EXTRACLANGTOOLS(1) Extra Clang Tools

NAME

extraclangtools - Extra Clang Tools Documentation

EXTRACLANGTOOL (1)

Welcome to the clang-tool s-extra project which contains extra tools built using Clang’' stooling APIs.

EXTRA CLANG TOOLS15.0.7 RELEASE NOTES

15

® Introduction
® What's New in Extra Clang Tools 15.0.7?
® Major New Features
® |Improvementsto clangd
® Inlay hints
® Diagnostics
® Semantic Highlighting
® Hover
® Code completion
® Signature help
® Cross-references
® Code Actions
® Miscellaneous
® |mprovements to clang-doc
® |mprovementsto clang-query
® Improvementsto clang-rename

® |mprovements to clang-tidy

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® New checks
® New check aliases
® Changesin existing checks
® Removed checks
® |mprovements to include-fixer
® |mprovements to clang-include-fixer
® |mprovements to modularize
® |mprovementsto pp-trace
® Clang-tidy Visual Studio plugin
Written by the LLVM Team
Introduction
This document contains the release notes for the Extra Clang Tools, part of the Clang release 15.0.7.
Here we describe the status of the Extra Clang Toolsin some detail, including major improvements
from the previous release and new feature work. All LLVM releases may be downloaded from the

LLVM releases web site.

For more information about Clang or LLVM, including information about the latest release, please see
the Clang Web Ste or the LLVM Web Ste.

Note that if you are reading this file from a Git checkout or the main Clang web page, this document
applies to the next release, not the current one. To see the release notes for a specific release, please see
the releases page.

What’s New in Extra Clang Tools 15.0.7?
Some of the major new features and improvements to Extra Clang Tools are listed here. Generic
improvements to Extra Clang Tools as awhole or to its underlying infrastructure are described first,

followed by tool-specific sections.

Major New Features

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

I mprovementsto clangd
Inlay hints

®
Provide hintsfor:
® Lambda return types.
© Forwarding functions using the underlying function call.
©® Support for standard LSP 3.17 inlay hints protocol.
® Designator inlay hints are enabled by default.
Diagnostics
® Improved Fix-its of some clang-tidy checks when applied with clangd.
® Clangd now produces diagnostics for forwarding functions like make_unique.
® Include cleaner analysis can be disabled with the Diagnostics.I ncludes.I gnoreHeader config option.
® Include cleaner doesn’t diagnose exporting headers.
® clang-tidy and include cleaner diagnostics have links to their documentation.
Semantic Highlighting
® Semantic highlighting works for tokens that span multiple lines.
® Mutable reference parametersin function calls receive usedAsM utableRefer ence modifier.
Hover
® Hover displays desugared types by default now.
Code completion

® Improved ranking/filtering for ObjC method selectors.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® Support for C++20 concepts and requires expressions.
Signature help

® Signature help for function pointers.

® Provides hints using underlying functionsin forwarded calls.

Cross-references
Code Actions

® New code action to generate ObjC initializers.
® New code action to generate move/copy constructors/assignments.

® Extract to function works for methods in addition to free functions.

<

Related diagnostics are attached to code actions response, if any.
© Extract variable worksin C and ObjC files.
® Fix to define outline when the parameter has a braced initializer.
Miscellaneous

® Include fixer supports symbols inside macro arguments.

@

Dependent autos are now deduced when there' s a single instantiation.

(<2

Support for symbols exported with using declarationsin all features.

@

Fixed background-indexing priority for M1 chips.

<

Indexing for standard library symbols.

<

Obj C framework includes are spelled properly during include insertion operations.

I mprovementsto clang-doc
Theimprovements are...

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

I mprovementsto clang-query
The improvements are...

Improvementsto clang-rename
The improvements are...

I mprovementsto clang-tidy
® Added trace code to help narrow down any checks and the relevant source code that result in crashes.
® Clang-tidy now consideres newlines as separators of single elements in the Checks section in
.clang-tidy configuration files. Where previously a comma had to be used to distinguish elementsin
thislist from each other, newline characters now also work as separatorsin the parsed YAML. That
meansit is advised to use YAML' s block style initiated by the pipe character | for the Checks section

in order to benefit from the easier syntax that works without commas.

® Fixed aregression introduced in clang-tidy 14.0.0, which prevented NOLINTSs from suppressing
diagnostics associated with macro arguments. This fixes Issue 55134.

® Added an option -verify-config which will check the config file to ensure each Checks and
CheckOptions entries are recognised.

® .clang-tidy files can now use the more natural dictionary syntax for specifying CheckOptions.
New checks
® New bugprone-shared-ptr-array-mismatch check.
Findsinitializations of C++ shared pointersto non-array type that areinitialized with an array.
® New bugprone-unchecked-optional-access check.

Warns when the code is unwrapping a std:: optional<T>, absl::optional<T>, or base:: Optional<T>
object without assuring that it contains avalue.

® New misc-confusable-identifiers check.
Detects confusable Unicode identifiers.

® New bugprone-assignment-in-if-condition check.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Warns when there is an assignment within an if statement condition expression.
® New misc-const-correctness check.
Detects unmodified local variables and suggest adding const if the transformation is possible.
® New moder nize-macro-to-enum check.
Replaces groups of adjacent macros with an unscoped anonymous enum.
® New portability-std-allocator-const check.
Report use of std::vector<const T> (and similar containers of const elements). These are not allowed
in standard C++ due to undefined std::allocator <const T>. They do not compile with libstdc++ or
MSVC. Future libc++ will remove the extension (D120996 < https://reviews.llvm.org/D120996>).
New check aliases
® New alias cppcoreguidelines-macro-to-enum to moder nize-macr o-to-enum was added.
Changesin existing checks
® Fixed nonsensical suggestion of altera-struct-pack-align check for empty structs.
® Fixed afalse positive in bugprone-branch-clone when the branches involve unknown expressions.
® Fixed some false positives in bugprone-infinite-loop involving dependent expressions.
® Fixed acrash in bugprone-sizeof-expression when sizeof(...) is compared against a__int128 t.

® Fixed bugsin bugprone-use-after-move:

® Treat amove in alambda capture as happening in the function that defines the lambda, not within
the body of the lambda (as we were previously doing erroneously).

® Don’t emit an erroneous warning on self-moves.
® Improved cert-dcl58-cpp check.

The check now detects explicit template specializations that are handled specially.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

® Made cert-oop57-cpp more sensitive by checking for an arbitrary expression in the second argument

of memset.
Made the fix-it of cppcoreguidelines-init-variables use false to initialize boolean variables.
Improved cppcor eguidelines-prefer-member-initializer check.

Fixed an issue when there was already an initializer in the constructor and the check would try to
create another initializer for the same member.

Fixed afalse positive in cppcoreguidelines-virtual-class-destructor involving final classes. The check
will not diagnose classes marked final, since those cannot be used as base classes, consequently, they

can not violate therule.

Fixed a crash in llvmlibc-call ee-namespace when executing for C++ code that contain calls to
advanced constructs, e.g. overloaded operators.

Fixed false positives in misc-redundant-expression:
® Fixed afalse positive involving overloaded comparison operators.
® Fixed afalse positive involving assignmentsin conditions. This fixes | ssue 35853.

Fixed afalse positive in misc-unused-parameters where invalid parameters were implicitly being
treated as being unused. Thisfixes Issue 56152.

Fixed false positives in misc-unused-using-decls where using statements bringing operators into the
scope where incorrectly marked as unused. This fixes issue 55095.

Fixed afalse positive in moder nize-deprecated-headers involving including C header files from C++
fileswrapped by extern " C" { ... } blocks. Such includes will be ignored by now. By default now it
doesn’t warn for including deprecated headers from header files, since that header file might be used
from C sourcefiles. By passing the CheckHeader File=true option if header files of the project only
included by C++ sourcefiles.

Improved performance-inefficient-vector-operation to work when the vector is a member of a
structure.

Fixed a crash in performance-unnecessary-val ue-param when the specialization template has an
unnecessary value parameter. Removed the fix for atemplate.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® Fixed acrash in readability-const-return-type when a pure virtual function overrided has a const
return type. Removed the fix for avirtual function.

© Skipped addition of extra parentheses around member accesses (a.b) in fix-it for
readability-container-data-pointer.

® Fixed incorrect suggestions for readability-container-size-empty when smart pointers are involved.

® Fixed afalse positive in readability-non-const-parameter when the parameter is referenced by an
Ivalue.

© Expanded readability-simplify-boolean-expr to simplify expressions using DeMorgan’s Theorem.
Removed checks
Improvementsto include-fixer

Theimprovements are...

I mprovements to clang-include-fixer
The improvements are...

I mprovementsto modularize
The improvements are...

I mprovementsto pp-trace
® Added HashLoc information to InclusionDirective callback output.
Clang-tidy Visual Studio plugin

CLANG-TIDY
Contents

® Clang-Tidy
® Using clang-tidy
® Suppressing Undesired Diagnostics

See dso:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Clang-Tidy Checks
absell-cleanup-ctad

Suggests switching the initialization pattern of abdl::Cleanup instances from the factory function to
class template argument deduction (CTAD), in C++17 and higher.

auto 1 = absl::MakeCleanup([] {});

const auto c2 = absl::MakeCleanup(std::function<void()>([] {}));
becomes

absl::Cleanup c1 =[] {};

const abdl::Cleanup c2 = std::function<void()>([] {});

abseil-dur ation-addition

Check for cases where addition should be performed in the abd:: Time domain. When adding two
values, and one is known to be an abdl:: Time, we can infer that the other should be interpreted as an
abd::Duration of asimilar scale, and make that inference explicit.

Examples:

// Original - Addition in the integer domain
int x;

abd::Timet;

int result = absl:: ToUnixSeconds(t) + X;

/I Suggestion - Addition in the abdl:: Time domain
int result = absl:: ToUnixSeconds(t + abgl::Seconds(x));

abseil-duration-comparison

15

Checks for comparisons which should be in the absl::Duration domain instead of the floating point or
integer domains.

N.B.: In cases where a Duration was being converted to an integer and then compared against a
floating-point value, truncation during the Duration conversion might yield a different result. In

practice thisisvery rare, and still indicates a bug which should be fixed.

Examples:

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

// Original - Comparison in the floating point domain
double x;

abdl::Duration d;

if (x < abd::ToDoubleSeconds(d)) ...

Il Suggested - Compare in the absl::Duration domain instead
if (absl::Seconds(x) <d) ...

// Original - Comparison in the integer domain
int x;

abdl::Duration d;

if (x <abd::Tolnté4Microseconds(d)) ...

I/ Suggested - Compare in the abgl::Duration domain instead
if (absl::Microseconds(x) <d) ...

abseil-dur ation-conver sion-cast

Checksfor casts of abdl::Duration conversion functions, and recommends the right conversion function
instead.

