
NAME
elf - API for manipulating ELF objects

LIBRARY
ELF Access Library (libelf, -lelf)

SYNOPSIS
#include <libelf.h>

DESCRIPTION
The ELF Access Library (libelf, -lelf) provides functions that allow an application to read and

manipulate ELF object files, and to read ar(1) archives. The library allows the manipulation of ELF

objects in a byte ordering and word-size independent way, allowing an application to read and create

ELF objects for 32 and 64 bit architectures and for little- and big-endian machines. The library is

capable of processing ELF objects that use extended section numbering.

This manual page serves to provide an overview of the functionality in the ELF library. Further

information may found in the manual pages for individual ELF(3) functions that comprise the library.

ELF Concepts
As described in elf(5), ELF files contain several data structures that are laid out in a specific way. ELF

files begin with an "Executable Header", and may contain an optional "Program Header Table", and

optional data in the form of ELF "sections". A "Section Header Table" describes the content of the data

in these sections.

ELF objects have an associated "ELF class" which denotes the natural machine word size for the

architecture the object is associated with. Objects for 32 bit architectures have an ELF class of

ELFCLASS32. Objects for 64 bit architectures have an ELF class of ELFCLASS64.

ELF objects also have an associated "endianness" which denotes the endianness of the machine

architecture associated with the object. This may be ELFDATA2LSB for little-endian architectures and

ELFDATA2MSB for big-endian architectures.

ELF objects are also associated with an API version number. This version number determines the layout

of the individual components of an ELF file and the semantics associated with these.

Data Representation And Translation
The ELF(3) library distinguishes between "native" representations of ELF data structures and their "file"

representations.

ELF(3) FreeBSD Library Functions Manual ELF(3)

FreeBSD 14.0-RELEASE-p11 June 12, 2019 FreeBSD 14.0-RELEASE-p11



An application would work with ELF data in its "native" representation, i.e., using the native byteorder

and alignment mandated by the processor the application is running on. The "file" representation of the

same data could use a different byte ordering and follow different constraints on object alignment than

these native constraints.

Accordingly, the ELF(3) library offers translation facilities (elf32_xlatetof(3), elf32_xlatetom(3),

elf64_xlatetof(3) and elf64_xlatetom(3)) to and from these representations. It also provides higher-level

APIs (gelf_xlatetof(3), gelf_xlatetom(3)) that retrieve and store data from the ELF object in a class-

agnostic manner.

Library Working Version
Conceptually, there are three version numbers associated with an application using the ELF library to

manipulate ELF objects:

+o The ELF version that the application was compiled against. This version determines the ABI

expected by the application.

+o The ELF version of the ELF object being manipulated by the application through the ELF

library.

+o The ELF version (or set of versions) supported by the ELF library itself.

In order to facilitate working with ELF objects of differing versions, the ELF library requires the

application to call the elf_version() function before invoking many of its operations, in order to inform

the library of the application’s desired working version.

In the current implementation, all three versions have to be EV_CURRENT.

Namespace use
The ELF library uses the following prefixes:

elf_ Used for class-independent functions.

elf32_ Used for functions working with 32 bit ELF objects.

elf64_ Used for functions working with 64 bit ELF objects.

Elf_ Used for class-independent data types.

ELF_C_ Used for command values used in a few functions. These symbols are defined as members of

the Elf_Cmd enumeration.

ELF_E_ Used for error numbers.

ELF(3) FreeBSD Library Functions Manual ELF(3)

FreeBSD 14.0-RELEASE-p11 June 12, 2019 FreeBSD 14.0-RELEASE-p11



ELF_F_ Used for flags.

ELF_K_ These constants define the kind of file associated with an ELF descriptor. See elf_kind(3).

The symbols are defined by the Elf_Kind enumeration.

ELF_T_ These values are defined by the Elf_Type enumeration, and denote the types of ELF data

structures that can be present in an ELF object.

In addition, the library uses symbols with prefixes _ELF and _libelf for its internal use.

