delete-prev-word

The remaining ascii(7) characters in the range 0x20 to 0x7e are bound to ed-insert.

If standard output is not connected to a terminal device or el_set(3) was used to set EL_EDITMODE to

0, all input character bindings are disabled and all characters typed are appended to the edit buffer. In

that case, the edit buffer is returned to the program after a newline or carriage return character is typed,

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

or after the first character typed if el_set(3) was used to set EL_UNBUFFERED to non-zero.

Editor commands
Most editor commands accept an optional argument. The argument is entered by prefixing the editor

command with one or more of the editor commands ed-argument-digit, ed-digit, em-universal-argument,
or vi-zero. When an argument is not provided, it defaults to 1. For most editor commands, the effect of

an argument is to repeatedly execute the command that number of times.

When talking about a character string from a left character to a right character, the left character is

included in the string, while the right character is not included.

If an editor command causes an error, the input character is discarded, no action occurs, and the terminal

bell is rung. In case of a non-fatal error, the terminal bell is also rung, but the editor command takes

effect anyway.

In the following list, the default key bindings are listed after each editor command.

ed-argument-digit (vi command: 1 to 9; emacs: Meta-0 to Meta-9)

If in argument input mode, append the input digit to the argument being read. Otherwise, switch

to argument input mode and use the input digit as the most significant digit of the argument. It is

an error if the input character is not a digit or if the existing argument is already greater than a

million.

ed-clear-screen (vi command: Ctrl-L; emacs: Ctrl-L, Ctrl-Meta-L)

Clear the screen and display the edit buffer at the top. Ignore any argument.

ed-command (vi command: ‘:’; emacs: Meta-X, Meta-x)

Read a line from the terminal bypassing the normal line editing functionality and execute that line

as an editrc(5) builtin command. If in vi command mode, also switch back to vi insert mode.

Ignore any argument.

ed-delete-next-char (vi command: x)

Delete the character at the cursor position. With an argument, delete that number of characters.

In emacs mode, it is an error if the cursor is at the end of the edit buffer. In vi mode, the last

character in the edit buffer is deleted in that case, and it is an error if the buffer is empty.

ed-delete-prev-char (vi command: X, Ctrl-H, BS, Ctrl-?, DEL)

Delete the character to the left of the cursor position. With an argument, delete that number of

characters. It is an error if the cursor is at the beginning of the edit buffer.

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

ed-delete-prev-word (vi: Ctrl-W; emacs: Ctrl-Meta-H, Ctrl-Meta-?)

Move to the left to the closest beginning of a word, delete the string from that position to the

cursor, and save it to the cut buffer. With an argument, delete that number of words. It is an error

if the cursor is at the beginning of the edit buffer.

ed-digit (emacs: 0 to 9)

If in argument input mode, append the input digit to the argument being read. Otherwise, call

ed-insert. It is an error if the input character is not a digit or if the existing argument is already

greater than a million.

ed-end-of-file (not bound by default)

Discard the edit buffer and indicate end of file to the program. Ignore any argument.

ed-ignore (various)

Discard the input character and do nothing.

ed-insert (vi input: almost all; emacs: printable characters)

In insert mode, insert the input character left of the cursor position. In replace mode, overwrite

the character at the cursor and move the cursor to the right by one character position. Accept an

argument to do this repeatedly. It is an error if the input character is the NUL character (Ctrl-@).

Failure to enlarge the edit buffer also results in an error.

ed-kill-line (vi command: D, Ctrl-K; emacs: Ctrl-K, Ctrl-U)

Delete the string from the cursor position to the end of the line and save it to the cut buffer.

Ignore any argument.

ed-move-to-beg (vi command: ^, Ctrl-A; emacs: Ctrl-A)

In vi mode, move the cursor to the first non-space character in the edit buffer. In emacs mode,

move the cursor to the beginning of the edit buffer. Ignore any argument. Can be used as a

movement command after vi_change_meta, vi_delete_meta, or vi_yank.

ed-move-to-end (vi command: $, Ctrl-E; emacs: Ctrl-E)

Move the cursor to the end of the edit buffer. Ignore any argument. Can be used as a movement

command after vi_change_meta, vi_delete_meta, or vi_yank.

ed-newline (all modes: Ctrl-J, LF, Ctrl-M, CR)

Append a newline character to the edit buffer and return the edit buffer to the program. Ignore

any argument.