Examples:
// Original - Cast from adouble to an integer
abd::Duration d;
inti = static_cast<int>(absl:: ToDoubleSeconds(d));
// Suggested - Use the integer conversion function directly.

int i = abdl::Tolnt64Seconds(d);

// Original - Cast from adouble to an integer
abd::Duration d;
double x = static_cast<double>(absl:: Tol nt64Seconds(d));

// Suggested - Use the integer conversion function directly.
double x = abdl:: ToDoubleSeconds(d);

Note: In the second example, the suggested fix could yield a different result, as the conversion
to integer could truncate. In practice, thisisvery rare, and you should use abdl:: Trunc to perform

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

this operation explicitly instead.

absell-duration-division
abdl::Duration arithmetic works like it does with integers. That means that division of two
abdl::Duration objects returns an int64 with any fractional component truncated toward 0. See this link
for more information on arithmetic with abdl::Duration.

For example:

abdl::Duration d = abdl::Seconds(3.5);

int64 secl = d/ abd::Seconds(1); // Truncates toward O.
int64 sec2 = abdl::Tolnt64Seconds(d); // Equivalent to division.
assert(secl == 3 & & sec2 == 3);

double dsec = d/ abd::Seconds(1); // WRONG: Still truncates toward O.
assert(dsec == 3.0);

If you want floating-point division, you should use either the abd:: FDivDuration() function, or
one of the unit conversion functions such as abd:: ToDoubleSeconds(). For example:

abdl::Duration d = absl::Seconds(3.5);

double dsecl = abd::FDivDuration(d, absl::Seconds(1)); // GOOD: No truncation.
double dsec2 = abd:: ToDoubleSeconds(d); // GOOD: No truncation.
assert(dsecl == 3.5 & & dsec2 == 3.5);

This check looks for uses of abdl::Duration division that is done in a floating-point context, and
recommends the use of afunction that returns a floating-point value.

abseil-duration-factor y-float
Checks for cases where the floating-point overloads of various absl::Dur ation factory functions are

called when the more-efficient integer versions could be used instead.

This check will not suggest fixes for literals which contain fractional floating point values or
non-literals. It will suggest removing superfluous casts.

Examples:

// Original - Providing afloating-point literal.
abg::Duration d = absl::Seconds(10.0);

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

I/ Suggested - Use an integer instead.
abdl::Duration d = abdl::Seconds(10);

// Original - Explicitly casting to a floating-point type.
abg::Duration d = absl::Seconds(static_cast<double>(10));

I/ Suggested - Remove the explicit cast
abdl::Duration d = abdl::Seconds(10);

absell-duration-factory-scale
Checks for cases where arguments to absl:: Duration factory functions are scaled internally and could
be changed to a different factory function. This check also looks for arguments with a zero value and
suggests using abgl::ZeroDuration() instead.

Examples:
[/ Original - Internal multiplication.
int x;
abdl::Duration d = abdl::Seconds(60 * x);
I/ Suggested - Use abdl::Minutes instead.
abd::Duration d = absl::Minutes(x);

// Original - Internal division.

inty;

abdl::Duration d = abdl::Milliseconds(y / 1000.);
I/ Suggested - Use abdl:::Seconds instead.
abdl::Duration d = abdl::Seconds(y);

// Original - Zero-value argument.

abdl::Duration d = abdl::Hours(0);

/I Suggested = Use abdl::ZeroDuration instead
abdl::Duration d = abdl::ZeroDuration();

abseil-dur ation-subtraction

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Checks for cases where subtraction should be performed in the absl:: Duration domain. When
subtracting two values, and the first one is known to be a conversion from abdl:: Duration, we can infer
that the second should also be interpreted as an absl:: Duration, and make that inference explicit.

Examples:

// Original - Subtraction in the double domain
double x;

abd::Duration d;

double result = abd:: ToDoubleSeconds(d) - x;

/I Suggestion - Subtraction in the absl::Duration domain instead
double result = abd:: ToDoubleSeconds(d - abdl:: Seconds(x));

// Original - Subtraction of two Durations in the double domain
abdl::Duration di, d2;
double result = abd:: ToDoubleSeconds(dl) - absl:: ToDoubleSeconds(d2);

I/ Suggestion - Subtraction in the abdl::Duration domain instead
double result = abdl:: ToDoubleSeconds(dl - d2);

Note: Aswith other clang-tidy checks, it is possible that multiple fixes may overlap (asin the
case of nested expressions), so not all occurrences can be transformed in one run. In particular,
this may occur for nested subtraction expressions. Running clang-tidy multiple timeswill find
and fix these overlaps.

absell-dur ation-unnecessar y-conver sion

15

Finds and fixes cases where abdl:: Duration values are being converted to numeric types and back again.
Floating-point examples:

// Original - Conversion to double and back again

abdl::Duration di;

abdl::Duration d2 = abdl::Seconds(absl:: ToDoubleSeconds(dl));

/I Suggestion - Remove unnecessary conversions
abdl::Duration d2 = d1;

// Original - Division to convert to double and back again
abgl::Duration d2 = abgl::Seconds(absl::FDivDuration(d1, absl::Seconds(1)));

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

I/ Suggestion - Remove division and conversion
absl::Duration d2 = d1;

Integer examples:

// Original - Conversion to integer and back again
abdl::Duration di;
abg::Duration d2 = absl::Hours(absl:: Tolnt64Hours(d1));

// Suggestion - Remove unnecessary conversions
absl::Duration d2 = d1;

// Original - Integer division followed by conversion
abdl::Duration d2 = abdl::Seconds(dl / abdl:: Seconds(1));

// Suggestion - Remove division and conversion
abd::Duration d2 = d1;

Unwrapping scalar operations:

// Original - Multiplication by a scalar
abdl::Duration di;
abdl::Duration d2 = abdl::Seconds(absl:: Tolnt64Seconds(dl) * 2);

I/ Suggestion - Remove unnecessary conversion
abd::Duration d2 = d1 * 2;

Note: Converting to an integer and back to an abdl::Duration might be a truncating operation if
the value is not aligned to the scale of conversion. In the rare case where thisis the intended
result, callers should use absl:: Trunc to truncate explicitly.

absell-faster -strsplit-delimiter

15

Finds instances of abdl::StrSplit() or abgl::MaxSplits() where the delimiter is a single character string
literal and replaces with a character. The check will offer a suggestion to change the string literal into a
character. It will also catch code using abdl::ByAnyChar () for just a single character and will transform
that into a single character as well.

These changes will give the same result, but using characters rather than single character string literals
is more efficient and readable.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Examples:

{// Original - the argument isastring literal.
for (auto piece : abdl::StrSplit(str, "B™)) {

I/ Suggested - the argument is a character, which causes the more efficient
/I overload of abdl::StrSplit() to be used.
for (auto piece : abdl::StrSplit(str, 'B")) {

// Original - the argument is a string literal inside abdl::ByAnyChar call.
for (auto piece : abdl::StrSplit(str, abd::ByAnyChar("B"))) {

I/ Suggested - the argument is a character, which causes the more efficient

I/ overload of abdl::StrSplit() to be used and we do not need absl::ByAnyChar
/[anymore.

for (auto piece : abgl::StrSplit(str, 'B’)) {

// Original - the argument isastring literal inside abdl::MaxSplits call.
for (auto piece : abdl::StrSplit(str, absl::MaxSplits("B", 1))) {

I/ Suggested - the argument is a character, which causes the more efficient
I/ overload of abgl::StrSplit() to be used.
for (auto piece : abdl::StrSplit(str, absl::MaxSplits('B’, 1))) {

abseil-no-inter nal-dependencies

15

Warnsif code using Abseil depends on internal details. If something isin a namespace that includes the
word "internal”, codeis not allowed to depend upon it because it’s an implementation detail. They
cannot friend it, include it, you mention it or refer to it in any way. Doing so violates Abseil’s
compatibility guidelines and may result in breakage. See https://abseil.io/about/compatibility for more
information.

The following cases will result in warnings:

abdl::strings_internal::foo();

/ warning triggered on thisline

classfoo {
friend struct abdl::container_internal::faa;
// warning triggered on thisline

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

|
abdl::memory_internal::MakeUniqueResult();
/ warning triggered on thisline

abseil-no-namespace

Ensures code does not open namespace abdl as that violates Abseil’ s compatibility guidelines. Code
should not open namespace absdl asthat conflicts with Abseil’s compatibility guidelines and may result
in breakage.

Any code that uses:

namespace absl {

will be prompted with awarning.

See the full Abseil compatibility guidelines for more information.

abseil-redundant-strcat-calls

15

Suggests removal of unnecessary callsto abdl:: StrCat when the result is being passed to another call to
abgl::StrCat or abgl:: StrAppend.

The extra calls cause unnecessary temporary strings to be constructed. Removing them makes the code
smaller and faster.

Examples:

std::string s = abdl::StrCat("A", abd::StrCat("B", abd::StrCat("C", "D")));
/Ibefore

std::string s = abdl::StrCat("A", "B", "C", "D");
/lafter

abdl::StrAppend(&s, abdl::StrCat("E", "F"', "G"));
/Ibefore

abs::StrAppend(&s, "E", "F", "G");
Il after

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

absell-str-cat-append
Flags uses of abdl::StrCat() to append to astd::string. Suggests abdl:: Str Append() should be used
instead.

The extra calls cause unnecessary temporary strings to be constructed. Removing them makes the code
smaller and faster.

a= abd::StrCat(a, b); // Use abdl::StrAppend(& a, b) instead.
Does not diaghose cases where abdl:: StrCat() is used as atemplate argument for afunctor.
abseil-string-find-startswith

Checks whether a std::string::find() or std::string::rfind() result is compared with 0, and suggests
replacing with absl:: Startswith(). Thisis both a readability and performance issue.

strings="...";

if (sfind("Hello World") ==0) { /* do something */}

if (srfind("Hello World", 0) == 0) { /* do something */ }

becomes

strings="...";
if (abd::StartsWith(s, "Hello World")) { /* do something */ }
if (abgl::Startswith(s, "Hello World")) { /* do something */ }

Options
StringLikeClasses
Semicolon-separated list of names of string-like classes. By default only std::basic_stringis

considered. Thelist of methods to considered is fixed.

IncludeStyle
A string specifying which include-style is used, llvm or google. Default islvm.

AbseilStringsM atchHeader
Thelocation of Abseil’ s strings/match.h. Defaults to abdl/strings/match.h.

abseil-string-find-str-contains

Finds s.find(...) == string::npos comparisons (for various string-like types) and suggests replacing with
abgl::StrContains().

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Thisimproves readability and reduces the likelihood of accidentally mixing find() and npos from
different string-like types.

By default, "string-like types' includes ::std::basic_string, ::std::basic_string_view, and
:rabdl::string_view. Seethe StringLikeClasses option to change this.

std::string s="...";
if (s.find("Hello World") == std::string::npos) { /* do something */ }

abdl::string viewa="...";
if (abdl::string_view::npos!'= afind("Hello World")) { /* do something */ }

becomes

std::string s="...";
if (abd::StrContains(s, "Hello World")) { /* do something */ }

abd::string viewa="...";
if (abdl::StrContains(a, "Hello World")) { /* do something */ }

Options
StringL ikeClasses
Semicolon-separated list of names of string-like classes. By default includes ::std::basic_string,

.:std::basic_string view, and ::abdl::string_view.

IncludeStyle
A string specifying which include-style is used, llvm or google. Default is llvm.

Abseil StringsM atchHeader
The location of Abseil’s stringgmatch.h. Defaults to absl/stringgmatch.h.

abseil-time-comparison
Prefer comparisonsin the abd:: Time domain instead of the integer domain.

