
NAME
elf - format of ELF executable binary files

SYNOPSIS
#include <elf.h>

DESCRIPTION
The header file <elf.h> defines the format of ELF executable binary files. Amongst these files are

normal executable files, relocatable object files, core files and shared libraries.

An executable file using the ELF file format consists of an ELF header, followed by a program header

table or a section header table, or both. The ELF header is always at offset zero of the file. The program

header table and the section header table’s offset in the file are defined in the ELF header. The two

tables describe the rest of the particularities of the file.

Applications which wish to process ELF binary files for their native architecture only should include

<elf.h> in their source code. These applications should need to refer to all the types and structures by

their generic names "Elf_xxx" and to the macros by "ELF_xxx". Applications written this way can be

compiled on any architecture, regardless whether the host is 32-bit or 64-bit.

Should an application need to process ELF files of an unknown architecture then the application needs

to include both <sys/elf32.h> and <sys/elf64.h> instead of <elf.h>. Furthermore, all types and structures

need to be identified by either "Elf32_xxx" or "Elf64_xxx". The macros need to be identified by

"ELF32_xxx" or "ELF64_xxx".

Whatever the system’s architecture is, it will always include <sys/elf_common.h> as well as

<sys/elf_generic.h>.

These header files describe the above mentioned headers as C structures and also include structures for

dynamic sections, relocation sections and symbol tables.

The following types are being used for 32-bit architectures:

Elf32_Addr Unsigned 32-bit program address

Elf32_Half Unsigned 16-bit field

Elf32_Lword Unsigned 64-bit field

Elf32_Off Unsigned 32-bit file offset

Elf32_Sword Signed 32-bit field or integer

Elf32_Word Unsigned 32-bit field or integer

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

For 64-bit architectures we have the following types:

Elf64_Addr Unsigned 64-bit program address

Elf64_Half Unsigned 16-bit field

Elf64_Lword Unsigned 64-bit field

Elf64_Off Unsigned 64-bit file offset

Elf64_Sword Signed 32-bit field

Elf64_Sxword Signed 64-bit field or integer

Elf64_Word Unsigned 32-bit field

Elf64_Xword Unsigned 64-bit field or integer

All data structures that the file format defines follow the "natural" size and alignment guidelines for the

relevant class. If necessary, data structures contain explicit padding to ensure 4-byte alignment for

4-byte objects, to force structure sizes to a multiple of 4, etc.

The ELF header is described by the type Elf32_Ehdr or Elf64_Ehdr:

typedef struct {

unsigned char e_ident[EI_NIDENT];

Elf32_Half e_type;

Elf32_Half e_machine;

Elf32_Word e_version;

Elf32_Addr e_entry;

Elf32_Off e_phoff;

Elf32_Off e_shoff;

Elf32_Word e_flags;

Elf32_Half e_ehsize;

Elf32_Half e_phentsize;

Elf32_Half e_phnum;

Elf32_Half e_shentsize;

Elf32_Half e_shnum;

Elf32_Half e_shstrndx;

} Elf32_Ehdr;

typedef struct {

unsigned char e_ident[EI_NIDENT];

Elf64_Half e_type;

Elf64_Half e_machine;

Elf64_Word e_version;

Elf64_Addr e_entry;

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

Elf64_Off e_phoff;

Elf64_Off e_shoff;

Elf64_Word e_flags;

Elf64_Half e_ehsize;

Elf64_Half e_phentsize;

Elf64_Half e_phnum;

Elf64_Half e_shentsize;

Elf64_Half e_shnum;

Elf64_Half e_shstrndx;

} Elf64_Ehdr;

The fields have the following meanings:

e_ident This array of bytes specifies to interpret the file, independent of the processor or the

file’s remaining contents. Within this array everything is named by macros, which

start with the prefix EI_ and may contain values which start with the prefix ELF.

The following macros are defined:

EI_MAG0 The first byte of the magic number. It must be filled with

ELFMAG0.

EI_MAG1 The second byte of the magic number. It must be filled with

ELFMAG1.