Descriptors
Applications communicate with the library using descriptors. These are:

Elf An Elf descriptor represents an ELF object or an ar(1) archive. It is allocated using one of the

elf_begin() or elf_memory() functions. An Elf descriptor can be used to read and write data to

an ELF file. An Elf descriptor can be associated with zero or more Elf_Scn section

descriptors.

Given an ELF descriptor, the application may retrieve the ELF object’s class-dependent

"Executable Header" structures using the elf32_getehdr() or elf64_getehdr() functions. A new

Ehdr structure may be allocated using the elf64_newehdr() or elf64_newehdr() functions.

The "Program Header Table" associated with an ELF descriptor may be allocated using the

elf32_getphdr() or elf64_getphdr() functions. A new program header table may be allocated

or an existing table resized using the elf32_newphdr() or elf64_newphdr() functions.

The Elf structure is opaque and has no members visible to the application.

Elf_Data An Elf_Data data structure describes an individual chunk of a ELF file as represented in

memory. It has the following application-visible members:

uint64_t d_align The in-file alignment of the data buffer within its containing ELF

section. This value must be non-zero and a power of two.

void *d_buf A pointer to data in memory.

uint64_t d_off The offset within the containing section where this descriptor’s data

would be placed. This field will be computed by the library unless the

application requests full control of the ELF object’s layout.

uint64_t d_size The number of bytes of data in this descriptor.

Elf_Type d_type The ELF type (see below) of the data in this descriptor.

unsigned int d_version The operating version for the data in this buffer.

ELF(3) FreeBSD Library Functions Manual ELF(3)

FreeBSD 14.0-RELEASE-p11 June 12, 2019 FreeBSD 14.0-RELEASE-p11



Elf_Data descriptors are usually used in conjunction with Elf_Scn descriptors.

Elf_Scn Elf_Scn descriptors represent sections in an ELF object. These descriptors are opaque and

contain no application modifiable fields.

The Elf_Scn descriptor for a specific section in an ELF object can be retrieved using the

elf_getscn() function. The sections contained in an ELF object can be traversed using the

elf_nextscn() function. New sections are allocated using the elf_newscn() function.

The Elf_Data descriptors associated with a given section can be retrieved using the

elf_getdata() function. New data descriptors can be added to a section descriptor using the

elf_newdata() function. The untranslated "file" representation of data in a section can be

retrieved using the elf_rawdata() function.

Supported Elf Types
The following ELF datatypes are supported by the library.

ELF_T_ADDR Machine addresses.

ELF_T_BYTE Byte data. The library will not attempt to translate byte data.

ELF_T_CAP Software and hardware capability records.

ELF_T_DYN Records used in a section of type SHT_DYNAMIC.

ELF_T_EHDR ELF executable header.

ELF_T_GNUHASH

GNU-style hash tables.

ELF_T_HALF 16-bit unsigned words.

ELF_T_LWORD 64 bit unsigned words.

ELF_T_MOVE ELF Move records.

ELF_T_NOTE ELF Note structures.

ELF_T_OFF File offsets.

ELF_T_PHDR ELF program header table entries.

ELF_T_REL ELF relocation entries.

ELF_T_RELA ELF relocation entries with addends.

ELF_T_SHDR ELF section header entries.

ELF_T_SWORD Signed 32-bit words.

ELF_T_SXWORD Signed 64-bit words.

ELF_T_SYMINFO ELF symbol information.

ELF_T_SYM ELF symbol table entries.

ELF_T_VDEF Symbol version definition records.

ELF_T_VNEED Symbol version requirement records.

ELF_T_WORD Unsigned 32-bit words.

ELF(3) FreeBSD Library Functions Manual ELF(3)

FreeBSD 14.0-RELEASE-p11 June 12, 2019 FreeBSD 14.0-RELEASE-p11



ELF_T_XWORD Unsigned 64-bit words.

The symbol ELF_T_NUM denotes the number of Elf types known to the library.

The following table shows the mapping between ELF section types defined in elf(5) and the types

supported by the library.

Section Type Library Type Description

SHT_DYNAMIC ELF_T_DYN ‘.dynamic’ section entries.