N.B.: In cases where an abdl:: Timeis being converted to an integer, alignment may occur. If the
comparison depends on this alignment, doing the comparison in the abgl:: Time domain may yield a

different result. In practice thisis very rare, and still indicates a bug which should be fixed.

Examples:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

I/ Original - Comparison in the integer domain
int x;

abd::Timet;

if (x < abdl::ToUnixSeconds(t)) ...

I/ Suggested - Compare in the abgl:: Time domain instead
if (absl::FromUnixSeconds(x) <t) ...

abseil-time-subtraction

15

Finds and fixes abdl:: Time subtraction expressions to do subtraction in the Time domain instead of the
numeric domain.

There are two cases of Time subtraction in which deduce additiona type information:

® When theresult is an absl::Duration and the first argument is an absl:: Time.

® When the second argument isaabdl::Time.
In the first case, we must know the result of the operation, since without that the second operand
could be either an abdl::Time or an abdl::Duration. Inthe second case, the first operand must be
an abdl:: Time, because subtracting an absl:: Time from an absl::Duration is not defined.

Examples:

int x;
absl::Timet;

{// Original - abdl::Duration result and first operand is an abgl::Time.
abdl::Duration d = abdl:: Seconds(absl:: ToUnixSeconds(t) - x);

I/ Suggestion - Perform subtraction in the Time domain instead.
abdl::Duration d =t - abdl::FromUnixSeconds(x);
// Original - Second operand is an abdl:: Time.

inti=x - abgl::ToUnixSeconds(t);

I/ Suggestion - Perform subtraction in the Time domain instead.
int i = abdl::Tolnt64Seconds(absl::FromUnixSeconds(x) - t);

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

abseil-upgrade-dur ation-conversions
Finds callsto abd::Duration arithmetic operators and factories whose argument needs an explicit cast
to continue compiling after upcoming API changes.

The operators*=, /=, *, and / for absl::Duration currently accept an argument of class type that is
convertible to an arithmetic type. Such acall currently convertsthe valueto an int64_t, even in acase
such as std::atomic<float> that would result in lossy conversion.

Additionally, the abdl:: Duration factory functions (abdl::Hours, abd::Minutes, etc) currently accept an
int64 t or afloating-point type. Similar to the arithmetic operators, calls with an argument of class type
that is convertible to an arithmetic type go through the int64 t path.

These operators and factories will be changed to only accept arithmetic types to prevent unintended
behavior. After these changes are released, passing an argument of class type will no longer compile,
even if the typeisimplicitly convertible to an arithmetic type.

Here are example fixes created by this check:

std::atomic<int> a;
abdl::Duration d = abdl::Milliseconds(a);
d*=&

becomes

std::atomic<int> a;
abdl::Duration d = abdl::Milliseconds(static_cast<int64 t>(a));
d*= dtatic_cast<int64 _t>(a);

Note that this check always adds a cast to int64_t in order to preserve the current behavior of
user code. It is possible that this uncovers unintended behavior due to typesimplicitly
convertible to a floating-point type.

alter a-id-dependent-backwar d-branch
Finds | D-dependent variables and fields that are used within loops. This causes branches to occur
inside the loops, and thus leads to performance degradation.

/I The following code will produce a warning because this | D-dependent

// variableis used in aloop condition statement.
int ThreadID = get_local_id(0);

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

// The following loop will produce a warning because the loop condition
I statement depends on an | D-dependent variable.
for (inti =0; 1 < ThreadID; ++i) {

std::cout << i << std::endl;

}

I/l The following loop will not produce a warning, because the | D-dependent
[/l variableis not used in the loop condition statement.
for (inti =0;i<100; ++i) {
std::cout << ThreadID << std::endl;
}

Based on the Altera DK for OpenCL: Best Practices Guide.

altera-ker nel-name-restriction

Finds kernel files and include directives whose filename is kernel.cl, Verilog.cl, or VHDL.cl. The
check is case insensitive.

Such kernel file names cause the offline compiler to generate intermediate design files that have the
same hames as certain internal files, which leads to a compilation error.

Based on the Guidelines for Naming the Kernel section in the Intel FPGA SDK for OpenCL Pro
Edition: Programming Guide.

altera-single-work-item-barrier

15

Finds OpenCL kernel functionsthat call a barrier function but do not call an ID function (get_local_id,
get_local_id, get_group_id, or get_local_linear_id).

These kernels may be viable single work-item kernels, but will be forced to execute as NDRange
kernelsif using anewer version of the Altera Offline Compiler (>=v17.01).

If using an older version of the Altera Offline Compiler, these kernel functions will be treated as single
work-item kernels, which could be inefficient or lead to errorsif NDRange semantics were intended.

Based on the Altera SDK for OpenCL: Best Practices Guide.
Examples:

/[error: function calls barrier but does not call an 1D function.
void __kernel barrier_no_id(__global int * foo, int size) {

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

for (inti =0;i<100; i++) {

foq[i] +=5;
}
barrier(CLK_GLOBAL_MEM_FENCE);

}

I/ ok: function calls barrier and an ID function.
void __ kernel barrier_with_id(__global int * foo, int size) {
for (inti =0;i<100; i++) {
inttid = get_global_id(0);
foo[tid] +=5;
}
barrier(CLK_GLOBAL_MEM_FENCE);

}

/I ok with AOC Version 17.01: the reqd_work_group_size turnsthisinto
/l an NDRange.
__attribute__ ((reqd_work_group_size(2,2,2)))
void __ kernel barrier_with_id(__global int * foo, int size) {
for (inti =0; i <100; i++) {

foo[tid] +=5;
}
barrier(CLK_GLOBAL_MEM_FENCE);
}
Options
AOCVersion
Defines the version of the Altera Offline Compiler. Defaults to 1600 (corresponding to version
16.00).

altera-struct-pack-align
Finds structs that are inefficiently packed or aligned, and recommends packing and/or aligning of said
structs as needed.

Structs that are not packed take up more space than they should, and accessing structs that are not well
aligned isinefficient.

Fix-its are provided to fix both of these issues by inserting and/or amending relevant struct attributes.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Based on the Altera SDK for OpenCL: Best Practices Guide.

/I Thefollowing struct is originally aligned to 4 bytes, and thus takes up
/I 12 bytes of memory instead of 10. Packing the struct will make it use
// only 10 bytes of memory, and aligning it to 16 bytes will make it
/I efficient to access.
struct example {

chara; // 1byte

double b; // 8 bytes

charc; // 1byte

s

/I The following struct is arranged in such away that packing is not needed.
/ However, it is aligned to 4 bytes instead of 8, and thus needsto be
I explicitly aligned.
struct implicitly _packed_example {
char a; // 1 byte
char b; // 1 byte
char c; // 1 byte
char d; // 1 byte
inte; //4bytes
|

/I The following struct is explicitly aligned and packed.
struct good_example {

chara; // 1byte

double b; // 8 bytes

charc; /I 1byte
} _ atribute ((packed)) __attribute _((aligned(16));

I/l Explicitly aligning a struct to the wrong value will result in awarning.
I/l The following example should be aligned to 16 bytes, not 32.
struct badly_aigned example {
chara; // 1byte
double b; // 8 bytes
charc; /I 1byte
} _ attribute ((packed)) __ attribute ((aligned(32)));

altera-unroll-loops
Finds inner loops that have not been unrolled, aswell as fully unrolled loops with unknown loop

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

bounds or alarge number of iterations.

Unrolling inner loops could improve the performance of OpenCL kernels. However, if they have
unknown loop bounds or alarge number of iterations, they cannot be fully unrolled, and should be
partially unrolled.

Notes:

® This check is unable to determine the number of iterationsin awhile or do..while loop; henceif such
aloop isfully unrolled, a note is emitted advising the user to partially unroll instead.

o Infor loops, our check only works with simple arithmetic increments (+, -, *, /). For all other
increments, partial unrolling is advised.

® Depending on the exit condition, the calculations for determining if the number of iterationsislarge
may be off by 1. This should not be an issue since the cut-off is generally arbitrary.

Based on the Altera SDK for OpenCL: Best Practices Guide.

for (inti=0;i<10; i++) { // ok: outer loops should not be unrolled
intj=0;
do{ // warning: thisinner do..while loop should be unrolled
j++
} while (j < 15);

intk =0;
#pragma unrol|
while (k < 20) { // ok: thisinner loop is already unrolled
k++;
}
}
int A[1000];
#pragma unroll
// warning: thisloop is large and should be partially unrolled
for (inta: A){
printf("%d", a);
}

#pragmaunroll 5

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

// ok: thisloop islarge, but is partially unrolled
for (inta: A){

printf("%d", a);
}

#pragma unrol|
I/ warning: thisloop is large and should be partially unrolled
for (inti =0; i < 1000; ++i) {
printf("%d", i);
}

#pragmaunroll 5
I/ ok: thisloop is large, but is partialy unrolled
for (inti =0; i <1000; ++i) {
printf("%d", i);
}

#pragma unroll
[/ warning: << operator not supported, recommend partial unrolling
for (inti =0; i <1000; i<<1) {
printf("%d", i);
}

std::vector<int> someV ector (100, 0);
inti=0;
#pragma unroll
// note: loop may be large, recommend partial unrolling
while (i < someVector.size()) {
someVector[i]++;

}

#pragma unroll
// note: loop may be large, recommend partial unrolling
while (true) {
printf("In loop");
}

#pragmaunroll 5
I/ ok: loop may be large, but is partialy unrolled
while (i < someVector.siz()) {

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

someVector[i]++;

}
Options
MaxL ooplterations

Defines the maximum number of loop iterations that a fully unrolled loop can have. By defaullt, it
isset to 100.

In practice, this refers to the integer value of the upper bound within the loop statement’ s condition
expression.

andr oid-cloexec-accept
The usage of accept() is not recommended, it’s better to use accept4(). Without this flag, an opened
sensitive file descriptor would remain open across a fork+exec to alower-privileged SELinux domain.
Examples:
accept(sockfd, addr, addrlen);
// becomes
accept4(sockfd, addr, addrlen, SOCK_CLOEXEC);
andr oid-cloexec-accept4
accept4() should include SOCK _CLOEXEC initstype argument to avoid the file descriptor |eakage.
Without this flag, an opened sensitive file would remain open across afork+exec to alower-privileged
SELinux domain.
Examples:
accept4(sockfd, addr, addrlen, SOCK_NONBL OCK);
I/ becomes

acceptd(sockfd, addr, addrlen, SOCK_NONBLOCK | SOCK_CLOEXEC);

andr oid-cloexec-cr eat
The usage of creat() is not recommended, it’ s better to use open().

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Examples:
int fd = creat(path, mode);
/I becomes
int fd = open(path, O_ WRONLY | O_CREAT | O_TRUNC | O_CLOEXEC, mode);
andr oid-cloexec-dup
The usage of dup() is not recommended, it’s better to use fentl(), which can set the close-on-exec flag.

Otherwise, an opened sensitive file would remain open across a fork+exec to alower-privileged
SELinux domain.