EI_MAG2 The third byte of the magic number. It must be filled with

ELFMAG2.

EI_MAG3 The fourth byte of the magic number. It must be filled with

ELFMAG3.

EI_CLASS The fifth byte identifies the architecture for this binary:

ELFCLASSNONE This class is invalid.

ELFCLASS32 This defines the 32-bit architecture. It

supports machines with files and virtual

address spaces up to 4 Gigabytes.

ELFCLASS64 This defines the 64-bit architecture.

EI_DATA The sixth byte specifies the data encoding of the processor-

specific data in the file. Currently these encodings are supported:

ELFDATANONE

Unknown data format.

ELFDATA2LSB Two’s complement, little-endian.

ELFDATA2MSB

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

Two’s complement, big-endian.

EI_VERSION The version number of the ELF specification:

EV_NONE Invalid version.

EV_CURRENT Current version.

EI_OSABI This byte identifies the operating system and ABI to which the

object is targeted. Some fields in other ELF structures have flags

and values that have platform specific meanings; the

interpretation of those fields is determined by the value of this

byte. The following values are currently defined:

ELFOSABI_SYSV UNIX System V ABI.

ELFOSABI_HPUX HP-UX operating system ABI.

ELFOSABI_NETBSD NetBSD operating system ABI.

ELFOSABI_LINUX GNU/Linux operating system

ABI.

ELFOSABI_HURD GNU/Hurd operating system ABI.

ELFOSABI_86OPEN 86Open Common IA32 ABI.

ELFOSABI_SOLARIS Solaris operating system ABI.

ELFOSABI_MONTEREY Monterey project ABI.

ELFOSABI_IRIX IRIX operating system ABI.

ELFOSABI_FREEBSD FreeBSD operating system ABI.

ELFOSABI_TRU64 TRU64 UNIX operating system

ABI.

ELFOSABI_ARM ARM architecture ABI.

ELFOSABI_STANDALONE Standalone (embedded) ABI.

EI_ABIVERSION This byte identifies the version of the ABI to which the object is

targeted. This field is used to distinguish among incompatible

versions of an ABI. The interpretation of this version number is

dependent on the ABI identified by the EI_OSABI field.

Applications conforming to this specification use the value 0.

EI_PAD Start of padding. These bytes are reserved and set to zero.

Programs which read them should ignore them. The value for

EI_PAD will change in the future if currently unused bytes are

given meanings.

EI_BRAND Start of architecture identification.

EI_NIDENT The size of the e_ident array.

e_type This member of the structure identifies the object file type:

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

ET_NONE An unknown type.

ET_REL A relocatable file.

ET_EXEC An executable file.

ET_DYN A shared object.

ET_CORE A core file.

e_machine This member specifies the required architecture for an individual file:

EM_NONE An unknown machine.

EM_M32 AT&T WE 32100.

EM_SPARC Sun Microsystems SPARC.

EM_386 Intel 80386.

EM_68K Motorola 68000.

EM_88K Motorola 88000.

EM_486 Intel 80486.

EM_860 Intel 80860.

EM_MIPS MIPS RS3000 (big-endian only).

EM_MIPS_RS4_BE MIPS RS4000 (big-endian only).

EM_SPARC64 SPARC v9 64-bit unofficial.

EM_PARISC HPPA.

EM_PPC PowerPC.

EM_ALPHA Compaq [DEC] Alpha.

e_version This member identifies the file version:

EV_NONE Invalid version

EV_CURRENT Current version

e_entry This member gives the virtual address to which the system first transfers control, thus

starting the process. If the file has no associated entry point, this member holds zero.

e_phoff This member holds the program header table’s file offset in bytes. If the file has no

program header table, this member holds zero.

e_shoff This member holds the section header table’s file offset in bytes. If the file has no

section header table this member holds zero.

e_flags This member holds processor-specific flags associated with the file. Flag names take

the form EF_‘machine_flag’. Currently no flags have been defined.

e_ehsize This member holds the ELF header’s size in bytes.

