
NAME
execl, execlp, execle, exect, execv, execvp, execvpe, execvP - execute a file

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <unistd.h>

extern char **environ;

int

execl(const char *path, const char *arg, ..., NULL);

int

execlp(const char *file, const char *arg, ..., NULL);

int

execle(const char *path, const char *arg, ..., NULL, char *const envp[]);

int

exect(const char *path, char *const argv[], char *const envp[]);

int

execv(const char *path, char *const argv[]);

int

execvp(const char *file, char *const argv[]);

int

execvpe(const char *file, char *const argv[], char *const envp[]);

int

execvP(const char *file, const char *search_path, char *const argv[]);

DESCRIPTION
The exec family of functions replaces the current process image with a new process image. The

functions described in this manual page are front-ends for the function execve(2). (See the manual page

for execve(2) for detailed information about the replacement of the current process.)

EXEC(3) FreeBSD Library Functions Manual EXEC(3)

FreeBSD 14.2-RELEASE December 11, 2023 FreeBSD 14.2-RELEASE

The initial argument for these functions is the pathname of a file which is to be executed.

The const char *arg and subsequent ellipses in the execl(), execlp(), and execle() functions can be

thought of as arg0, arg1, ..., argn. Together they describe a list of one or more pointers to null-

terminated strings that represent the argument list available to the executed program. The first

argument, by convention, should point to the file name associated with the file being executed. The list

of arguments must be terminated by a NULL pointer.

The exect(), execv(), execvp(), execvpe(), and execvP() functions provide an array of pointers to null-

terminated strings that represent the argument list available to the new program. The first argument, by

convention, should point to the file name associated with the file being executed. The array of pointers

must be terminated by a NULL pointer.

The execle(), exect(), and execvpe() functions also specify the environment of the executed process by

following the NULL pointer that terminates the list of arguments in the argument list or the pointer to

the argv array with an additional argument. This additional argument is an array of pointers to null-

terminated strings and must be terminated by a NULL pointer. The other functions take the environment

for the new process image from the external variable environ in the current process.

Some of these functions have special semantics.

The functions execlp(), execvp(), execvpe(), and execvP() will duplicate the actions of the shell in

searching for an executable file if the specified file name does not contain a slash "/" character. For

execlp() and execvp(), execvpe(), search path is the path specified in the environment by "PATH"

variable. If this variable is not specified, the default path is set according to the _PATH_DEFPATH

definition in <paths.h>, which is set to "/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin". For

execvP(), the search path is specified as an argument to the function. In addition, certain errors are

treated specially.

If an error is ambiguous (for simplicity, we shall consider all errors except ENOEXEC as being

ambiguous here, although only the critical error EACCES is really ambiguous), then these functions will

act as if they stat the file to determine whether the file exists and has suitable execute permissions. If it

does, they will return immediately with the global variable errno restored to the value set by execve().

Otherwise, the search will be continued. If the search completes without performing a successful

execve() or terminating due to an error, these functions will return with the global variable errno set to

EACCES or ENOENT according to whether at least one file with suitable execute permissions was

found.

If the header of a file is not recognized (the attempted execve() returned ENOEXEC), these functions

will execute the shell with the path of the file as its first argument. (If this attempt fails, no further

EXEC(3) FreeBSD Library Functions Manual EXEC(3)

FreeBSD 14.2-RELEASE December 11, 2023 FreeBSD 14.2-RELEASE

searching is done.)

The function exect() executes a file with the program tracing facilities enabled (see ptrace(2)).

RETURN VALUES
If any of the exec() functions returns, an error will have occurred. The return value is -1, and the global

variable errno will be set to indicate the error.

FILES
/bin/sh The shell.

COMPATIBILITY
Historically, the default path for the execlp() and execvp() functions was ":/bin:/usr/bin". This was

changed to remove the current directory to enhance system security.

The behavior of execlp() and execvp() when errors occur while attempting to execute the file is not quite

historic practice, and has not traditionally been documented and is not specified by the POSIX standard.

Traditionally, the functions execlp() and execvp() ignored all errors except for the ones described above

and ETXTBSY, upon which they retried after sleeping for several seconds, and ENOMEM and E2BIG,

upon which they returned. They now return for ETXTBSY, and determine existence and executability

more carefully. In particular, EACCES for inaccessible directories in the path prefix is no longer

confused with EACCES for files with unsuitable execute permissions. In 4.4BSD, they returned upon

all errors except EACCES, ENOENT, ENOEXEC and ETXTBSY. This was inferior to the traditional

error handling, since it breaks the ignoring of errors for path prefixes and only improves the handling of

the unusual ambiguous error EFAULT and the unusual error EIO. The behaviour was changed to match

the behaviour of sh(1).

ERRORS
The execl(), execle(), execlp(), execvp(), execvpe(), and execvP() functions may fail and set errno for

any of the errors specified for the library functions execve(2) and malloc(3).

The exect() and execv() functions may fail and set errno for any of the errors specified for the library

function execve(2).

SEE ALSO
sh(1), execve(2), fork(2), ktrace(2), ptrace(2), environ(7)

STANDARDS
The execl(), execv(), execle(), execlp() and execvp() functions conform to IEEE Std 1003.1-1988

EXEC(3) FreeBSD Library Functions Manual EXEC(3)

FreeBSD 14.2-RELEASE December 11, 2023 FreeBSD 14.2-RELEASE

("POSIX.1"). The execvpe() function is a GNU extension.

HISTORY
The exec() function appeared in Version 1 AT&T UNIX. The execl() and execv() functions appeared in

Version 2 AT&T UNIX. The execlp(), execle(), execve(), and execvp() functions appeared in Version 7

AT&T UNIX. The execvP() function first appeared in FreeBSD 5.2. The execvpe() function first

appeared in FreeBSD 15.0.

BUGS
The type of the argv and envp parameters to execle(), exect(), execv(), execvp(), execvpe(), and

execvP() is a historical accident and no sane implementation should modify the provided strings. The

bogus parameter types trigger false positives from const correctness analyzers. On FreeBSD, the

__DECONST() macro may be used to work around this limitation.

Due to a fluke of the C standard, on platforms other than FreeBSD the definition of NULL may be the

untyped number zero, rather than a (void *)0 expression. To distinguish the concepts, they are referred

to as a "null pointer constant" and a "null pointer", respectively. On exotic computer architectures that

FreeBSD does not support, the null pointer constant and null pointer may have a different representation.

In general, where this document and others reference a NULL value, they actually imply a null pointer.

E.g., for portability to non-FreeBSD operating systems on exotic computer architectures, one may use

(char *)NULL in place of NULL when invoking execl(), execle(), and execlp().

EXEC(3) FreeBSD Library Functions Manual EXEC(3)

FreeBSD 14.2-RELEASE December 11, 2023 FreeBSD 14.2-RELEASE