Examples:
int fd = dup(ol dfd);
I/ becomes
int fd = fentl(oldfd, F_ DUPFD_CLOEXEC);
andr oid-cloexec-epoll-create
The usage of epoll_create() is not recommended, it’s better to use epoll_createl(), which allows
close-on-exec.
Examples:
epoll_create(size);
// becomes
epoll_createl(EPOLL_CLOEXEC);
andr oid-cloexec-epoall-createl
epoll_createl() should include EPOLL_CLOEXEC in itstype argument to avoid the file descriptor
leakage. Without this flag, an opened sensitive file would remain open across a fork+exec to a

lower-privileged SELinux domain.

Examples:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

epoll_createl(0);
// becomes
epoll_createl(EPOLL_CLOEXEC);
andr oid-cloexec-fopen
fopen() should include e in their mode string; so re would be valid. Thisis equivalent to having set
FD_CLOEXEC on that descriptor.
Examples:
fopen("fn", "r");
I/ becomes
fopen("fn", "re");

andr oid-cloexec-inotify-init
The usage of inotify_init() is not recommended, it’s better to use inotify_init1().

Examples:
inotify_init();
I/ becomes
inotify_initl(IN_CLOEXEC);
android-cloexec-inotify-init1l
inotify_init1() should include IN_CL OEXEC in itstype argument to avoid the file descriptor leakage.
Without this flag, an opened sensitive file would remain open across afork+exec to alower-privileged
SELinux domain.
Examples:

inotify_init1l(IN_NONBLOCK);

/I becomes

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

inotify_init1l(IN_NONBLOCK | IN_CLOEXEC);

andr oid-cloexec-memfd-create

memfd_create() should include MFD_CLOEXEC in itstype argument to avoid the file descriptor
leakage. Without this flag, an opened sensitive file would remain open across afork+exec to a
lower-privileged SELinux domain.
Examples:

memfd_create(name, MFD_ALLOW_SEALING);

/l becomes

memfd_create(name, MFD_ALLOW_SEALING | MFD_CLOEXEC);

andr oid-cloexec-open

A common source of security bugsis code that opens afile without using the O_CL OEXEC flag.
Without that flag, an opened sensitive file would remain open across a fork+exec to alower-privileged
SELinux domain, leaking that sensitive data. Open-like functionsincluding open(), openat(), and
open64() should include O_CLOEXEC in their flags argument.

Examples:
open("filename", O_RDWR);
open64("filename", O_RDWR);
openat(0, "filename", O_RDWR);

/! becomes

open("filename", O_RDWR | O_CLOEXEC);
open64("filename”, O_RDWR | O_CLOEXEC);
openat(0, "filename", O_RDWR | O_CLOEXEC);

andr oid-cloexec-pipe

15

This check detects usage of pipe(). Using pipe() is not recommended, pipe2() is the suggested
replacement. The check also adds the O CLOEXEC flag that marks the file descriptor to be closed in
child processes. Without this flag a sensitive file descriptor can be leaked to a child process, potentially
into alower-privileged SELinux domain.

Examples:

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

pipe(pipefd);
Suggested replacement:

pipe2(pipefd, O_CLOEXEC);

andr oid-cloexec-pipe2

This check ensures that pipe2() is called with the O_CLOEXEC flag. The check also adds the
O_CLOEXEC flag that marks the file descriptor to be closed in child processes. Without thisflag a
sensitive file descriptor can be leaked to a child process, potentially into alower-privileged SELinux
domain.
Examples:
pipe2(pipefd, O_NONBLOCK);
Suggested replacement:

pipe2(pipefd, O NONBLOCK | O_CLOEXEC);

andr oid-cloexec-sock et

socket() should include SOCK _CL OEXEC inits type argument to avoid the file descriptor leakage.
Without this flag, an opened sensitive file would remain open across afork+exec to alower-privileged
SELinux domain.
Examples:

socket(domain, type, SOCK_STREAM));

/I becomes

socket(domain, type, SOCK_STREAM | SOCK_CLOEXEC);

android-comparison-in-temp-failure-retry

15

Diagnoses comparisons that appear to be incorrectly placed in the argument to the
TEMP_FAILURE_RETRY macro. Having such a useisincorrect in the vast mgjority of cases, and
will often silently defeat the purpose of the TEMP_FAILURE_RETRY macro.

For context, TEMP_FAILURE_RETRY isa convenience macro provided by both glibc and Bionic. Its
purposeisto repeatedly run asyscall until it either succeeds, or fails for reasons other than being

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

interrupted.
Example buggy usage looks like:

char cq[1];
while (TEMP_FAILURE_RETRY (read(STDIN_FILENO, cs, sizeof(cs)) != 0)) {
/I Do something with cs.

}

Because TEMP_FAILURE_RETRY will check for whether the result of the comparisonis-1,
and retry if so.

If you encounter this, the fix is simple: lift the comparison out of the
TEMP_FAILURE_RETRY argument, like so:

char cq[1];
while (TEMP_FAILURE_RETRY (read(STDIN_FILENO, cs, sizeof(cs))) !=0) {
// Do something with cs.

}
Options

RetryMacr os
A commarseparated list of the names of retry macros to be checked.

boost-use-to-string
This check finds conversion from integer type like int to std::string or std::wstring using

boost::lexical _cast, and replace it with callsto std::to_string and std::to_wstring.

It doesn't replace conversion from floating points despite the to_string overloads, because it would
change the behavior.

auto str = boost::lexical _cast<std::string>(42);
auto wstr = boost::lexical_cast<std::wstring>(2137LL);

/I Will be changed to
auto str = std::to_string(42);
auto wstr = std::to_wstring(2137LL);

bugpr one-ar gument-comment

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Checks that argument comments match parameter names.

The check understands argument comments in the form /* parameter _name=*/ that are placed right
before the argument.

void f(bool foo);

f(/* bar=*/true);
/[warning: argument name 'bar’ in comment does not match parameter name ' foo’

The check tries to detect typos and suggest automated fixes for them.
Options
StrictM ode
When false (default value), the check will ignore leading and trailing underscores and case when

comparing names -- otherwise they are taken into account.

I gnor eSingleArgument
When true, the check will ignore the single argument.

CommentBoolL iterals
When true, the check will add argument commentsin the format /* Parameter Name=*/ right before
the boolean literal argument.
Before:
void foo(bool TurnKey, bool PressButton);
foo(true, false);
After:
void foo(bool TurnKey, bool PressButton);

foo(/* TurnKey=*/true, /* PressButton="*/false);

CommentlIntegerLiterals

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

When true, the check will add argument comments in the format /* Par ameter Name=*/ right before
the integer literal argument.

Before:
void foo(int MeaningOfLife);
foo(42);
After:
void foo(int MeaningOfLife);
foo(/* MeaningOfLife=*/42);
CommentFloatLiterals
When true, the check will add argument comments in the format /* Par ameter Name=*/ right before
the float/double literal argument.
Before:
void foo(float Pi);
f00(3.14159);
After:
void foo(float Pi);
foo(/* Pi=*/3.14159);
CommentStringLiterals
When true, the check will add argument comments in the format /* Par ameter Name=*/ right before
the string literal argument.

Before:

void foo(const char * String);
void foo(const wchar_t *WideString);

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

foo("Hello World");
foo(L"Hello World™");

After:

void foo(const char * String);
void foo(const wchar_t *WideString);

foo(/* String=*/"Hello World");
foo(/* WideString=*/L"Hello World");

CommentCharacterLiterals
When true, the check will add argument commentsin the format /* Parameter Name=*/ right before
the character literal argument.
Before:
void foo(char * Character);
foo('A’);
After:
void foo(char * Character);
foo(/* Character=*/"A’);
CommentUser DefinedL iterals
When true, the check will add argument comments in the format /* Par ameter Name=*/ right before
the user defined literal argument.
Before:
void foo(double Distance);

nn

double operator"” _km(long double);
foo(402.0_km);

After:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

void foo(double Distance);

nn

double operator"” _km(long double);
foo(/* Distance=*/402.0_km);
CommentNullPtrs
When true, the check will add argument comments in the format /* Par ameter Name=*/ right before
the nullptr literal argument.
Before:
void foo(A* Value);
foo(nullptr);
After:
void foo(A* Value);

foo(/*Vaue=*/nullptr);

bugprone-assert-side-effect
Finds assert() with side effect.

The condition of assert() is evaluated only in debug builds so a condition with side effect can cause
different behavior in debug / release builds.

Options

AssertMacros
A commarseparated list of the names of assert macros to be checked.

CheckFunctionCalls
Whether to treat non-const member and non-member functions as they produce side effects.
Disabled by default because it can increase the number of false positive warnings.

IgnoredFunctions

A semicolon-separated list of the names of functions or methods to be considered as not having
side-effects. Regular expressions are accepted, e.g. [Rr] ef(erence)?$ matches every type with

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

suffix Ref, ref, Reference and reference. The default is empty. If anamein the list contains the
sequence :: it is matched against the qualified typename (i.e. namespace: : Type, otherwiseit is
matched against only the type name (i.e. Type).

bugprone-assignment-in-if-condition
Finds assignments within conditions of if statements. Such assignments are bug-prone because they
may have been intended as equality tests.

This check finds all assignments within if conditions, including ones that are not flagged by
-Wharentheses due to an extra set of parentheses, and including assignments that call an overloaded
operator=(). The identified assignments violate BARR group "Rule 8.2.c".

intf=3;

if(f =4) { // Thisisidentified by both ‘Wparentheses' and this check - should it have been: ‘if (f == 4)* ?
f=f+1;

}

if(f==5) || (f =6)) { // the assignment here ‘' (f = 6)* isidentified by this check, but not by ‘-Wparentheses'. Shoul
f=f+2

}

bugpr one-bad-signal-to-kill-thread
Finds pthread_kill function calls when athread is terminated by raising SIGTERM signal and the
signa kills the entire process, not just the individual thread. Use any signal except SIGTERM.

This check corresponds to the CERT C Coding Standard rule PO44-C. Do not use signals to terminate
threads.

bugprone-bool-pointer-implicit-conver sion
Checks for conditions based on implicit conversion from a bool pointer to bool.

Example:
bool *p;
if (p) {
/I Never used in a pointer-specific way.

}

bugprone-branch-clone
Checks for repeated branches in if/else if/else chains, consecutive repeated branchesin switch

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

statements and identical true and false branches in conditional operators.

if (test_vaue(x)) {
y++
do_something(x, y);
} else{
y++;
do_something(x, y);
}

In this simple example (which could arise e.g. as a copy-paste error) the then and else branches
are identical and the code is equivalent the following shorter and cleaner code:

test_value(x); // can be omitted unlessit has side effects
y++,
do_something(X, y);

If thisisthe intended behavior, then there is no reason to use a conditional statement; otherwise
the issue can be solved by fixing the branch that is handled incorrectly.

The check also detects repeated branchesin longer if/else if/el se chains where it would be even
harder to notice the problem.