e_phentsize This member holds the size in bytes of one entry in the file’s program header table;

all entries are the same size.

e_phnum This member holds the number of entries in the program header table. If the file is

using extended program header numbering, then the e_phnum member will contain

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

the value PN_XNUM and the actual number of program header table entries will be

stored in the sh_info member of the section header at index SHN_UNDEF. The

product of e_phentsize and the number of program header table entries gives the

program header table’s size in bytes. If a file has no program header, e_phnum holds

the value zero.

e_shentsize This member holds a sections header’s size in bytes. A section header is one entry in

the section header table; all entries are the same size.

e_shnum This member holds the number of entries in the section header table. If the file is

using extended section numbering, then the e_shnum member will be zero and the

actual section number will be stored in the sh_size member of the section header at

index SHN_UNDEF. If a file has no section header table, both the e_shnum and the

e_shoff fields of the ELF header will be zero. The product of e_shentsize and the

number of sections in the file gives the section header table’s size in bytes.

e_shstrndx This member holds the section header table index of the entry associated with the

section name string table. If extended section numbering is being used, this field will

hold the value SHN_XINDEX, and the actual section header table index will be

present in the sh_link field of the section header entry at index SHN_UNDEF. If the

file has no section name string table, this member holds the value SHN_UNDEF.

An executable or shared object file’s program header table is an array of structures, each describing a

segment or other information the system needs to prepare the program for execution. An object file

segment contains one or more sections. Program headers are meaningful only for executable and shared

object files. A file specifies its own program header size with the ELF header’s e_phentsize and

e_phnum members. As with the Elf executable header, the program header also has different versions

depending on the architecture:

typedef struct {

Elf32_Word p_type;

Elf32_Off p_offset;

Elf32_Addr p_vaddr;

Elf32_Addr p_paddr;

Elf32_Word p_filesz;

Elf32_Word p_memsz;

Elf32_Word p_flags;

Elf32_Word p_align;

} Elf32_Phdr;

typedef struct {

Elf64_Word p_type;

Elf64_Word p_flags;

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

Elf64_Off p_offset;

Elf64_Addr p_vaddr;

Elf64_Addr p_paddr;

Elf64_Xword p_filesz;

Elf64_Xword p_memsz;

Elf64_Xword p_align;

} Elf64_Phdr;

The main difference between the 32-bit and the 64-bit program header lies only in the location of a

p_flags member in the total struct.

p_type This member of the Phdr struct tells what kind of segment this array element describes or

how to interpret the array element’s information.

PT_NULL The array element is unused and the other members’ values are

undefined. This lets the program header have ignored entries.

PT_LOAD The array element specifies a loadable segment, described by p_filesz
and p_memsz. The bytes from the file are mapped to the beginning of

the memory segment. If the segment’s memory size (p_memsz) is

larger than the file size (p_filesz), the "extra" bytes are defined to hold

the value 0 and to follow the segment’s initialized area. The file size

may not be larger than the memory size. Loadable segment entries in

the program header table appear in ascending order, sorted on the

p_vaddr member.

PT_DYNAMIC The array element specifies dynamic linking information.

PT_INTERP The array element specifies the location and size of a null-terminated

path name to invoke as an interpreter. This segment type is meaningful

only for executable files (though it may occur for shared objects).

However it may not occur more than once in a file. If it is present it

must precede any loadable segment entry.

PT_NOTE The array element specifies the location and size for auxiliary

information.

PT_SHLIB This segment type is reserved but has unspecified semantics. Programs

that contain an array element of this type do not conform to the ABI.

PT_PHDR The array element, if present, specifies the location and size of the

program header table itself, both in the file and in the memory image of

the program. This segment type may not occur more than once in a

file. Moreover, it may only occur if the program header table is part of

the memory image of the program. If it is present it must precede any

loadable segment entry.

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

PT_LOPROC This value up to and including PT_HIPROC are reserved for processor-

specific semantics.

