
NAME
expr - evaluate expression

SYNOPSIS
expr [-e] expression

DESCRIPTION
The expr utility evaluates expression and writes the result on standard output.

All operators and operands must be passed as separate arguments. Several of the operators have special

meaning to command interpreters and must therefore be quoted appropriately. All integer operands are

interpreted in base 10 and must consist of only an optional leading minus sign followed by one or more

digits (unless less strict parsing has been enabled for backwards compatibility with prior versions of expr
in FreeBSD).

Arithmetic operations are performed using signed integer math with a range according to the C intmax_t

data type (the largest signed integral type available). All conversions and operations are checked for

overflow. Overflow results in program termination with an error message on stdout and with an error

status.

The -e option enables backwards compatible behaviour as detailed below.

Operators are listed below in order of increasing precedence; all are left-associative. Operators with

equal precedence are grouped within symbols ‘{’ and ‘}’.

expr1 | expr2

Return the evaluation of expr1 if it is neither an empty string nor zero; otherwise, returns the

evaluation of expr2 if it is not an empty string; otherwise, returns zero.

expr1 & expr2

Return the evaluation of expr1 if neither expression evaluates to an empty string or zero;

otherwise, returns zero.

expr1 {=, >, >=, <, <=, !=} expr2

Return the results of integer comparison if both arguments are integers; otherwise, returns the

results of string comparison using the locale-specific collation sequence. The result of each

comparison is 1 if the specified relation is true, or 0 if the relation is false.

expr1 {+, -} expr2

Return the results of addition or subtraction of integer-valued arguments.

EXPR(1) FreeBSD General Commands Manual EXPR(1)

FreeBSD 14.2-RELEASE October 5, 2016 FreeBSD 14.2-RELEASE

expr1 {*, /, %} expr2

Return the results of multiplication, integer division, or remainder of integer-valued arguments.

expr1 : expr2

The ":" operator matches expr1 against expr2, which must be a basic regular expression. The

regular expression is anchored to the beginning of the string with an implicit "^".

If the match succeeds and the pattern contains at least one regular expression subexpression

"\(...\)", the string corresponding to "\1" is returned; otherwise the matching operator returns the

number of characters matched. If the match fails and the pattern contains a regular expression

subexpression the null string is returned; otherwise 0.

Parentheses are used for grouping in the usual manner.

The expr utility makes no lexical distinction between arguments which may be operators and arguments

which may be operands. An operand which is lexically identical to an operator will be considered a

syntax error. See the examples below for a work-around.

The syntax of the expr command in general is historic and inconvenient. New applications are advised

to use shell arithmetic rather than expr.

Compatibility with previous implementations
Unless FreeBSD 4.x compatibility is enabled, this version of expr adheres to the POSIX Utility Syntax

Guidelines, which require that a leading argument beginning with a minus sign be considered an option

to the program. The standard -- syntax may be used to prevent this interpretation. However, many

historic implementations of expr, including the one in previous versions of FreeBSD, will not permit this

syntax. See the examples below for portable ways to guarantee the correct interpretation. The

check_utility_compat(3) function (with a utility argument of "expr") is used to determine whether

backwards compatibility mode should be enabled. This feature is intended for use as a transition and

debugging aid, when expr is used in complex scripts which cannot easily be recast to avoid the non-

portable usage. Enabling backwards compatibility mode also implicitly enables the -e option, since this

matches the historic behavior of expr in FreeBSD. This option makes number parsing less strict and

permits leading white space and an optional leading plus sign. In addition, empty operands have an

implied value of zero in numeric context. For historical reasons, defining the environment variable

EXPR_COMPAT also enables backwards compatibility mode.

ENVIRONMENT
EXPR_COMPAT If set, enables backwards compatibility mode.

EXIT STATUS

EXPR(1) FreeBSD General Commands Manual EXPR(1)

FreeBSD 14.2-RELEASE October 5, 2016 FreeBSD 14.2-RELEASE

The expr utility exits with one of the following values:

0 the expression is neither an empty string nor 0.

1 the expression is an empty string or 0.

2 the expression is invalid.

EXAMPLES
+o The following example (in sh(1) syntax) adds one to the variable a:

a=$(expr $a + 1)

+o This will fail if the value of a is a negative number. To protect negative values of a from being

interpreted as options to the expr command, one might rearrange the expression:

a=$(expr 1 + $a)

+o More generally, parenthesize possibly-negative values:

a=$(expr \($a \) + 1)

+o With shell arithmetic, no escaping is required:

a=$((a + 1))

+o This example prints the filename portion of a pathname stored in variable a. Since a might represent

the path /, it is necessary to prevent it from being interpreted as the division operator. The //

characters resolve this ambiguity.

expr "//$a" : ’.*/\(.*\)’

+o With modern sh(1) syntax,

"${a##*/}"

expands to the same value.

The following examples output the number of characters in variable a. Again, if a might begin with a

hyphen, it is necessary to prevent it from being interpreted as an option to expr, and a might be

interpreted as an operator.

+o To deal with all of this, a complicated command is required:

expr \("X$a" : ".*" \) - 1

+o With modern sh(1) syntax, this can be done much more easily:

${#a}

expands to the required number.

SEE ALSO

EXPR(1) FreeBSD General Commands Manual EXPR(1)

FreeBSD 14.2-RELEASE October 5, 2016 FreeBSD 14.2-RELEASE

sh(1), test(1), check_utility_compat(3)

STANDARDS
The expr utility conforms to IEEE Std 1003.1-2008 ("POSIX.1"), provided that backwards compatibility

mode is not enabled.

Backwards compatibility mode performs less strict checks of numeric arguments:

+o An empty operand string is interpreted as 0.

+o Leading white space and/or a plus sign before an otherwise valid positive numeric operand are

allowed and will be ignored.

The extended arithmetic range and overflow checks do not conflict with POSIX’s requirement that

arithmetic be done using signed longs, since they only make a difference to the result in cases where

using signed longs would give undefined behavior.

According to the POSIX standard, the use of string arguments length, substr, index, or match produces

undefined results. In this version of expr, these arguments are treated just as their respective string

values.

The -e flag is an extension.

HISTORY
An expr utility first appeared in the Programmer’s Workbench (PWB/UNIX). A public domain version

of expr written by Pace Willisson <pace@blitz.com> appeared in 386BSD-0.1.

AUTHORS
Initial implementation by Pace Willisson <pace@blitz.com> was largely rewritten by J.T. Conklin

<jtc@FreeBSD.org>.

EXPR(1) FreeBSD General Commands Manual EXPR(1)

FreeBSD 14.2-RELEASE October 5, 2016 FreeBSD 14.2-RELEASE