In switch statements the check only reports repeated branches when they are consecutive,
because it is relatively common that the case: labels have some natural ordering and rearranging
them would decrease the readability of the code. For example:

switch (ch) {
case’a’:
return 10;
case’A’:
return 10;
case’b’:
return 11;
case’'B’:
return 11;
default:
return 10;

}

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Here the check reportsthat the’a’ and ' A’ branches are identical (and that the'b’ and 'B’
branches are also identical), but does not report that the default: branch is also identical to the
first two branches. If thisisindeed the correct behavior, then it could be implemented as:

switch (ch) {
case’d:
case’A’:
return 10;
case’b’:
case’'B’:
return 11;
default:
return 10;

}

Here the check does not warn for the repeated return 10;, which is good if we want to preserve
that "a’ isbefore’b’ and default: isthe last branch.

Finally, the check also examines conditional operators and reports code like:
return test_value(x) ?X : X;
Unlikeif statements, the check does not detect chains of conditional operators.

Note: This check also reports situations where branches become identical only after
preprocessing.

bugpr one-copy-constructor -init
Finds copy constructors where the constructor doesn’t call the copy constructor of the base class.

class Copyable {
public:

Copyable() = defaullt;
Copyable(const Copyable &) = defaullt;
|
class X2 : public Copyable {
X2(const X2 &other) {} // Copyable(other) is missing

h

Also finds copy constructors where the constructor of the base class don’'t have parameter.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

class X4 : public Copyable {
X4(const X4 &other) : Copyable() {} // other ismissing

H

The check also suggests a fix-itsin some cases.

bugprone-dangling-handle
Detect dangling referencesin value handles like std::string_view. These dangling references can be a
result of constructing handles from temporary values, where the temporary is destroyed soon after the
handleis created.

Examples:

string_view View = string(); // View will dangle.
string A;
View = A +"A"; // till dangle.

vector<string_view> V;
V.push_back(string()); // V[Q] isdangling.
V.resize(3, string()); // V[1] and V[2] will aso dangle.

string_view f() {
Il All these return values will dangle.
return string();
string S;
return S,
char Array[10]{};
return Array;

Options
HandleClasses
A semicolon-separated list of class names that should be treated as handles. By default only

std::basic_string_view and std::experimental::basic_string_view are considered.

bugprone-dynamic-static-initializers
Finds instances of static variables that are dynamically initialized in header files.

This can pose problems in certain multithreaded contexts. For example, when disabling compiler

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

generated synchronization instructions for static variablesinitialized at runtime (e.g. by
-fno-threadsafe-statics), even if aparticular project takes the necessary precautions to prevent race
conditions during initialization by providing their own synchronization, header files included from
other projects may not. Therefore, such a check is helpful for ensuring that disabling compiler
generated synchronization for static variable initialization will not cause problems.

Consider the following code:

int foo() {
static int k = bar();
return k;

}

When synchronization of static initialization is disabled, if two threads both call foo for the first
time, there is the possibility that k will be doubleinitialized, creating a race condition.

bugprone-easily-swappable-parameters
Finds function definitions where parameters of convertible types follow each other directly, making

call sites prone to calling the function with swapped (or badly ordered) arguments.

void drawPoint(int X, int Y) { /* ... */}
FILE *open(const char *Dir, const char * Name, Flags Mode) { /* ... */ }

A potential call like drawPoint(-2, 5) or openPath(" a.txt", "tmp", Read) is perfectly legal from
the language' s perspective, but might not be what the developer of the function intended.

More elaborate and type-safe constructs, such as opagque typedefs or strong types should be used
instead, to prevent a mistaken order of arguments.

struct Coord2D { int X;intY;};
void drawPoint(const Coord2D Pos) { /* ... */}

FILE *open(const Path & Dir, const Filename & Name, Flags Mode) { /* ... */ }

Due to the potentially elaborate refactoring and API-breaking that is necessary to strengthen the
type safety of a project, no automatic fix-its are offered.

Options

Extension/relaxation options
Relaxation (or extension) options can be used to broaden the scope of the analysis and fine-tune the

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

enabling of more mixes between types. Some mixes may depend on coding style or preference specific
to aproject, however, it should be noted that enabling all of these relaxations model the way of mixing
at call sitesthe most. These options are expected to make the check report for more functions, and
report longer mixable ranges.

QualifiersMix
Whether to consider parameters of some cvr-qualified T and adifferently cvr-qualified T (i.e. T
and const T, const T and volatile T, etc.) mixable between one another. If false, the check will
consider differently qualified types unmixable. True turns the warnings on. Defaults to false.

The following example produces a diagnostic only if QualifiersMix is enabled:
void *memcpy(const void * Destination, void * Source, std::size t N) { /* ... */}

M odellmplicitConversions
Whether to consider parameters of type T and U mixable if there exists an implicit conversion
fromTtoUandUtoT. If false, the check will not consider implicitly convertible types for
mixability. True turnswarnings for implicit conversions on. Defaultsto true.

The following examples produce a diagnostic only if ModelImplicitConversionsis enabled:

void fun(int Int, double Double) { /* ... */}
void compare(const char * CharBuf, std::string String) { /* ... */ }

NOTE:
Changing the qualifiers of an expression’stype (e.g. fromint to const int) is defined as an
implicit conversion in the C++ Standard. However, the check separates this
decision-making on the mixability of differently qualified types based on whether
QualifiersMix was enabled.

For example, the following code snippet will only produce a diagnostic if both
QualifiersMix and ModellmplicitConversions are enabled:

void fun2(int Int, const double Double) { /* ... */}
Filtering options
Filtering options can be used to lessen the size of the diagnostics emitted by the checker, whether the

aim isto ignore certain constructs or dampen the noisiness.

MinimumL ength

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

The minimum length required from an adjacent parameter sequence to be diagnosed. Defaultsto

2. Might be any positive integer greater or equal to 2. If 0 or 1 isgiven, the default value 2 will be
used instead.

For example, if 3is specified, the examples above will not be matched.

I gnor edPar ameter Names

Thelist of parameter names that should never be considered part of a swappable adjacent
parameter sequence. Thevalueisa;-separated list of names. To ignore unnamed parameters, add

"" to the list verbatim (not the empty string, but the two quotes, potentially escaped!). This option
is case-sensitive!

By default, the following parameter names, and their Uppercase-initial variants are ignored: ""
(unnamed parameters), iterator, begin, end, first, last, lhs, rhs.

I gnor edPar ameter TypeSuffixes

Thelist of parameter type name suffixes that should never be considered part of a swappable
adjacent parameter sequence. Parameters which type, as written in the source code, end with an
element of this option will beignored. Thevalueisa;-separated list of names. Thisoption is
case-sensitive!

By default, the following, and their lowercase-initial variants are ignored: bool, It, Iterator, Inpuitlt,
Forwardlt, Bidirlt, Randomlt, random iterator, Reverselt, reverse iterator, reverse const_iterator,
Randomlt, random iterator, Reverselt, reverse_iterator, reverse _const_iterator, Const_Iterator,
Constlterator, const_reverse iterator, ConstReverselterator. Inaddition, _Bool (but not _bool) is
also part of the default value.

Suppr essParameter sUsed T ogether

Suppresses diagnostics about parameters that are used together or in asimilar fashion inside the
function’sbody. Defaultsto true. Specifying false will turn off the heuristics.

Currently, the following heuristics are implemented which will suppress the warning about the
parameter pair involved:

© The parameters are used in the same expression, e.g. f(a, b) ora<b.

© The parameters are further passed to the same function to the same parameter of that
function, of the same overload. E.g. f(a, 1) and f(b, 2) to somef(T, int).

NOTE:

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

The check does not perform path-sensitive analysis, and as such, "same function” in this
context means the same function declaration. If the same member function of atype on
two distinct instances are called with the parameters, it will still be regarded as "same
function".

® The same member field is accessed, or member method is called of the two parameters, e.g.
a.foo() and b.foo().

© Separate return statements return either of the parameters on different code paths.

NamePr efixSuffixSilenceDissimilarity Treshold
The number of characters two parameter names might be different on either the head or thetail end
with the rest of the name the same so that the warning about the two parameters are silenced.
Defaultsto 1. Might be any positive integer. If O, the filtering heuristic based on the parameters
names s turned off.

This option can be used to silence warnings about parameters where the naming scheme indicates
that the order of those parameters do not matter.

For example, the parameters LHS and RHS are 1-dissimilar suffixes of each other: L and R isthe
different character, while HS is the common suffix. Similarly, parameterstextl, text2, text3 are
1-dissmilar prefixes of each other, with the numbers at the end being the dissimilar part. If the
valueisat least 1, such cases will not be reported.

Limitations
This check isdesigned to check function signatures!

The check does not investigate functions that are generated by the compiler in a context that is only
determined from acall site. These cases include variadic functions, functionsin C code that do not
have an argument list, and C++ template instantiations. Most of these cases, which are otherwise
swappable from a caller’ s standpoint, have no way of getting "fixed" at the definition point. In the case
of C++ templates, only primary template definitions and explicit specializations are matched and
analyzed.

None of the following cases produce a diagnostic:

int printf(const char *Format, ...) { /* ... */}
int someOldCFunction() { /* ... */}

template <typename T, typename U>

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

intadd(TX,UY){returnX +Y };

void theseAreNotWarnedAbout() {
printf("%d %d\n", 1, 2); // Two ints passed, they could be swapped.
someOldCFunction(1, 2, 3); // Similarly, multiple ints passed.

add(1, 2); // Instantiates ' add<int, int>", but that’s not a user-defined function.
}

Due to the limitation above, parameters which type are further dependent upon template
instantiations to prove that they mix with another parameter’ sis not diagnosed.

template <typename T>
struct Vector {

typedef T element_type;
|

// Diagnosed: Explicit instantiation was done by the user, we can prove it
I/ isthe sametype.
void instantiated(int A, Vector<int>::element_typeB) { /* ... */}

// Diagnosed: The two parameter types are exactly the same.

template <typename T>

void exact(typename Vector<T>::element_type A,
typename Vector<T>::.element_typeB) { /* ... */}

I/ Skipped: The two parameters are both ' T’ but we cannot prove this

{// without actually instantiating.

template <typename T>

void falseNegative(T A, typename Vector<T>::element_typeB) { /* ... */}

In the context of implicit conversions (when ModellmplicitConversions is enabled), the
modelling performed by the check warnsif the parameters are swappabl e and the swapped order
matches implicit conversions. It does not model whether there exists an unrelated third type
from which both parameters can be given in afunction call. This means that in the following
example, even while strs() clearly carries the possibility to be called with swapped arguments
(aslong as the arguments are string literals), will not be warned about.

struct String {
String(const char * Buf);

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

h

struct StringView {

StringView(const char *Buf);

operator const char *() const;
b
I/ Skipped: Directly swapping expressions of the two type cannot mix.
/I (Note: StringView -> const char * -> String would be **two* *
I user-defined conversions, which is disallowed by the language.)
void strs(String Str, StringView SV) { /* ... */}

/I Diagnosed: StringView implicitly converts to and from a buffer.
void cStr(StringView SV, const char *Buf() { /* ... */ }

bugprone-exception-escape

Finds functions which may throw an exception directly or indirectly, but they should not. The functions

which should not throw exceptions are the following:

® Destructors

® Move constructors

® Move assignment operators

® Themain() functions

® swap() functions

® Functions marked with throw() or noexcept

® Other functions given as option
A destructor throwing an exception may result in undefined behavior, resource leaks or
unexpected termination of the program. Throwing move constructor or move assignment also
may result in undefined behavior or resource leak. The swap() operations expected to be non
throwing most of the cases and they are always possible to implement in a non throwing way.

