EVENTFD(2) FreeBSD System Calls Manual EVENTFD(2)

NAME
eventfd - create afile descriptor for event notification

LIBRARY
Standard C Library (libc, -Ic)

SYNOPSIS
#include <syseventfd.h>

int
eventfd(unsigned int initval, int flags);

int
eventfd_read(int fd, eventfd_t *value);

int
eventfd_write(int fd, eventfd_t value);
DESCRIPTION
eventfd() creates a special file descriptor with event counter or semaphore semantics, designed for
interprocess communication. The returned file descriptor refersto akernel object containing an
unsigned 64-bit integer counter, which isinitialized with the value of the initval argument.
The flags argument may contain the result of or’ing the following values:
EFD_CLOEXEC set FD_CLOEXEC on the file descriptor
EFD_NONBLOCK do not block on read/write operations
EFD_SEMAPHORE use semaphore semantics

File operations have the following semantics:

read(2) If the counter is zero, the call blocks until the counter becomes non-zero, unless
EFD_NONBLOCK was set, in which case it would fail with EAGAIN instead.

If the counter is non-zero:

o |f EFD_SEMAPHORE isnot set, the current value of the counter is returned,
and the value is reset to zero.

® |If EFD_SEMAPHORE is set, the constant 1 isreturned, and the valueis

FreeBSD 14.0-RELEASE-p6 October 8, 2020 FreeBSD 14.0-REL EASE-p6



EVENTFD(2) FreeBSD System Calls Manual EVENTFD(2)

decremented by 1.

The numeric value is encoded as 64-bit (8 bytes) in host byte order. The read(2)
call failswith EINVAL if thereislessthan 8 bytes available in the supplied
buffer.

write(2) Adds the given value to the counter. The maximum value that can be stored in the
counter is the maximum unsigned 64-bit integer value minus one
(Oxfffffffffffffffe).

If the resulting val ue exceeds the maximum, the call would block until the valueis
reduced by read(2), unless EFD_NONBLOCK was set, in which case it would fall
with EAGAIN instead.

The numeric value is encoded as 64-bit (8 bytes) in host byte order. The write(2)
call failswith EINVAL if thereislessthan 8 bytes available in the supplied
buffer, or if the value Oxffffffffffffffff is given.

poll(2) When receiving notifications via poll(2) / ppoll(2) / select(2) / pselect(2) /
kqueue(2), the following semantics apply:

® Thefile descriptor is readable when the counter is greater than zero.

® Thefile descriptor is writable when the counter isless than the maximum
value.

File descriptors created by eventfd() are passable to other processes via sendmsg(2) and are preserved
across fork(2); in both cases the descriptors refer to the same counter from both processes. Unless
O_CLOEXEC flag was specified, the created file descriptor will remain open across execve(2) system
cals; see close(2), fentl(2) and O_CLOEXEC description.

eventfd_read() and eventfd_write() are thin wrappers around read(2) and write(2) system calls, provided
for compatibility with glibc.

RETURN VALUES
If successful, eventfd() returns a non-negative integer, termed afile descriptor. It returns-1 on failure,

and sets errno to indicate the error.

The eventfd_read() and eventfd_write() functions return O if the operation succeeded, -1 otherwise.

FreeBSD 14.0-RELEASE-p6 October 8, 2020 FreeBSD 14.0-REL EASE-p6



EVENTFD(2) FreeBSD System Calls Manual EVENTFD(2)

ERRORS
eventfd() may fail with:

[EINVAL] The flags argument given to eventfd() has unknown bits set.
[EMFILE] The process has already reached its limit for open file descriptors.
[ENFILE] The system file table is full.
[ENOMEM] No memory was available to create the kernel object.

SEE ALSO

close(2), kqueue(2), poll(2), read(2), select(2), write(2)

STANDARDS
The eventfd() system call is non-standard. It ispresent in Linux.

HISTORY
The eventfd() system call first appeared in FreeBSD 13.0.

FreeBSD 14.0-RELEASE-p6 October 8, 2020 FreeBSD 14.0-REL EASE-p6



