
NAME
eventfd - create a file descriptor for event notification

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/eventfd.h>

int

eventfd(unsigned int initval, int flags);

int

eventfd_read(int fd, eventfd_t *value);

int

eventfd_write(int fd, eventfd_t value);

DESCRIPTION
eventfd() creates a special file descriptor with event counter or semaphore semantics, designed for

interprocess communication. The returned file descriptor refers to a kernel object containing an

unsigned 64-bit integer counter, which is initialized with the value of the initval argument.

The flags argument may contain the result of or’ing the following values:

EFD_CLOEXEC set FD_CLOEXEC on the file descriptor

EFD_NONBLOCK do not block on read/write operations

EFD_SEMAPHORE use semaphore semantics

File operations have the following semantics:

read(2) If the counter is zero, the call blocks until the counter becomes non-zero, unless

EFD_NONBLOCK was set, in which case it would fail with EAGAIN instead.

If the counter is non-zero:

+o If EFD_SEMAPHORE is not set, the current value of the counter is returned,

and the value is reset to zero.

+o If EFD_SEMAPHORE is set, the constant 1 is returned, and the value is

EVENTFD(2) FreeBSD System Calls Manual EVENTFD(2)

FreeBSD 14.2-RELEASE October 8, 2020 FreeBSD 14.2-RELEASE



decremented by 1.

The numeric value is encoded as 64-bit (8 bytes) in host byte order. The read(2)

call fails with EINVAL if there is less than 8 bytes available in the supplied

buffer.

write(2) Adds the given value to the counter. The maximum value that can be stored in the

counter is the maximum unsigned 64-bit integer value minus one

(0xfffffffffffffffe).

If the resulting value exceeds the maximum, the call would block until the value is

reduced by read(2), unless EFD_NONBLOCK was set, in which case it would fail

with EAGAIN instead.

The numeric value is encoded as 64-bit (8 bytes) in host byte order. The write(2)

call fails with EINVAL if there is less than 8 bytes available in the supplied

buffer, or if the value 0xffffffffffffffff is given.

poll(2) When receiving notifications via poll(2) / ppoll(2) / select(2) / pselect(2) /

kqueue(2), the following semantics apply:

+o The file descriptor is readable when the counter is greater than zero.

+o The file descriptor is writable when the counter is less than the maximum

value.

File descriptors created by eventfd() are passable to other processes via sendmsg(2) and are preserved

across fork(2); in both cases the descriptors refer to the same counter from both processes. Unless

O_CLOEXEC flag was specified, the created file descriptor will remain open across execve(2) system

calls; see close(2), fcntl(2) and O_CLOEXEC description.

eventfd_read() and eventfd_write() are thin wrappers around read(2) and write(2) system calls, provided

for compatibility with glibc.

RETURN VALUES
If successful, eventfd() returns a non-negative integer, termed a file descriptor. It returns -1 on failure,

and sets errno to indicate the error.

The eventfd_read() and eventfd_write() functions return 0 if the operation succeeded, -1 otherwise.

EVENTFD(2) FreeBSD System Calls Manual EVENTFD(2)

FreeBSD 14.2-RELEASE October 8, 2020 FreeBSD 14.2-RELEASE



ERRORS
eventfd() may fail with:

[EINVAL] The flags argument given to eventfd() has unknown bits set.

[EMFILE] The process has already reached its limit for open file descriptors.

[ENFILE] The system file table is full.

[ENOMEM] No memory was available to create the kernel object.

SEE ALSO
close(2), kqueue(2), poll(2), read(2), select(2), write(2)

STANDARDS
The eventfd() system call is non-standard. It is present in Linux.

HISTORY
The eventfd() system call first appeared in FreeBSD 13.0.

EVENTFD(2) FreeBSD System Calls Manual EVENTFD(2)

FreeBSD 14.2-RELEASE October 8, 2020 FreeBSD 14.2-RELEASE