Non throwing swap() operations are also used to create move operations. A throwing main()
function also results in unexpected termination.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

WARNING! This check may be expensive on large source files.
Options

FunctionsT hatShouldNotThrow
Comma separated list containing function names which should not throw. An example value for
this parameter can be WinMain which adds function WinMain() in the Windows API to the list of
the functions which should not throw. Default value is an empty string.

I gnor edExceptions
Comma separated list containing type names which are not counted as thrown exceptions in the
check. Default value is an empty string.

bugprone-fold-init-type
The check flags type mismatches in folds like std::accumulate that might result in loss of precision.
std::accumulate folds an input range into an initial value using the type of the latter, with operator + by
default. This can cause loss of precision through:

® Truncation: The following code uses a floating point range and an int initial value, so truncation will
happen at every application of operator+ and the result will be 0, which might not be what the user
expected.

auto a= {0.5f, 0.5f, 0.5f, 0.5f};
return std::accumulate(std::begin(a), std::end(a), 0);

® Overflow: The following code a'so returns O.

auto a= {65536LL * 65536 * 65536} ;
return std::accumul ate(std::begin(a), std::end(a), 0);

bugprone-forwar d-declar ation-namespace
Checksif an unused forward declaration isin a wrong namespace.

The check inspects all unused forward declarations and checksiif there is any declaration/definition
with the same name existing, which could indicate that the forward declaration isin a potentially wrong
namespace.

namespace na{ struct A; }

namespace nb { struct A {}; }
nb:A &

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

// warning : no definition found for A’ but a definition with the same name
/[’ A’ found in another namespace ' nb::’

This check can only generate warnings, but it can’t suggest afix at this point.

bugprone-forwar ding-r efer ence-overload
The check looks for perfect forwarding constructors that can hide copy or move constructors. If anon
const lvalue reference is passed to the constructor, the forwarding reference parameter will be a better
match than the const reference parameter of the copy constructor, so the perfect forwarding constructor
will be called, which can be confusing. For detailed description of thisissue see: Scott Meyers,
Effective Modern C++, Item 26.

Consider the following example:

class Person {

public:
Il C1.: perfect forwarding ctor
template<typename T>
explicit Person(T&& n) {}

Il C2: perfect forwarding ctor with parameter default value
template<typename T>
explicit Person(T&& n, intx = 1) {}

Il C3: perfect forwarding ctor guarded with enable_if
template<typename T, typename X = enable if t<is speciad<T>, void>>
explicit Person(T&& n) {}

I/l C4: variadic perfect forwarding ctor guarded with enable if
template<typename... A,

enable if _t<is constructible v<tuple<string, int>, A&&...>, int> = 0>
explicit Person(A&&... a) {}

I (possibly compiler generated) copy ctor
Person(const Person& rhs);
|3

The check warns for constructors C1 and C2, because those can hide copy and move

constructors. We suppress warnings if the copy and the move constructors are both disabled
(deleted or private), because there is nothing the perfect forwarding constructor could hidein

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

this case. We aso suppress warnings for constructors like C3 and C4 that are guarded with an
enable if, assuming the programmer was aware of the possible hiding.

Background
For deciding whether a constructor is guarded with enable_if, we consider the types of the constructor
parameters, the default values of template type parameters and the types of non-type template
parameters with adefault literal value. If any part of these typesis std::enable if or std::enable if t, we
assume the constructor is guarded.

bugprone-implicit-widening-of-multiplication-r esult
The check diagnoses instances where aresult of a multiplication isimplicitly widened, and suggests
(with fix-it) to either silence the code by making widening explicit, or to perform the multiplication in a
wider type, to avoid the widening afterwards.

Thisis mainly useful when operating on very large buffers. For example, consider:

void zeroinit(char* base, unsigned width, unsigned height) {
for(unsigned row = O; row != height; ++row) {
for(unsigned col = 0; col = width; ++col) {
char* ptr = base + row * width + col;
*ptr = 0;
}
}
}

Thisisfinein genera, but if width * height overflows, you end up wrapping back to the
beginning of base instead of processing the entire requested buffer.

Indeed, this only mattersfor pretty large buffers (4GB+), but that can happen very easily for
example in image processing, where for that to happen you "only" need a ~269M Pix image.

Options
UseCX X StaticCastslnCppSour ces
When suggesting fix-its for C++ code, should C++-style static_cast<>()’'s be suggested, or C-style
casts. Defaultsto true.
UseCXXHeaderslnCppSour ces

When suggesting to include the appropriate header in C++ code, should <cstddef> header be
suggested, or <stddef.h>. Defaultsto true.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Examples:
long mul(int a, int b) {

returna* b; // warning: performing an implicit widening conversion to type’long’ of a multiplication performed

}

char* ptr_add(char *base, int a, int b) {
return base + a* b; // warning: result of multiplication in type’int’ is used as a pointer offset after an implicit wid

}

char ptr_subscript(char *base, int a, int b) {
return basela* b]; // warning: result of multiplication in type’int’ isused as a pointer offset after an implicit wide

}

bugprone-inaccur ate-erase
Checks for inaccurate use of the erase() method.

Algorithms like remove() do not actually remove any element from the container but return an iterator
to the first redundant element at the end of the container. These redundant el ements must be removed
using the erase() method. This check warns when not all of the elements will be removed due to using
an inappropriate overload.
For example, the following code erases only one element:

std::vector<int> xs,

xs.erase(std: :remove(xs.begin(), xs.end(), 10));

Call the two-argument overload of erase() to remove the subrange:
std::vector<int> xs;

;s.erase(std::remove(xs.begin(), xs.end(), 10), xs.end());

bugprone-incorrect-roundings
Checks the usage of patterns known to produce incorrect rounding. Programmers often use;

(int)(double_expression + 0.5)

to round the double expression to an integer. The problem with this:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

1. Itisunnecessarily slow.

2. Itisincorrect. The number 0.499999975 (smallest representable float number below 0.5) roundsto
1.0. Even worse behavior for negative numbers where both -0.5f and -1.4f both round to 0.0.

bugprone-infinite-loop
Finds obvious infinite loops (Ioops where the condition variable is not changed at all).

Finding infinite loops is well-known to be impossible (halting problem). However, it is possibleto
detect some obvious infinite loops, for example, if the loop condition is not changed. This check
detects such loops. A loop is considered infinite if it does not have any loop exit statement (break,
continue, goto, return, throw or acall to afunction called as[[noreturn]]) and all of the following
conditions hold for every variable in the condition:

o Itisaloca variable.

® It has no reference or pointer aliases.

® |t isnot astructure or class member.

Furthermore, the condition must not contain a function call to consider the loop infinite since
functions may return different values for different calls.

For example, the following loop is considered infinitei is not changed in the body:

inti=0,j=0;
while (i <10) {
++;

}

bugprone-integer-division
Finds cases where integer division in afloating point context islikely to cause unintended |oss of
precision.
No reports are made if divisions are part of the following expressions:

© operands of operators expecting integral or bool types,

o call expressions of integral or boal types, and

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® explicit cast expressionsto integral or bool types,
asthese areinterpreted as signs of deliberateness from the programmer.
Examples:

float floatFunc(float);
int intFunc(int);
double d;

inti =42;

/ Warn, floating-point val ues expected.
d=32*8/(2+1);

d=8* floatFunc(1 + 7/ 2);
d=i/l(1<<4);

// OK, nointeger division.
d=32*8.0/(2+i);

d=8* floatFunc(1 + 7.0/ 2);
d = (double)i / (1 << 4);

/I OK, there are signs of deliberateness.
d=1<<(i/2);

d=9+intFunc(6 * i / 32);
d=(int)(i/32)-8§;

bugprone-lambda-function-name
Checks for attempts to get the name of a function from within alambda expression. The name of a
lambda is always something like oper ator (), which is almost never what was intended.
Example:
void FancyFunction() {

[] { printf("Called from %s\n", _ func_); }();
[1 { printf("Now called from %s\n", _ FUNCTION_); }();

}

Output:

Cdlled from operator()

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Now called from operator()
Likely intended output:

Called from FancyFunction
Now called from FancyFunction

bugprone-macr o-parentheses
Finds macros that can have unexpected behavior due to missing parentheses.

Macros are expanded by the preprocessor as-is. As aresult, there can be unexpected behavior;
operators may be evaluated in unexpected order and unary operators may become binary operators, etc.

When the replacement list has an expression, it is recommended to surround it with parentheses. This
ensures that the macro result is evaluated completely beforeit is used.

It is aso recommended to surround macro arguments in the replacement list with parentheses. This
ensures that the argument value is calcul ated properly.

bugprone-macr o-r epeated-side-effects
Checks for repeated argument with side effects in macros.

bugprone-misplaced-oper ator -in-strlen-in-alloc
Finds cases where 1 is added to the string in the argument to strlen(), strnlen(), strnlen_s(), weslen(),
wesnlen(), and wesnlen_s() instead of the result and the value is used as an argument to a memory
allocation function (malloc(), calloc(), realloc(), alloca()) or the new[] operator in C++. The check
detects error cases even if one of these functions (except the new[] operator) is called by a constant
function pointer. Cases where 1 is added both to the parameter and the result of the strlen()-like
function are ignored, as are cases where the whole addition is surrounded by extra parentheses.

C example code:

void bad_malloc(char *str) {
char *c = (char*) malloc(strlen(str + 1));

}

The suggested fix isto add 1 to the return value of strlen() and not to its argument. In the
example above the fix would be

char *c = (char*) malloc(strlen(str) + 1);

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

C++ example code:

void bad_new(char *str) {
char *c = new char[strlen(str + 1)];

}

Asin the C code with the malloc() function, the suggested fix isto add 1 to the return value of
strien() and not to its argument. In the example above the fix would be

char *c = new char[strlen(str) + 1];
Example for silencing the diagnostic:

void bad_malloc(char *str) {
char *c = (char*) malloc(strlen((str + 1)));
}

bugprone-misplaced-pointer-arithmetic-in-alloc
Finds cases where an integer expression is added to or subtracted from the result of a memory
alocation function (malloc(), calloc(), realloc(), alloca()) instead of its argument. The check detects
error cases even if one of these functionsis called by a constant function pointer.

Example code:
void bad_malloc(int n) {
char *p = (char*) malloc(n) + 10;
}

The suggested fix isto add the integer expression to the argument of malloc and not to its result.
In the example above the fix would be

char *p = (char*) malloc(n + 10);
bugprone-misplaced-widening-cast
This check will warn when there isa cast of a calculation result to abigger type. If the intention of the
cast isto avoid loss of precision then the cast is misplaced, and there can be loss of precision.

Otherwise the cast is ineffective.

Example code:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

long f(int x) {
return (long)(x * 1000);
}

Theresult x * 1000 isfirst calculated using int precision. If the result exceeds int precision there
isloss of precision. Then the result is casted to long.

If thereisno loss of precision then the cast can be removed or you can explicitly cast to int
instead.