ed-next-char (vi command: Space, l; emacs: Ctrl-F)

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

Move the cursor one character position to the right. With an argument, move by that number of

characters. Can be used as a movement command after vi_change_meta, vi_delete_meta, or

vi_yank. It is an error if the cursor is already at the end of the edit buffer.

ed-next-history (vi command: j, +, Ctrl-N; emacs: Ctrl-N)

Replace the edit buffer with the next history line. That line is older than the current line. With an

argument, go forward by that number of history lines. It is a non-fatal error to advance by more

lines than are available.

ed-next-line (not bound by default)

Move the cursor down one line. With an argument, move down by that number of lines. It is an

error if the edit buffer does not contain enough newline characters to the right of the cursor

position.

ed-prev-char (vi command: h; emacs: Ctrl-B)

Move the cursor one character position to the left. With an argument, move by that number of

characters. Can be used as a movement command after vi_change_meta, vi_delete_meta, or

vi_yank. It is an error if the cursor is already at the beginning of the edit buffer.

ed-prev-history (vi command: k, -, Ctrl-P; emacs: Ctrl-P)

Replace the edit buffer with the previous history line. That line is newer than the current line.

With an argument, go back by that number of lines. It is a non-fatal error to back up by more lines

than are available.

ed-prev-line (not bound by default)

Move the cursor up one line. With an argument, move up by that number of lines. It is an error if

the edit buffer does not contain enough newline characters to the left of the cursor position.

ed-prev-word (emacs: Meta-B, Meta-b)

Move the cursor to the left to the closest beginning of a word. With an argument, repeat that

number of times. Can be used as a movement command after vi_change_meta, vi_delete_meta, or

vi_yank. It is an error if the cursor is already at the beginning of the edit buffer.

ed-quoted-insert (vi insert, emacs: Ctrl-V)

Read one character from the terminal bypassing the normal line editing functionality and call

ed-insert on it. If trying to read the character returns end of file or an error, call ed-end-of-file
instead.

ed-redisplay (vi command, emacs: Ctrl-R)

Redisplay everything. Ignore any argument.

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

ed-search-next-history (vi command: J; emacs: Meta-N, Meta-n)

Replace the edit buffer with the next matching history entry.

ed-search-prev-history (vi command: K; emacs: Meta-P, Meta-p)

Replace the edit buffer with the previous matching history entry.

ed-sequence-lead-in (vi cmd: O, [; emacs: Ctrl-X; both: Meta-O, Meta-[)

Call a macro. See the section about Macros below for details.

ed-start-over (not bound by default)

Discard the contents of the edit buffer and start from scratch. Ignore any argument.

ed-transpose-chars (emacs: Ctrl-T)

Exchange the character at the cursor position with the one to the left of it and move the cursor to

the character to the right of the two exchanged characters. Ignore any argument. It is an error if

the cursor is at the beginning of the edit buffer or if the edit buffer contains less than two

characters.

ed-unassigned (all characters not listed)

This editor command always results in an error.

em-capitol-case (emacs: Meta-C, Meta-c)

Capitalize the string from the cursor to the end of the current word. That is, if it contains at least

one alphabetic character, convert the first alphabetic character to upper case, and convert all

characters to the right of it to lower case. In any case, move the cursor to the next character after

the end of the current word.

em-copy-prev-word (emacs: Ctrl-Meta-_)

Copy the string from the beginning of the current word to the cursor and insert it to the left of the

cursor. Move the cursor to the character after the inserted string. It is an error if the cursor is at

the beginning of the edit buffer.

em-copy-region (emacs: Meta-W, Meta-w)

Copy the string from the cursor to the mark to the cut buffer. It is an error if the mark is not set.

em-delete-next-word (emacs: Meta-D, Meta-d)

Delete the string from the cursor to the end of the current word and save it to the cut buffer. It is

an error if the cursor is at the end of the edit buffer.

em-delete-or-list (emacs: Ctrl-D, EOF)

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

If the cursor is not at the end of the line, delete the character at the cursor. If the edit buffer is

empty, indicate end of file to the program. It is an error if the cursor is at the end of the edit buffer

and the edit buffer is not empty.

em-delete-prev-char (emacs: Ctrl-H, BS, Ctrl-?, DEL)

Delete the character to the left of the cursor. It is an error if the cursor is at the beginning of the

edit buffer.