PT_HIPROC This value down to and including PT_LOPROC are reserved for

processor-specific semantics.

p_offset This member holds the offset from the beginning of the file at which the first byte of the

segment resides.

p_vaddr This member holds the virtual address at which the first byte of the segment resides in

memory.

p_paddr On systems for which physical addressing is relevant, this member is reserved for the

segment’s physical address. Under BSD this member is not used and must be zero.

p_filesz This member holds the number of bytes in the file image of the segment. It may be zero.

p_memsz

This member holds the number of bytes in the memory image of the segment. It may be

zero.

p_flags This member holds flags relevant to the segment:

PF_X An executable segment.

PF_W

A writable segment.

PF_R A readable segment.

A text segment commonly has the flags PF_X and PF_R. A data segment commonly has

PF_X, PF_W and PF_R.

p_align This member holds the value to which the segments are aligned in memory and in the

file. Loadable process segments must have congruent values for p_vaddr and p_offset,
modulo the page size. Values of zero and one mean no alignment is required.

Otherwise, p_align should be a positive, integral power of two, and p_vaddr should

equal p_offset, modulo p_align.

An file’s section header table lets one locate all the file’s sections. The section header table is an array

of Elf32_Shdr or Elf64_Shdr structures. The ELF header’s e_shoff member gives the byte offset from

the beginning of the file to the section header table. e_shnum holds the number of entries the section

header table contains. e_shentsize holds the size in bytes of each entry.

A section header table index is a subscript into this array. Some section header table indices are

reserved. An object file does not have sections for these special indices:

SHN_UNDEF This value marks an undefined, missing, irrelevant, or otherwise meaningless

section reference. For example, a symbol "defined" relative to section number

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

SHN_UNDEF is an undefined symbol.

SHN_LORESERVE This value specifies the lower bound of the range of reserved indices.

SHN_LOPROC This value up to and including SHN_HIPROC are reserved for processor-specific

semantics.

SHN_HIPROC This value down to and including SHN_LOPROC are reserved for processor-

specific semantics.

SHN_ABS This value specifies absolute values for the corresponding reference. For example,

symbols defined relative to section number SHN_ABS have absolute values and

are not affected by relocation.

SHN_COMMON Symbols defined relative to this section are common symbols, such as FORTRAN

COMMON or unallocated C external variables.

SHN_HIRESERVE This value specifies the upper bound of the range of reserved indices. The system

reserves indices between SHN_LORESERVE and SHN_HIRESERVE, inclusive.

The section header table does not contain entries for the reserved indices.

The section header has the following structure:

typedef struct {

Elf32_Word sh_name;

Elf32_Word sh_type;

Elf32_Word sh_flags;

Elf32_Addr sh_addr;

Elf32_Off sh_offset;

Elf32_Word sh_size;

Elf32_Word sh_link;

Elf32_Word sh_info;

Elf32_Word sh_addralign;

Elf32_Word sh_entsize;

} Elf32_Shdr;

typedef struct {

Elf64_Word sh_name;

Elf64_Word sh_type;

Elf64_Xword sh_flags;

Elf64_Addr sh_addr;

Elf64_Off sh_offset;

Elf64_Xword sh_size;

Elf64_Word sh_link;

Elf64_Word sh_info;

Elf64_Xword sh_addralign;

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

Elf64_Xword sh_entsize;

} Elf64_Shdr;

sh_name This member specifies the name of the section. Its value is an index into the section

header string table section, giving the location of a null-terminated string.

sh_type This member categorizes the section’s contents and semantics.

SHT_NULL This value marks the section header as inactive. It does not have an

associated section. Other members of the section header have

undefined values.

SHT_PROGBITS The section holds information defined by the program, whose format

and meaning are determined solely by the program.

SHT_SYMTAB This section holds a symbol table. Typically, SHT_SYMTAB
provides symbols for link editing, though it may also be used for

dynamic linking. As a complete symbol table, it may contain many

symbols unnecessary for dynamic linking. An object file can also

contain a SHN_DYNSYM section.

SHT_STRTAB This section holds a string table. An object file may have multiple

string table sections.