If you want to avoid loss of precision then put the cast in a proper location, for instance:

long f(int x) {
return (long)x * 1000;
}

Implicit casts
Forgetting to place the cast at all is at |east as dangerous and at |east as common as misplacing it. If
ChecklmplicitCasts is enabled the check also detects these cases, for instance:

long f(int x) {
return x * 1000;
Floating point

Currently warnings are only written for integer conversion. No warning is written for this code:

double f(float x) {
return (double)(x * 10.0f);

}
Options

CheckImplicitCasts
If true, enables detection of implicit casts. Default is false.

bugprone-move-forwarding-r eference
Warnsif std::moveiscalled on aforwarding reference, for example:

template <typename T>

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

void foo(T&& t) {
bar(std::move(t));
}

Forwarding references should typically be passed to std::forward instead of std::move, and this
isthe fix that will be suggested.

(A forwarding reference is an rvalue reference of atype that is a deduced function template
argument.)

In this example, the suggested fix would be
bar(std::forward<T>(t));

Background
Code like the example above is sometimes written with the expectation that T& & will always end up
being an rvalue reference, no matter what type is deduced for T, and that it is therefore not possible to
pass an Ivalue to foo(). However, thisis not true. Consider this example:

std::string s="Hello, world";
foo(s);

This code compiles and, after the call to foo(), sisleft in an indeterminate state because it has
been moved from. This may be surprising to the caller of foo() because no std::move was used
when calling foo().

The reason for this behavior liesin the special rule for template argument deduction on function
templates like foo() -- i.e. on function templates that take an rvalue reference argument of atype
that is a deduced function template argument. (See section [temp.deduct.call]/3 in the C++11
standard.)

If foo() is called on an lvalue (asin the example above), then T is deduced to be an Ivalue
reference. In the example, T is deduced to be std::string & . The type of the argument t therefore
becomes std::string& & & ; by the reference collapsing rules, this collapsesto std::string& .

This means that the foo(s) call passes s as an lvalue reference, and foo() ends up moving s and
thereby placing it into an indeterminate state.

bugprone-multiple-statement-macro
Detect multiple statement macros that are used in unbraced conditionals. Only the first statement of the

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

macro will be inside the conditional and the other ones will be executed unconditionally.
Example:

#define INCREMENT_TWO(X, y) (X)++; (y)++
if (do_increment)
INCREMENT_TWO(a, b); // (b)++ will be executed unconditionally.

bugprone-narrowing-conversions
The bugprone-narrowing-conversions check is an alias, please see
cppcoreguidelines-narrowing-conversions for more information.

bugprone-no-escape
Finds pointers with the noescape attribute that are captured by an asynchronously-executed block. The
block argumentsin dispatch_async() and dispatch_after () are guaranteed to escape, soitisan error if a
pointer with the noescape attribute is captured by one of these blocks.

The following is an example of an invalid use of the noescape attribute.

void foo(__attribute ((noescape)) int *p) {
dispatch_async(queue, {
*p=123;
D
9k

bugprone-not-null-terminated-r esult
Finds function callswhereit is possible to cause a not null-terminated result. Usually the proper length
of astringisstrlen(src) + 1 or equal length of this expression, because the null terminator needs an
extra space. Without the null terminator it can result in undefined behavior when the string is read.

The following and their respective wchar _t based functions are checked:

memcpy, memcpy_s, memchr, memmove, memmove_s, strerror_s, strncmp, strxfrm

The following is a real-world example where the programmer forgot to increase the passed third
argument, which issize t length. That iswhy the length of the allocated memory is not enough to hold

the null terminator.

static char * stringCpy(const std::string & str) {
char *result = reinterpret_cast<char *>(malloc(str.siz()));

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

memcpy(result, str.data(), str.size());
return result;

}

In addition to issuing warnings, fix-it rewrites all the necessary code. It also triesto adjust the
capacity of the destination array:

static char * stringCpy(const std::string &str) {
char *result = reinterpret_cast<char *>(malloc(str.size() + 1));
strepy(result, str.data());
return result;

}

Note: It cannot guarantee to rewrite every of the path-sensitive memory allocations.

Transformation rules of 'memcpy()’
It is possible to rewrite the memcpy() and memcpy_s() calls as the following four functions. strcpy(),
strncpy(), strepy_S(), strnepy_s(), where the latter two are the safer versions of the former two. It
rewrites the wchar _t based memory handler functions respectively.

Rewrite based on the destination array

o If copy to the destination array cannot overflow [1] the new function should be the older copy
function (ending with cpy), because it is more efficient than the safe version.

o If copy to the destination array can overflow [1] and WantToUseSafeFunctionsis set to trueand it is
possible to obtain the capacity of the destination array then the new function could be the safe
version (ending with cpy_s).

o If the new function is could be safe version and C++ files are analyzed and the destination array is
plain char/wchar _t without un/signed then the length of the destination array can be omitted.

o If the new function is could be safe version and the destination array is un/signed it needsto be
casted to plain char */wchar _t *.

[1] It ispossibleto overflow:
o If the capacity of the destination array is unknown.

o |f the given length is equal to the destination array’ s capacity.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Rewrite based on the length of the source string

o If the given length is strlen(source) or equal length of this expression then the new function should
be the older copy function (ending with cpy), asit is more efficient than the safe version (ending

with cpy_s).

® Otherwise we assume that the programmer wanted to copy 'N’ characters, so the new functionis
ncpy-like which copies’N’ characters.

Transformationswith 'strlen()’ or equal length of this expression
It transforms the wchar _t based memory and string handler functions respectively (where only

strerror_sdoes hot have wchar _t based alias).

Memory handler functions
memcpy Please visit the Transformation rules of "memcpy()’ section.

memchr Usually thereis a C-style cast and it is needed to be removed, because the new function
strchr’sreturn typeis correct. The given length is going to be removed.

memmove If safe functions are available the new function is memmove_s, which has a new second
argument which is the length of the destination array, it is adjusted, and the length of the source string
isincremented by one. If safe functions are not available the given length isincremented by one.

memmove_s The given length isincremented by one.

String handler functions
strerror_s The given length isincremented by one.

strncmp If the third argument is the first or the second argument’ slength + 1 it hasto be truncated
without the + 1 operation.

strxfrm The given length isincremented by one.
Options
WantToUseSafeFunctions

The value true specifies that the target environment is considered to implement ’_s' suffixed
memory and string handler functions which are safer than older versions (e.g. 'memcpy_s()’). The

default valueistrue.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

bugprone-parent-virtual-call
Detects and fixes calls to grand-...parent virtual methods instead of callsto overridden parent’s virtual
methods.

struct A {
int virtual foo() {...}

H

struct B: public A {
int foo() override{...}

};

struct C: public B {
int foo() override { A::foo(); }

// NNNNNNNN
Il warning: qualified name A::foo refers to amember overridden in subclass; did you mean’B’? [bugprone-parent
|

bugprone-paosix-return

Checksif any callsto pthread_* or posix_* functions (except posix_openpt) expect negative return
values. These functions return either O on success or an errno on failure, which is positive only.

Example buggy usage looks like:
if (posix_fadvise(...) < 0) {
Thiswill never happen as the return value is always non-negative. A simple fix could be:
if (posix_fadvise(...) > 0) {
bugprone-redundant-branch-condition
Finds condition variablesin nested if statements that were also checked in the outer if statement and
were not changed.
Simple example:
bool onFire = isBurning();
if (onFire) {

if (onFire)
scream();

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

Here onFireis checked both in the outer if and the inner if statement without a possible change
between the two checks. The check warns for this code and suggests removal of the second
checking of variable onFire.

The checker also detects redundant condition checksif the condition variable is an operand of a
logical "and" (& &) or alogical "or" (||) operator:

bool onFire = isBurning();
if (onFire) {
if (onFire && peoplelnTheBuilding > 0)
scream();

}

bool onFire = isBurning();
if (onFire) {
if (onFire || isCollapsing())
scream();

}

In thefirst case (logical "and") the suggested fix is to remove the redundant condition variable
and keep the other side of the & & . In the second case (logical "or") the whole if is removed
similarly to the simple case on the top.

The condition of the outer if statement may also be alogica "and" (& &) expression:

bool onFire = isBurning();
if (onFire && fireFighters < 10) {
if (someOtherCondition()) {
if (onFire)
scream();
}
}

The error is aso detected if both the outer statement isalogical "and” (& &) and the inner
statement isalogical "and" (& &) or "or" (|[). Theinner if statement does not have to be adirect
descendant of the outer one.

No error is detected if the condition variable may have been changed between the two checks:

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

bool onFire = isBurning();
if (onFire) {
tryToExtinguish(onFire);
if (onFire && peoplelnTheBuilding > 0)
scream();

}

Every possible change is considered, thusif the condition variableis not alocal variable of the
function, it isavolatile or it has an dias (pointer or reference) then no warning is issued.

Known limitations
The else branch is not checked currently for negated condition variable:

bool onFire = isBurning();
if (onFire) {
scream();
} else{
if (lonFire) {
continueWork();
}
}

The checker currently only detects redundant checking of single condition variables. More
complex expressions are not checked:

if (peoplelnTheBuilding == 1) {
if (peoplelnTheBuilding == 1) {
doSomething();

}
}

bugprone-reserved-identifier
cert-dcl37-c and cert-dcl51-cpp redirect here as an alias for this check.

Checks for usages of identifiers reserved for use by the implementation.
The C and C++ standards both reserve the following names for such use:

o identifiersthat begin with an underscore followed by an uppercase letter;

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® identifiersin the global namespace that begin with an underscore.

The C standard additionally reserves names beginning with a double underscore, while the C++
standard strengthens this to reserve names with a double underscore occurring anywhere.

Violating the naming rules above results in undefined behavior.

namespace NS{
void _ f(); // nameis not allowed in user code
using _Int =int; // same with this
#define cool __macro // also this

}
int _g(); // disallowed in global namespace only

The check can also be inverted, i.e. it can be configured to flag any identifier that is_not_a
reserved identifier. Thismodeisfor use by e.g. standard library implementors, to ensure they
don’'t infringe on the user namespace.

This check does not (yet) check for other reserved names, e.g. macro names identical to
language keywords, and names specifically reserved by language standards, e.g. C++ ’'zombie
names and C future library directions.

This check correspondsto CERT C Coding Standard rule DCL37-C. Do not declare or define a
reserved identifier aswell asits C++ counterpart, DCL51-CPP. Do not declare or define a
reserved identifier.

Options

Invert
If true, inverts the check, i.e. flags namesthat are not reserved. Default isfalse.

Allowedldentifiers
Semicolon-separated list of names that the check ignores. Default is an empty list.

bugprone-shar ed-ptr-array-mismatch
Finds initializations of C++ shared pointers to non-array type that are initialized with an array.

If ashared pointer std::shared_ptr<T> isinitialized with a new-expression new T[] the memory is not

deallocated correctly. The pointer uses plain delete in this case to deall ocate the target memory. Instead
adelete[] call isneeded. A std::shared_ptr<T[]> callsthe correct delete operator.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

The check offers replacement of shared ptr<T>to shared ptr<T[]>if itisused at asingle variable
declaration (one variable in one statement).