em-exchange-mark (not bound by default)

Exchange the cursor and the mark.

em-gosmacs-transpose (not bound by default)

Exchange the two characters to the left of the cursor. It is an error if the cursor is on the first or

second character of the edit buffer.

em-inc-search-next (not bound by default)

Emacs incremental next search.

em-inc-search-prev (not bound by default)

Emacs incremental reverse search.

em-kill-line (not bound by default)

Delete the entire contents of the edit buffer and save it to the cut buffer.

em-kill-region (emacs: Ctrl-W)

Delete the string from the cursor to the mark and save it to the cut buffer. It is an error if the mark

is not set.

em-lower-case (emacs: Meta-L, Meta-l)

Convert the characters from the cursor to the end of the current word to lower case.

em-meta-next (vi command, emacs: Ctrl-[, ESC)

Set the bit 0x80 on the next character typed. Unless the resulting code point is printable, holding

down the ‘Meta-’ key while typing that character is a simpler way to achieve the same effect.

em-next-word (Meta-F, Meta-f)

Move the cursor to the end of the current word. Can be used as a movement command after

vi_change_meta, vi_delete_meta, or vi_yank. It is an error if the cursor is already at the end of the

edit buffer.

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

em-set-mark (emacs: Ctrl-Q, NUL)

Set the mark at the current cursor position.

em-toggle-overwrite (not bound by default)

Switch from insert to overwrite mode or vice versa.

em-universal-argument (not bound by default)

If in argument input mode, multiply the argument by 4. Otherwise, switch to argument input

mode and set the argument to 4. It is an error if the existing argument is already greater than a

million.

em-upper-case (emacs: Meta-U, Meta-u)

Convert the characters from the cursor to the end of the current word to upper case.

em-yank (emacs: Ctrl-Y)

Paste the cut buffer to the left of the cursor.

vi-add (vi command: a)

Switch to vi insert mode. Unless the cursor is already at the end of the edit buffer, move it one

character position to the right.

vi-add-at-eol (vi command: A)

Switch to vi insert mode and move the cursor to the end of the edit buffer.

vi-alias (vi command: @)

If an alias function was defined by calling the el_set(3) or el_wset(3) function with the argument

EL_ALIAS_TEXT, read one character from the terminal bypassing the normal line editing

functionality, call the alias function passing the argument that was specified with

EL_ALIAS_TEXT as the first argument and the character read, with an underscore prepended, as

the second argument, and pass the string returned from the alias function to el_wpush(3). It is an

error if no alias function is defined or if trying to read the character results in end of file or an

error.

vi-change-case (vi command: ~)

Change the case of the character at the cursor and move the cursor one character position to the

right. It is an error if the cursor is already at the end of the edit buffer.

vi-change-meta (vi command: c)

Delete the string from the cursor to the position specified by the following movement command

and save a copy of it to the cut buffer. When given twice in a row, instead delete the whole

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

contents of the edit buffer and save a copy of it to the cut buffer. In either case, switch to vi insert

mode after that.

vi-change-to-eol (vi command: C)

Delete the string from the cursor position to the end of the line and save it to the cut buffer, then

switch to vi insert mode.

vi-command-mode (vi insert: Ctrl-[, ESC)

Discard pending actions and arguments and switch to vi command mode. Unless the cursor is

already at the beginning of the edit buffer, move it to the left by one character position.

vi-comment-out (vi command: #)

Insert a ‘#’ character at the beginning of the edit buffer and return the edit buffer to the program.

vi-delete-meta (vi command: d)

Delete the string from the cursor to the position specified by the following movement command

and save a copy of it to the cut buffer. When given twice in a row, instead delete the whole

contents of the edit buffer and save a copy of it to the cut buffer.

vi-delete-prev-char (vi insert: Ctrl-H, BS, Ctrl-?, DEL)

Delete the character to the left of the cursor. It is an error if the cursor is already at the beginning

of the edit buffer.

vi-end-big-word (vi command: E)

Move the cursor to the end of the current space delimited word. Can be used as a movement

command after vi_change_meta, vi_delete_meta, or vi_yank. It is an error if the cursor is already

at the end of the edit buffer.

vi-end-word (vi command: e)

Move the cursor to the end of the current word. Can be used as a movement command after

vi_change_meta, vi_delete_meta, or vi_yank. It is an error if the cursor is already at the end of the

edit buffer.

vi-history-word (vi command: _)

Insert the first word from the most recent history entry after the cursor, move the cursor after to

the character after the inserted word, and switch to vi insert mode. It is an error if there is no

history entry or the most recent history entry is empty.

vi-insert (vi command: i)

Enter insert mode.