SHT_RELA This section holds relocation entries with explicit addends, such as type

Elf32_Rela for the 32-bit class of object files. An object may have

multiple relocation sections.

SHT_HASH This section holds a symbol hash table. All object participating in

dynamic linking must contain a symbol hash table. An object file may

have only one hash table.

SHT_DYNAMIC This section holds information for dynamic linking. An object file

may have only one dynamic section.

SHT_NOTE This section holds information that marks the file in some way.

SHT_NOBITS A section of this type occupies no space in the file but otherwise

resembles SHN_PROGBITS. Although this section contains no bytes,

the sh_offset member contains the conceptual file offset.

SHT_REL This section holds relocation offsets without explicit addends, such as

type Elf32_Rel for the 32-bit class of object files. An object file may

have multiple relocation sections.

SHT_SHLIB This section is reserved but has unspecified semantics.

SHT_DYNSYM This section holds a minimal set of dynamic linking symbols. An

object file can also contain a SHN_SYMTAB section.

SHT_LOPROC This value up to and including SHT_HIPROC are reserved for

processor-specific semantics.

SHT_HIPROC This value down to and including SHT_LOPROC are reserved for

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

processor-specific semantics.

SHT_LOUSER This value specifies the lower bound of the range of indices reserved

for application programs.

SHT_HIUSER This value specifies the upper bound of the range of indices reserved

for application programs. Section types between SHT_LOUSER and

SHT_HIUSER may be used by the application, without conflicting

with current or future system-defined section types.

sh_flags Sections support one-bit flags that describe miscellaneous attributes. If a flag bit is set in

sh_flags, the attribute is "on" for the section. Otherwise, the attribute is "off" or does not

apply. Undefined attributes are set to zero.

SHF_WRITE This section contains data that should be writable during process

execution.

SHF_ALLOC The section occupies memory during process execution. Some

control sections do not reside in the memory image of an object file.

This attribute is off for those sections.

SHF_EXECINSTR The section contains executable machine instructions.

SHF_MASKPROC

All bits included in this mask are reserved for processor-specific

semantics.

SHF_COMPRESSED

The section data is compressed.

sh_addr If the section will appear in the memory image of a process, this member holds the address

at which the section’s first byte should reside. Otherwise, the member contains zero.

sh_offset This member’s value holds the byte offset from the beginning of the file to the first byte in

the section. One section type, SHT_NOBITS, occupies no space in the file, and its

sh_offset member locates the conceptual placement in the file.

sh_size This member holds the section’s size in bytes. Unless the section type is SHT_NOBITS,

the section occupies sh_size bytes in the file. A section of type SHT_NOBITS may have a

non-zero size, but it occupies no space in the file.

sh_link This member holds a section header table index link, whose interpretation depends on the

section type.

sh_info This member holds extra information, whose interpretation depends on the section type.

sh_addralign Some sections have address alignment constraints. If a section holds a doubleword, the

system must ensure doubleword alignment for the entire section. That is, the value of

sh_addr must be congruent to zero, modulo the value of sh_addralign. Only zero and

positive integral powers of two are allowed. Values of zero or one mean the section has

no alignment constraints.

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

sh_entsize Some sections hold a table of fixed-sized entries, such as a symbol table. For such a

section, this member gives the size in bytes for each entry. This member contains zero if

the section does not hold a table of fixed-size entries.

Various sections hold program and control information:

.bss (Block Started by Symbol) This section holds uninitialized data that contributes to the

program’s memory image. By definition, the system initializes the data with zeros when the

program begins to run. This section is of type SHT_NOBITS. The attributes types are

SHF_ALLOC and SHF_WRITE.

.comment

This section holds version control information. This section is of type SHT_PROGBITS. No

attribute types are used.

.data This section holds initialized data that contribute to the program’s memory image. This

section is of type SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.data1 This section holds initialized data that contribute to the program’s memory image. This

section is of type SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.debug This section holds information for symbolic debugging. The contents are unspecified. This

section is of type SHT_PROGBITS. No attribute types are used.