SHT_DYNSYM ELF_T_SYM Symbols for dynamic linking.

SHT_FINI_ARRAY ELF_T_ADDR Termination function pointers.

SHT_GNU_HASH ELF_T_GNUHASH GNU hash sections.

SHT_GNU_LIBLIST ELF_T_WORD List of libraries to be pre-linked.

SHT_GNU_verdef ELF_T_VDEF Symbol version definitions.

SHT_GNU_verneed ELF_T_VNEED Symbol versioning requirements.

SHT_GNU_versym ELF_T_HALF Version symbols.

SHT_GROUP ELF_T_WORD Section group marker.

SHT_HASH ELF_T_HASH Symbol hashes.

SHT_INIT_ARRAY ELF_T_ADDR Initialization function pointers.

SHT_NOBITS ELF_T_BYTE Empty sections. See elf(5).

SHT_NOTE ELF_T_NOTE ELF note records.

SHT_PREINIT_ARRAY ELF_T_ADDR Pre-initialization function pointers.

SHT_PROGBITS ELF_T_BYTE Machine code.

SHT_REL ELF_T_REL ELF relocation records.

SHT_RELA ELF_T_RELA Relocation records with addends.

SHT_STRTAB ELF_T_BYTE String tables.

SHT_SYMTAB ELF_T_SYM Symbol tables.

SHT_SYMTAB_SHNDX ELF_T_WORD Used with extended section numbering.

SHT_SUNW_dof ELF_T_BYTE Used by dtrace(1).

SHT_SUNW_move ELF_T_MOVE ELF move records.

SHT_SUNW_syminfo ELF_T_SYMINFO Additional symbol flags.

SHT_SUNW_verdef ELF_T_VDEF Same as SHT_GNU_verdef.

SHT_SUNW_verneed ELF_T_VNEED Same as SHT_GNU_verneed.

SHT_SUNW_versym ELF_T_HALF Same as SHT_GNU_versym.

Section types in the range [SHT_LOOS, SHT_HIUSER] are otherwise considered to be of type

ELF_T_BYTE.

Functional Grouping
This section contains a brief overview of the available functionality in the ELF library. Each function

ELF(3) FreeBSD Library Functions Manual ELF(3)

FreeBSD 14.0-RELEASE-p11 June 12, 2019 FreeBSD 14.0-RELEASE-p11



listed here is described further in its own manual page.

Archive Access

elf_getarsym()

Retrieve the archive symbol table.

elf_getarhdr()

Retrieve the archive header for an object.

elf_getbase()

Retrieve the offset of a member inside an archive.

elf_next()
Iterate through an ar(1) archive.

elf_rand()

Random access inside an ar(1) archive.

Data Structures

elf_getdata()

Retrieve translated data for an ELF section.

elf_getscn()

Retrieve the section descriptor for a named section.

elf_ndxscn()

Retrieve the index for a section.

elf_newdata()

Add a new Elf_Data descriptor to an ELF section.

elf_newscn()

Add a new section descriptor to an ELF descriptor.

elf_nextscn()

Iterate through the sections in an ELF object.

elf_rawdata()

Retrieve untranslated data for an ELF section.

elf_rawfile()

Return a pointer to the untranslated file contents for an ELF object.

elf32_getehdr(), elf64_getehdr()

Retrieve the Executable Header in an ELF object.

elf32_getphdr(), elf64_getphdr()

Retrieve the Program Header Table in an ELF object.

elf32_getshdr(), elf64_getshdr()

Retrieve the ELF section header associated with an Elf_Scn descriptor.

elf32_newehdr(), elf64_newehdr()

Allocate an Executable Header in an ELF object.

elf32_newphdr(), elf64_newphdr()

ELF(3) FreeBSD Library Functions Manual ELF(3)

FreeBSD 14.0-RELEASE-p11 June 12, 2019 FreeBSD 14.0-RELEASE-p11



Allocate or resize the Program Header Table in an ELF object.