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

vi-insert-at-bol (vi command: I)

Move the cursor to the beginning of the edit buffer and switch to vi insert mode.

vi-kill-line-prev (vi: Ctrl-U)

Delete the string from the beginning of the edit buffer to the cursor and save it to the cut buffer.

vi-list-or-eof (vi insert: Ctrl-D, EOF)

If the edit buffer is empty, indicate end of file to the program. It is an error if the edit buffer is not

empty.

vi-match (vi command: %)

Consider opening and closing parentheses, braces, and brackets as delimiters. If the cursor is not

at a delimiter, move it to the right until it gets to one, then move it to the matching delimiter. Can

be used as a movement command after vi_change_meta, vi_delete_meta, or vi_yank. It is an error

if there is no delimiter at the cursor or in the string to the right of the cursor, or if the first such

delimiter has no matching delimiter.

vi-next-big-word (vi command: W)

Move the cursor to the right to the beginning of the next space delimited word. Can be used as a

movement command after vi_change_meta, vi_delete_meta, or vi_yank. It is an error if the cursor

is already at the end of the edit buffer or on its last character.

vi-next-char (vi command: f)

Read one character from the terminal bypassing the normal line editing functionality and move the

cursor to the right to the next instance of that character in the edit buffer. Can be used as a

movement command after vi_change_meta, vi_delete_meta, or vi_yank. If trying to read the

character results in end of file or an error, call ed-end-of-file instead. It is an error if the character

is not found searching to the right in the edit buffer.

vi-next-word (vi command: w)

Move the cursor to the right to the beginning of the next word. Can be used as a movement

command after vi_change_meta, vi_delete_meta, or vi_yank. It is an error if the cursor is already

at the end of the edit buffer or on its last character.

vi-paste-next (vi command: p)

Insert a copy of the cut buffer to the right of the cursor. It is an error if the cut buffer is empty.

vi-paste-prev (vi command: P)

Insert a copy of the cut buffer to the left of the cursor. It is an error if the cut buffer is empty.

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

vi-prev-big-word (vi command: B)

Move the cursor to the left to the next beginning of a space delimited word. Can be used as a

movement command after vi_change_meta, vi_delete_meta, or vi_yank. It is an error if the cursor

is already at the beginning of the edit buffer.

vi-prev-char (vi command: F)

Read one character from the terminal bypassing the normal line editing functionality and move the

cursor to the left to the next instance of that character in the edit buffer. Can be used as a

movement command after vi_change_meta, vi_delete_meta, or vi_yank. If trying to read the

character results in end of file or an error, call ed-end-of-file instead. It is an error if the character

is not found searching to the left in the edit buffer.

vi-prev-word (vi command: b)

Move the cursor to the left to the next beginning of a word. Can be used as a movement command

after vi_change_meta, vi_delete_meta, or vi_yank. It is an error if the cursor is already at the

beginning of the edit buffer.

vi-redo (vi command: ‘.’)

Redo the last non-motion command.

vi-repeat-next-char (vi command: ‘;’)

Repeat the most recent character search in the same search direction. Can be used as a movement

command after vi_change_meta, vi_delete_meta, or vi_yank.

vi-repeat-prev-char (vi command: ‘,’)

Repeat the most recent character search in the opposite search direction. Can be used as a

movement command after vi_change_meta, vi_delete_meta, or vi_yank.

vi-repeat-search-next (vi command: n)

Repeat the most recent history search in the same search direction.

vi-repeat-search-prev (vi command: N)

Repeat the most recent history search in the opposite search direction.

vi-replace-char (vi command: r)

Switch to vi replace mode, and automatically switch back to vi command mode after the next

character typed. See ed-insert for a description of replace mode. It is an error if the cursor is at

the end of the edit buffer.

vi-replace-mode (vi command: R)

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

Switch to vi replace mode. This is a variant of vi insert mode; see ed-insert for the difference.

vi-search-next (vi command: ?)