.dynamic

This section holds dynamic linking information. The section’s attributes will include the

SHF_ALLOC bit. Whether the SHF_WRITE bit is set is processor-specific. This section is of

type SHT_DYNAMIC. See the attributes above.

.dynstr This section holds strings needed for dynamic linking, most commonly the strings that

represent the names associated with symbol table entries. This section is of type

SHT_STRTAB. The attribute type used is SHF_ALLOC.

.dynsym

This section holds the dynamic linking symbol table. This section is of type SHT_DYNSYM.

The attribute used is SHF_ALLOC.

.fini This section holds executable instructions that contribute to the process termination code.

When a program exits normally the system arranges to execute the code in this section. This

section is of type SHT_PROGBITS. The attributes used are SHF_ALLOC and

SHF_EXECINSTR.

.got This section holds the global offset table. This section is of type SHT_PROGBITS. The

attributes are processor-specific.

.hash This section holds a symbol hash table. This section is of type SHT_HASH. The attribute

used is SHF_ALLOC.

.init This section holds executable instructions that contribute to the process initialization code.

When a program starts to run the system arranges to execute the code in this section before

calling the main program entry point. This section is of type SHT_PROGBITS. The attributes

used are SHF_ALLOC and SHF_EXECINSTR.

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

.interp This section holds the pathname of a program interpreter. If the file has a loadable segment

that includes the section, the section’s attributes will include the SHF_ALLOC bit. Otherwise,

that bit will be off. This section is of type SHT_PROGBITS.

.line This section holds line number information for symbolic debugging, which describes the

correspondence between the program source and the machine code. The contents are

unspecified. This section is of type SHT_PROGBITS. No attribute types are used.

.note This section holds information in the "Note Section" format described below. This section is

of type SHT_NOTE. No attribute types are used.

.plt This section holds the procedure linkage table. This section is of type SHT_PROGBITS. The

attributes are processor-specific.

.relNAME

This section holds relocation information as described below. If the file has a loadable

segment that includes relocation, the section’s attributes will include the SHF_ALLOC bit.

Otherwise the bit will be off. By convention, "NAME" is supplied by the section to which the

relocations apply. Thus a relocation section for .text normally would have the name .rel.text.
This section is of type SHT_REL.

.relaNAME

This section holds relocation information as described below. If the file has a loadable

segment that includes relocation, the section’s attributes will include the SHF_ALLOC bit.

Otherwise the bit will be off. By convention, "NAME" is supplied by the section to which the

relocations apply. Thus a relocation section for .text normally would have the name .rela.text.
This section is of type SHT_RELA.

.rodata This section holds read-only data that typically contributes to a non-writable segment in the

process image. This section is of type SHT_PROGBITS. The attribute used is SHF_ALLOC.

.rodata1 This section holds read-only data that typically contributes to a non-writable segment in the

process image. This section is of type SHT_PROGBITS. The attribute used is SHF_ALLOC.

.shstrtab This section holds section names. This section is of type SHT_STRTAB. No attribute types

are used.

.strtab This section holds strings, most commonly the strings that represent the names associated with

symbol table entries. If the file has a loadable segment that includes the symbol string table,

the section’s attributes will include the SHF_ALLOC bit. Otherwise the bit will be off. This

section is of type SHT_STRTAB.

.symtab This section holds a symbol table. If the file has a loadable segment that includes the symbol

table, the section’s attributes will include the SHF_ALLOC bit. Otherwise the bit will be off.

This section is of type SHT_SYMTAB.

.text This section holds the "text", or executable instructions, of a program. This section is of type

SHT_PROGBITS. The attributes used are SHF_ALLOC and SHF_EXECINSTR.

.jcr This section holds information about Java classes that must be registered.

.eh_frame

This section holds information used for C++ exception-handling.

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

A section with the SHF_COMPRESSED flag set contains a compressed copy of the section data.

