
NAME
exp, expf, expl, exp2, exp2f, exp2l, expm1, expm1f, expm1l, pow, powf, powl - exponential and power

functions

LIBRARY
Math Library (libm, -lm)

SYNOPSIS
#include <math.h>

double

exp(double x);

float

expf(float x);

long double

expl(long double x);

double

exp2(double x);

float

exp2f(float x);

long double

exp2l(long double x);

double

expm1(double x);

float

expm1f(float x);

long double

expm1l(long double x);

double

pow(double x, double y);

EXP(3) FreeBSD Library Functions Manual EXP(3)

FreeBSD 14.0-RELEASE-p11 April 1, 2020 FreeBSD 14.0-RELEASE-p11

float

powf(float x, float y);

long double

powl(long double x, long double y);

DESCRIPTION
The exp(), expf(), and expl() functions compute the base e exponential value of the given argument x.

The exp2(), exp2f(), and exp2l() functions compute the base 2 exponential of the given argument x.

The expm1(), expm1f(), and the expm1l() functions compute the value exp(x)-1 accurately even for tiny

argument x.

The pow(), powf(), and the powl() functions compute the value of x to the exponent y.

ERROR (due to Roundoff etc.)
The values of exp(0), expm1(0), exp2(integer), and pow(integer, integer) are exact provided that they are

representable. Otherwise the error in these functions is generally below one ulp.

RETURN VALUES
These functions will return the appropriate computation unless an error occurs or an argument is out of

range. The functions pow(x, y), powf(x, y), and powl(x, y) raise an invalid exception and return an NaN

if x < 0 and y is not an integer.

NOTES
The function pow(x, 0) returns x**0 = 1 for all x including x = 0, infinity, and NaN . Previous

implementations of pow may have defined x**0 to be undefined in some or all of these cases. Here are

reasons for returning x**0 = 1 always:

1. Any program that already tests whether x is zero (or infinite or NaN) before computing x**0

cannot care whether 0**0 = 1 or not. Any program that depends upon 0**0 to be invalid is

dubious anyway since that expression’s meaning and, if invalid, its consequences vary from one

computer system to another.

2. Some Algebra texts (e.g. Sigler’s) define x**0 = 1 for all x, including x = 0. This is compatible

with the convention that accepts a[0] as the value of polynomial

p(x) = a[0]*x**0 + a[1]*x**1 + a[2]*x**2 +...+ a[n]*x**n

EXP(3) FreeBSD Library Functions Manual EXP(3)

FreeBSD 14.0-RELEASE-p11 April 1, 2020 FreeBSD 14.0-RELEASE-p11

at x = 0 rather than reject a[0]*0**0 as invalid.

3. Analysts will accept 0**0 = 1 despite that x**y can approach anything or nothing as x and y

approach 0 independently. The reason for setting 0**0 = 1 anyway is this:

If x(z) and y(z) are any functions analytic (expandable in power series) in z around z = 0, and

if there x(0) = y(0) = 0, then x(z)**y(z) -> 1 as z -> 0.

4. If 0**0 = 1, then infinity**0 = 1/0**0 = 1 too; and then NaN**0 = 1 too because x**0 = 1 for all

finite and infinite x, i.e., independently of x.

SEE ALSO
clog(3), cpow(3), fenv(3), ldexp(3), log(3), math(3)

STANDARDS
These functions conform to ISO/IEC 9899:1999 ("ISO C99").

HISTORY
The exp() function appeared in Version 1 AT&T UNIX.

EXP(3) FreeBSD Library Functions Manual EXP(3)

FreeBSD 14.0-RELEASE-p11 April 1, 2020 FreeBSD 14.0-RELEASE-p11