Replace the edit buffer with the next matching history entry.

vi-search-prev (vi command: /)

Replace the edit buffer with the previous matching history entry.

vi-substitute-char (vi command: s)

Delete the character at the cursor and switch to vi insert mode.

vi-substitute-line (vi command: S)

Delete the entire contents of the edit buffer, save a copy of it in the cut buffer, and enter vi insert

mode.

vi-to-column (vi command: |)

Move the cursor to the column specified as the argument. Can be used as a movement command

after vi_change_meta, vi_delete_meta, or vi_yank.

vi-to-history-line (vi command: G)

Replace the edit buffer with the specified history entry.

vi-to-next-char (vi command: t)

Read one character from the terminal bypassing the normal line editing functionality and move the

cursor to the right to the character before the next instance of that character in the edit buffer. Can

be used as a movement command after vi_change_meta, vi_delete_meta, or vi_yank. If trying to

read the character results in end of file or an error, call ed-end-of-file instead. It is an error if the

character is not found searching to the right in the edit buffer.

vi-to-prev-char (vi command: T)

Read one character from the terminal bypassing the normal line editing functionality and move the

cursor to the left to the character after the next instance of that character in the edit buffer. Can be

used as a movement command after vi_change_meta, vi_delete_meta, or vi_yank. If trying to

read the character results in end of file or an error, call ed-end-of-file instead. It is an error if the

character is not found searching to the left in the edit buffer.

vi-undo (vi command: u)

Undo the last change.

vi-undo-line (vi command: U)

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

Undo all changes to the edit buffer.

vi-yank (vi command: y)

Copy the string from the cursor to the position specified by the following movement command to

the cut buffer. When given twice in a row, instead copy the whole contents of the edit buffer to

the cut buffer.

vi-yank-end (vi command: Y)

Copy the string from the cursor to the end of the edit buffer to the cut buffer.

vi-zero (vi command: 0)

If in argument input mode, multiply the argument by ten. Otherwise, move the cursor to the

beginning of the edit buffer. Can be used as a movement command after vi_change_meta,

vi_delete_meta, or vi_yank.

Macros
If an input character is bound to the editor command ed-sequence-lead-in, editline attempts to call a

macro. If the input character by itself forms the name of a macro, that macro is executed. Otherwise,

additional input characters are read until the string read forms the name of a macro, in which case that

macro is executed, or until the string read matches the beginning of none of the existing macro names, in

which case the string including the final, mismatching character is discarded and the terminal bell is

rung.

There are two kinds of macros. Command macros execute a single editor command. Keyboard macros

return a string of characters that is appended as a new line to the Input Queue.

The following command macros are defined by default in vi command mode and in emacs mode:

Esc [A, Esc O A ed-prev-history
Esc [B, Esc O B ed-next-history
Esc [C, Esc O C ed-next-char
Esc [D, Esc O D ed-prev-char
Esc [F, Esc O F ed-move-to-end
Esc [H, Esc O H ed-move-to-beg

In vi command mode, they are also defined by default without the initial escape character.

In addition, the editline library tries to bind the strings generated by the arrow keys as reported by the

terminfo(5) database to these editor commands, unless that would clobber user settings.

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

In emacs mode, the two-character string "Ctrl-X Ctrl-X" is bound to the em-exchange-mark editor

command.

Input Queue
The editline library maintains an input queue operated in FIFO mode. Whenever it needs an input

character, it takes the first character from the first line of the input queue. When the queue is empty, it

reads from the terminal.

A line can be appended to the end of the input queue in several ways:

- By calling one of the keyboard Macros.

- By calling the editor command vi-redo.

- By calling the editor command vi-alias.

- By pressing a key in emacs incremental search mode that doesn’t have a special meaning in

that mode but returns to normal emacs mode.

- If an application program directly calls the functions el_push(3) or el_wpush(3), it can provide

additional, program-specific ways of appending to the input queue.

SEE ALSO
mg(1), vi(1), editline(3), el_wgets(3), el_wpush(3), el_wset(3), editrc(5)

HISTORY
This manual page first appeared in OpenBSD 6.0 and NetBSD 8.

AUTHORS
This manual page was written by Ingo Schwarze <schwarze@openbsd.org>.

EDITLINE(7) FreeBSD Miscellaneous Information Manual EDITLINE(7)

FreeBSD 14.0-RELEASE-p6 May 7, 2016 FreeBSD 14.0-RELEASE-p6