Compressed section data begins with an Elf64_Chdr or Elf32_Chdr structure which encodes the

compression algorithm and some characteristics of the uncompressed data.

typedef struct {

Elf32_Word ch_type;

Elf32_Word ch_size;

Elf32_Word ch_addralign;

} Elf32_Chdr;

typedef struct {

Elf64_Word ch_type;

Elf64_Word ch_reserved;

Elf64_Xword ch_size;

Elf64_Xword ch_addralign;

} Elf64_Chdr;

ch_type The compression algorithm used. A value of ELFCOMPRESS_ZLIB indicates that the

data is compressed using zlib(3). A value of ELFCOMPRESS_ZSTD indicates that the

data is compressed using Zstandard.

ch_size The size, in bytes, of the uncompressed section data. This corresponds to the sh_size field

of a section header containing uncompressed data.

ch_addralign The address alignment of the uncompressed section data. This corresponds to the

sh_addralign field of a section header containing uncompressed data.

String table sections hold null-terminated character sequences, commonly called strings. The object file

uses these strings to represent symbol and section names. One references a string as an index into the

string table section. The first byte, which is index zero, is defined to hold a null character. Similarly, a

string table’s last byte is defined to hold a null character, ensuring null termination for all strings.

An object file’s symbol table holds information needed to locate and relocate a program’s symbolic

definitions and references. A symbol table index is a subscript into this array.

typedef struct {

Elf32_Word st_name;

Elf32_Addr st_value;

Elf32_Word st_size;

unsigned char st_info;

unsigned char st_other;

Elf32_Half st_shndx;

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

} Elf32_Sym;

typedef struct {

Elf64_Word st_name;

unsigned char st_info;

unsigned char st_other;

Elf64_Half st_shndx;

Elf64_Addr st_value;

Elf64_Xword st_size;

} Elf64_Sym;

st_name This member holds an index into the object file’s symbol string table, which holds character

representations of the symbol names. If the value is non-zero, it represents a string table index

that gives the symbol name. Otherwise, the symbol table has no name.

st_value This member gives the value of the associated symbol.

st_size Many symbols have associated sizes. This member holds zero if the symbol has no size or an

unknown size.

st_info This member specifies the symbol’s type and binding attributes:

STT_NOTYPE The symbol’s type is not defined.

STT_OBJECT The symbol is associated with a data object.

STT_FUNC The symbol is associated with a function or other executable code.

STT_SECTION The symbol is associated with a section. Symbol table entries of this type

exist primarily for relocation and normally have STB_LOCAL bindings.

STT_FILE By convention the symbol’s name gives the name of the source file

associated with the object file. A file symbol has STB_LOCAL bindings, its

section index is SHN_ABS, and it precedes the other STB_LOCAL symbols

of the file, if it is present.

STT_LOPROC This value up to and including STT_HIPROC are reserved for processor-

specific semantics.

STT_HIPROC This value down to and including STT_LOPROC are reserved for processor-

specific semantics.

STB_LOCAL Local symbols are not visible outside the object file containing their

definition. Local symbols of the same name may exist in multiple file

without interfering with each other.

STB_GLOBAL Global symbols are visible to all object files being combined. One file’s

definition of a global symbol will satisfy another file’s undefined reference to

the same symbol.

STB_WEAK Weak symbols resemble global symbols, but their definitions have lower

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

precedence.

STB_LOPROC This value up to and including STB_HIPROC are reserved for processor-

specific semantics.

STB_HIPROC This value down to and including STB_LOPROC are reserved for processor-

specific semantics.

There are macros for packing and unpacking the binding and type fields:

ELF32_ST_BIND(info) or ELF64_ST_BIND(info) extract a binding

from an st_info value.

ELF64_ST_TYPE(info) or ELF32_ST_TYPE(info) extract a type from

an st_info value.

ELF32_ST_INFO(bind, type) or ELF64_ST_INFO(bind, type) convert a

binding and a type into an st_info value.

st_other This member currently holds zero and has no defined meaning.

st_shndx

Every symbol table entry is "defined" in relation to some section. This member holds the

relevant section header table index.