Data Translation

elf32_xlatetof(), elf64_xlatetof()
Translate an ELF data structure from its native representation to its file representation.

elf32_xlatetom(), elf64_xlatetom()

Translate an ELF data structure from its file representation to a native representation.

Error Reporting

elf_errno()

Retrieve the current error.

elf_errmsg()

Retrieve a human readable description of the current error.

Initialization

elf_begin()

Opens an ar(1) archive or ELF object given a file descriptor.

elf_end()

Close an ELF descriptor and release all its resources.

elf_memory()

Opens an ar(1) archive or ELF object present in a memory arena.

elf_version()

Sets the operating version.

IO Control

elf_cntl() Manage the association between and ELF descriptor and its underlying file.

elf_flagdata() Mark an Elf_Data descriptor as dirty.

elf_flagehdr() Mark the ELF Executable Header in an ELF descriptor as dirty.

elf_flagphdr() Mark the ELF Program Header Table in an ELF descriptor as dirty.

elf_flagscn() Mark an Elf_Scn descriptor as dirty.

elf_flagshdr() Mark an ELF Section Header as dirty.

elf_setshstrndx()

Set the index of the section name string table for the ELF object.

elf_update() Recompute ELF object layout and optionally write the modified object back to

the underlying file.

Queries

elf32_checksum(), elf64_checkum()

Compute checksum of an ELF object.

elf_getident() Retrieve the identification bytes for an ELF object.

ELF(3) FreeBSD Library Functions Manual ELF(3)

FreeBSD 14.0-RELEASE-p11 June 12, 2019 FreeBSD 14.0-RELEASE-p11



elf_getphdrnum()

Retrieve the number of program headers in an ELF object.

elf_getshdrnum()

Retrieve the number of sections in an ELF object.

elf_getshdrstrndx()

Retrieve the section index of the section name string table in an ELF object.

elf_hash() Compute the ELF hash value of a string.

elf_kind() Query the kind of object associated with an ELF descriptor.

elf32_fsize(), elf64_fsize()

Return the size of the file representation of an ELF type.

Controlling ELF Object Layout
In the usual mode of operation, library will compute section offsets and alignments based on the

contents of an ELF descriptor’s sections without need for further intervention by the application.

However, if the application wishes to take complete charge of the layout of the ELF file, it may set the

ELF_F_LAYOUT flag on an ELF descriptor using elf_flagelf(3), following which the library will use

the data offsets and alignments specified by the application when laying out the file. Application control

of file layout is described further in the elf_update(3) manual page.

Gaps in between sections will be filled with the fill character set by function elf_fill().

Error Handling
In case an error is encountered, these library functions set an internal error number and signal the

presence of the error by returning an special return value. The application can check the current error

number by calling elf_errno(3). A human readable description of the recorded error is available by

calling elf_errmsg(3).

Memory Management Rules
The library keeps track of all Elf_Scn and Elf_Data descriptors associated with an ELF descriptor and

recovers them when the descriptor is closed using elf_end(3). Thus the application must not call free(3)

on data structures allocated by the ELF library.

Conversely the library will not free data that it has not allocated. As an example, an application may call

elf_newdata(3) to allocate a new Elf_Data descriptor and can set the d_off member of the descriptor to

point to a region of memory allocated using malloc(3). It is the applications responsibility to free this

arena, though the library will reclaim the space used by the Elf_Data descriptor itself.

SEE ALSO
gelf(3), ar(5), elf(5)

ELF(3) FreeBSD Library Functions Manual ELF(3)

FreeBSD 14.0-RELEASE-p11 June 12, 2019 FreeBSD 14.0-RELEASE-p11



HISTORY
The original elf API was developed for AT&T System V UNIX. The current implementation of the API

appeared in FreeBSD 7.0.

AUTHORS
The ELF library was written by Joseph Koshy <jkoshy@FreeBSD.org>.

ELF(3) FreeBSD Library Functions Manual ELF(3)

FreeBSD 14.0-RELEASE-p11 June 12, 2019 FreeBSD 14.0-RELEASE-p11


