
NAME
elf32_xlate, elf64_xlate, gelf_xlate - translate data between files and memory

LIBRARY
ELF Access Library (libelf, -lelf)

SYNOPSIS
#include <libelf.h>

Elf_Data *

elf32_xlatetof(Elf_Data *dst, Elf_Data *src, unsigned int file_encoding);

Elf_Data *

elf32_xlatetom(Elf_Data *dst, Elf_Data *src, unsigned int file_encoding);

Elf_Data *

elf64_xlatetof(Elf_Data *dst, Elf_Data *src, unsigned int file_encoding);

Elf_Data *

elf64_xlatetom(Elf_Data *dst, Elf_Data *src, unsigned int file_encoding);

#include <gelf.h>

Elf_Data *

gelf_xlatetof(Elf *elf, Elf_Data *dst, Elf_Data *src, unsigned int file_encoding);

Elf_Data *

gelf_xlatetom(Elf *elf, Elf_Data *dst, Elf_Data *src, unsigned int file_encoding);

DESCRIPTION
These functions translate between the file and memory representations of ELF data structures. The in-

memory representation of an ELF data structure would conform to the byte ordering and data alignment

restrictions dictated by the host processor. As described in elf(3), the file representation of this data

structure could use a different byte ordering from that of the host, or could use a different layout within

the file.

Functions elf32_xlatetom(), elf64_xlatetom(), and gelf_xlatetom() translate data from file

representations to native, in-memory representations. Functions elf32_xlatetof(), elf64_xlatetof(), and

gelf_xlatetof() translate data from in-memory representations to file representations.

GELF_XLATETOF(3) FreeBSD Library Functions Manual GELF_XLATETOF(3)

FreeBSD 14.0-RELEASE-p6 October 11, 2018 FreeBSD 14.0-RELEASE-p6

Argument src denotes an Elf_Data descriptor describing the source to be translated. The following

elements of the descriptor need to be set before invoking these functions:

d_bufSet to a valid pointer value denoting the beginning of the data area to be translated.

d_sizeSet to the total size in bytes of the source data area to be translated.

d_typeSet to the type of the source data being translated. This value is one of the values defined

in the Elf_Type enumeration. The Elf_Type enumeration is described in elf(3).

d_versionSet to the version number of the ELF data structures being translated. Currently only

version EV_CURRENT is supported.

Argument dst describes the destination buffer. The following elements of the Elf_Data descriptor need

to be set before invoking these functions:

d_bufSet to a valid pointer value that denotes the start of the destination buffer that will hold

translated data. This value may be the same as that of the source buffer, in which case an in-

place conversion will be attempted.

d_sizeSet to the size of the destination buffer in bytes. This value will be modified if the function

call succeeds.

d_versionSet to the desired version number of the destination. Currently only version

EV_CURRENT is supported.

These translations routines allow the source and destination buffers to coincide, in which case an in-

place translation will be done if the destination is large enough to hold the translated data. Other kinds

of overlap between the source and destination buffers are not permitted.

On successful completion of the translation request the following fields of the dst descriptor would be

modified:

d_sizeSet to the size in bytes of the translated data.

d_typeSet to the d_type value of the source data descriptor.

Argument file_encoding specifies the encoding in which the file objects are represented. It must be one

of:

GELF_XLATETOF(3) FreeBSD Library Functions Manual GELF_XLATETOF(3)

FreeBSD 14.0-RELEASE-p6 October 11, 2018 FreeBSD 14.0-RELEASE-p6

ELFDATANONEFile objects use the library’s native byte ordering.

ELFDATA2LSBFile objects use a little-endian ordering.

ELFDATA2MSBFile objects use a big-endian ordering.

The functions gelf_xlatetof() and gelf_xlatetom() select the appropriate translation scheme based on the

properties of argument elf.

RETURN VALUES
These functions return argument dst if successful, or NULL in case of an error.

EXAMPLES
To translate a GElf_Rel structure to its LSB file representation use:

Elf_Data dst, src;

GElf_Rel rel;

Elf *e;

e = ...; /* See elf_begin(3). */

/* Set up the ’src’ descriptor. */

memset(&src, 0, sizeof src);

src.d_buf = &rel;

src.d_size = sizeof(rel);

src.d_type = ELF_T_REL;

src.d_version = EV_CURRENT;

/* Set up the ’dst’ descriptor. */

memset(&dst, 0, sizeof dst);

dst.d_buf = filebuf;

dst.d_size = gelf_fsize(e, ELF_T_REL, 1, EV_CURRENT);

dst.d_version = EV_CURRENT;

if (gelf_xlatetof(e, &dst, &src, ELFDATA2LSB) == NULL) {

printf("error: %s", elf_errmsg(0));

}

ERRORS
These functions may fail with the following errors:

GELF_XLATETOF(3) FreeBSD Library Functions Manual GELF_XLATETOF(3)

FreeBSD 14.0-RELEASE-p6 October 11, 2018 FreeBSD 14.0-RELEASE-p6

[ELF_E_ARGUMENT]

One of arguments src, dst or elf was NULL.

[ELF_E_ARGUMENT]

Arguments src and dst were equal.

[ELF_E_ARGUMENT]

The desired encoding parameter was not one of ELFDATANONE,

ELFDATA2LSB or ELFDATA2MSB.

[ELF_E_ARGUMENT]

The d_type field of argument src specified an unsupported type.

[ELF_E_DATA] The src argument specified a buffer size that was not an integral multiple of its

underlying type.

[ELF_E_DATA] The dst argument specified a buffer size that was too small.

[ELF_E_DATA] Argument dst specified a destination buffer that overlaps with the source buffer.

[ELF_E_DATA] The destination buffer for a conversion to memory had an alignment

inappropriate for the underlying ELF type.

[ELF_E_DATA] The source buffer for a conversion to file had an alignment inappropriate for the

underlying ELF type.

[ELF_E_UNIMPL] The version numbers for arguments dst and src were not identical.

[ELF_E_UNIMPL] The argument src requested conversion for a type which is not currently

supported.

[ELF_E_VERSION] Argument src specified an unsupported version number.

SEE ALSO
elf(3), elf_getdata(3), gelf(3)

GELF_XLATETOF(3) FreeBSD Library Functions Manual GELF_XLATETOF(3)

FreeBSD 14.0-RELEASE-p6 October 11, 2018 FreeBSD 14.0-RELEASE-p6