Relocation is the process of connecting symbolic references with symbolic definitions. Relocatable files

must have information that describes how to modify their section contents, thus allowing executable and

shared object files to hold the right information for a process’ program image. Relocation entries are

these data.

Relocation structures that do not need an addend:

typedef struct {

Elf32_Addr r_offset;

Elf32_Word r_info;

} Elf32_Rel;

typedef struct {

Elf64_Addr r_offset;

Elf64_Xword r_info;

} Elf64_Rel;

Relocation structures that need an addend:

typedef struct {

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

Elf32_Addr r_offset;

Elf32_Word r_info;

Elf32_Sword r_addend;

} Elf32_Rela;

typedef struct {

Elf64_Addr r_offset;

Elf64_Xword r_info;

Elf64_Sxword r_addend;

} Elf64_Rela;

r_offset This member gives the location at which to apply the relocation action. For a relocatable file,

the value is the byte offset from the beginning of the section to the storage unit affected by the

relocation. For an executable file or shared object, the value is the virtual address of the storage

unit affected by the relocation.

r_info This member gives both the symbol table index with respect to which the relocation must be

made and the type of relocation to apply. Relocation types are processor-specific. When the

text refers to a relocation entry’s relocation type or symbol table index, it means the result of

applying ELF_[32|64]_R_TYPE or ELF[32|64]_R_SYM, respectively to the entry’s r_info
member.

r_addend

This member specifies a constant addend used to compute the value to be stored into the

relocatable field.

Note Section
ELF note sections consist of entries with the following format:

Field Size Description
namesz 32 bits Size of name

descsz 32 bits Size of desc

type 32 bits OS-dependent note type

name namesz Null-terminated originator name

desc descsz OS-dependent note data

The name and desc fields are padded to ensure 4-byte alignemnt. namesz and descsz specify the

unpadded length.

FreeBSD defines the following ELF note types (with corresponding interpretation of desc):

NT_FREEBSD_ABI_TAG (Value: 1)

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

Indicates the OS ABI version in a form of a 32-bit integer containing expected ABI version (i.e.,

__FreeBSD_version).

NT_FREEBSD_NOINIT_TAG (Value: 2)

Indicates that the C startup does not call initialization routines, and thus rtld(1) must do so. desc is

ignored.

NT_FREEBSD_ARCH_TAG (Value: 3)

Contains the MACHINE_ARCH that the executable was built for.

NT_FREEBSD_FEATURE_CTL (Value: 4)

Contains a bitmask of mitigations and features to enable:

NT_FREEBSD_FCTL_ASLR_DISABLE (Value: 0x01)

Request that address randomization (ASLR) not be performed. See security(7).

NT_FREEBSD_FCTL_PROTMAX_DISABLE (Value: 0x02)

Request that mmap(2) calls not set PROT_MAX to the initial value of the prot argument.

NT_FREEBSD_FCTL_STKGAP_DISABLE (Value: 0x04)

Disable stack gap.

NT_FREEBSD_FCTL_WXNEEDED (Value: 0x08)

Indicate that the binary requires mappings that are simultaneously writeable and executable.

SEE ALSO
as(1), gdb(1) (ports/devel/gdb), ld(1), objdump(1), readelf(1), execve(2), zlib(3), ar(5), core(5)

Hewlett Packard, Elf-64 Object File Format.

Santa Cruz Operation, System V Application Binary Interface.

Unix System Laboratories, "Object Files", Executable and Linking Format (ELF).

HISTORY
The ELF header files made their appearance in FreeBSD 2.2.6. ELF in itself first appeared in AT&T

System V UNIX. The ELF format is an adopted standard.

AUTHORS
This manual page was written by Jeroen Ruigrok van der Werven <asmodai@FreeBSD.org> with

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

inspiration from BSDi’s BSD/OS elf manpage.

ELF(5) FreeBSD File Formats Manual ELF(5)

FreeBSD 14.2-RELEASE July 25, 2022 FreeBSD 14.2-RELEASE