Example:

std::shared_ptr<Foo> x(new Foo[10Q]); // -> std::shared_ptr<Foo[]> x(nhew Foo[10]);

1 A warning: shared pointer to non-array isinitialized with array [bugprone-shared-ptr-array-mismatct
std::shared ptr<Foo> x1(new Foo), x2(new Foo[10Q]); // no replacement
1 AN warning: shared pointer to non-array isinitialized with array [bugprone-shared-ptr-array-r

std::shared ptr<Foo> x3(new Foo[10], [](const Foo *ptr) { delete]] ptr; }); // no warning

struct S{

std::shared_ptr<Foo> x(new Foo[10]); // no replacement in this case

1 N warning: shared pointer to non-array isinitialized with array [bugprone-shared-ptr-array-mismatc
b

This check partially coversthe CERT C++ Coding Standard rule MEM51-CPP. Properly
deallocate dynamically allocated resources However, only the std::shared ptr case is detected by
this check.

bugprone-signal-handler

15

Finds functions registered as signal handlers that call non asynchronous-safe functions. Any function
that cannot be determined to be an asynchronous-safe function call is assumed to be
non-asynchronous-safe by the checker, including user functions for which only the declaration is
visible. User function calls with visible definition are checked recursively. The check handles only C
code. Only the function names are considered and the fact that the function is a system-call, but no
other restrictions on the arguments passed to the functions (the signal call is allowed without
restrictions).

This check corresponds to the CERT C Coding Standard rule SG30-C. Call only asynchronous-safe
functions within signal handlers and has an alias hame cert-sig30-c.

AsyncSafeFunctionSet
Selects which set of functionsis considered as asynchronous-safe (and therefore allowed in signal
handlers). Value minimal selectsaminimal set that is defined in the CERT SIG30-C rule and
includes functions abort(), Exit(), quick_exit() and signal(). Value POSI X selects alarger set of
functions that islisted in POSIX.1-2017 (see this link for more information). The function
quick_exit is not included in the shown list. It is assumable that the reason is that the list was not
updated for C11. The checker includes quick_exit in the set of safe functions. Functions

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

registered as exit handlers are not checked.

Default is POSI X.

bugprone-signed-char-misuse

15

cert-str34-c redirects here as an dias for this check. For the CERT alias, the
DiagnoseS gnedUnsignedChar Comparisons option is set to false.

Finds those signed char -> integer conversions which might indicate a programming error. The basic
problem with the signed char, that it might store the non-ASCI | characters as negative values. This
behavior can cause a misunderstanding of the written code both when an explicit and when an implicit
conversion happens.

When the code contains an explicit signed char -> integer conversion, the human programmer probably
expects that the converted value matches with the character code (a value from [0..255]), however, the
actual valueisin [-128..127] interval. To avoid this kind of misinterpretation, the desired way of
converting from asigned char to an integer value is converting to unsigned char first, which stores all
the charactersin the positive [0..255] interval which matches the known character codes.

In case of implicit conversion, the programmer might not actually be aware that a conversion happened
and char valueis used as an integer. There are some use cases when this unawareness might lead to a
functionally imperfect code. For example, checking the equality of asigned char and an unsigned char
variable is something we should avoid in C++ code. During this comparison, the two variables are
converted to integers which have different value ranges. For signed char, the non-ASCII characters are
stored asavaluein [-128..-1] interval, while the same characters are stored in the [128..255] interval

for an unsigned char.

It depends on the actual platform whether plain char ishandled as signed char by default and soitis
caught by this check or not. To change the default behavior you can use -funsigned-char and
-fsigned-char compilation options.

Currently, this check warnsin the following cases: - signed char isassigned to an integer variable -
signed char and unsigned char are compared with equality/inequality operator - signed char is
converted to an integer in the array subscript

See dlso: STR34-C. Cast charactersto unsigned char before converting to larger integer sizes

A good example from the CERT description when a char variable is used to read from afile that might

contain non-ASCl| characters. The problem comes up when the code uses the -1 integer value as EOF,
while the 255 character code is also stored as-1 in two's complement form of char type. Seeasimple

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

example of this bellow. This code stops not only when it reaches the end of the file, but also when it
gets a character with the 255 code.

#define EOF (-1)

int read(void) {
char CChar;
int IChar = EOF;

if (readChar(CChar)) {
|Char = CChar;

}

return IChar;

}

A proper way to fix the code above is converting the char variable to an unsigned char value
first.

#define EOF (-1)

int read(void) {
char CChear;
int IChar = EOF;

if (readChar(CChar)) {

|Char = static_cast<unsigned char>(CChar);
}
return IChar;

}

Another use case is checking the equality of two char variables with different signedness. Inside
the non-ASCII vaue range this comparison between a signed char and an unsigned char always
returns false.

bool compare(signed char SChar, unsigned char USChar) {
if (SChar == USChar)
return true;
return false;

}

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

The easiest way to fix this kind of comparison is casting one of the arguments, so both
arguments will have the same type.

bool compare(signed char SChar, unsigned char USChar) {
if (static_cast<unsigned char>(SChar) == USChar)
return true;
return false;

}

CharTypdefsTolgnore
A semicolon-separated list of typedef names. In thislist, we can list typedefs for char or signed
char, which will beignored by the check. Thisis useful when atypedef introduces an integer alias
likesal_Int8 or int8_t. In this case, human misinterpretation is not an issue.

DiagnoseSignedUnsignedChar Comparisons
When true, the check will warn on signed char/unsigned char comparisons, otherwise these
comparisons are ignored. By default, this option is set to true.
bugprone-sizeof-container

The check finds usages of sizeof on expressions of STL container types. Most likely the user wanted to
use .size() instead.

All clasg/struct types declared in namespace std:: having a const size() method are considered
containers, with the exception of std::bitset and std::array.

Examples:

std::string s;
int a= 47 + sizeof(s); // warning: sizeof() doesn’t return the size of the container. Did you mean .size()?

int b = sizeof(std::string); // no warning, probably intended.

std::string array_of _strings[10];
int ¢ = sizeof (array_of _strings) / sizeof(array_of stringg[0]); // no warning, definitely intended.

std::array<int, 3> std_array;
int d = sizeof(std_array); // no warning, probably intended.

bugprone-sizeof-expression
The check finds usages of sizeof expressions which are most likely errors.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the
parenthesi zed name of atype. Misuse of this operator may be leading to errors and possible software
vulnerabilities.

Suspicious usage of ' sizeof(K)’
A common mistake is to query the sizeof of an integer literal. Thisis equivaent to query the size of its
type (probably int). The intent of the programmer was probably to simply get the integer and not its
size.

#define BUFLEN 42
char buf[BUFLEN];
memset(buf, 0, sizeof(BUFLEN)); // sizeof(42) ==> sizeof(int)

Suspicious usage of ' sizeof (expr)’
In cases, where there is an enum or integer to represent atype, a common mistake is to query the sizeof
on the integer or enum that represents the type that should be used by sizeof. This resultsin the size of
the integer and not of the type the integer represents:

enum data_type{
FLOAT_TYPE,
DOUBLE_TYPE

H

struct data {
data _typetype;
void* buffer;
data_type get_type() {
return type;
}
b

void f(datad, int numElements) {
I/ should be sizeof (float) or sizeof(double), depending on d.get_type()
int numBytes = numElements * sizeof(d.get_type());

Suspicious usage of "sizeof(this)’
Thethis keyword is evaluated to a pointer to an object of agiven type. The expression sizeof(this) is
returning the size of a pointer. The programmer most likely wanted the size of the object and not the

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

size of the pointer.

class Point {
[...]
size t size() { return sizeof(this); } // should probably be sizeof(*this)
[...]

|

Suspicious usage of 'sizeof(char*)’

There is a subtle difference between declaring a string literal with char* A ="" andchar A[]="". The
first case hasthe type char* instead of the aggregate type char[]. Using sizeof on an object declared
with char* typeis returning the size of a pointer instead of the number of characters (bytes) in the

string literal.

const char* kMessage = "Hello World!"; // const char kMessage[] ="...";
void getMessage(char* buf) {

memcpy(buf, kMessage, sizeof(kMessage)); // sizeof(char*)
}

Suspicious usage of ' sizeof (A*)’

A common mistake is to compute the size of a pointer instead of its pointee. These cases may occur
because of explicit cast or implicit conversion.

int A[10];
memset(A, 0, sizeof(A + 0));

struct Point point;
memset(point, 0, sizeof (& point));

Suspicious usage of ' sizeof(...)/sizeof(...)’

15

Dividing sizeof expressionsistypically used to retrieve the number of elements of an aggregate. This
check warns on incompatible or suspicious cases.

In the following example, the entity has 10-bytes and is incompatible with the type int which has 4
bytes.

charbuf[]={0,1,2,3,4,5,6,7,8,9},; // sizeof(buf) => 10
void getMessage(char* dst) {
memcpy(dst, buf, sizeof(buf) / sizeof(int)); // sizeof(int) =>4 [incompatible sizes]

}

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

In the following exampl e, the expression sizeof (Values) is returning the size of char*. One can
easily be fooled by its declaration, but in parameter declaration the size’ 10’ isignored and the
function isreceiving achar*.

char OrderedValues10] ={ 0,1, 2,3,4,5,6,7,8,9};
return CompareArray(char Values[10]) {

return memcmp(OrderedValues, Values, sizeof(Values)) == 0; // sizeof (Values) ==> sizeof(char*) [implicit cast
}

Suspicious’'sizeof’ by 'sizeof’ expression
Multiplying sizeof expressions typically makes no sense and is probably alogic error. In the following
example, the programmer used * instead of /.

const char kMessage[] = "Hello World!";
void getMessage(char* buf) {

memcpy(buf, kMessage, sizeof(kMessage) * sizeof(char)); // sizeof(kMessage) / sizeof(char)
}

This check may trigger on code using the arraysize macro. The following code is working
correctly but should be simplified by using only the sizeof operator.

extern Object objects100];
void InitializeObjects() {

memset(objects, 0, arraysize(objects) * sizeof(Object)); // sizeof (objects)
}

Suspicious usage of ' sizeof(sizeof(...))’
Getting the sizeof of a sizeof makes no sense and istypically an error hidden through macros.

#define INT_SZ sizeof (int)
int buf[] ={ 42};
void getint(int* dst) {
memcpy(dst, buf, sizeof (INT_SZ)); // sizeof(sizeof(int)) is suspicious.
}

Options

WarnOnSizeOfConstant
When true, the check will warn on an expression like sizeof(CONSTANT). Default istrue.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

WarnOnSizeOfl nteger Expression
When true, the check will warn on an expression like sizeof (expr) where the expression resultsin

an integer. Default isfalse.

WarnOnSizeOfThis
When true, the check will warn on an expression like sizeof(this). Default istrue.

WarnOnSizeOfCompar eT oConstant
When true, the check will warn on an expression like sizeof (expr) <= k for a suspicious constant k

while kis 0 or greater than 0x8000. Default istrue.

bugprone-spuriousy-wake-up-functions
Findscnd_wait, cnd_timedwait, wait, wait_for, or wait_until function calls when the function is not
invoked from aloop that checks whether a condition predicate holds or the function has a condition

parameter.

This check corresponds to the CERT C++ Coding Standard rule CON54-CPP. Wrap functions that can
spuriously wake up in aloop. and CERT C Coding Standard rule CON36-C. Wrap functions that can

spuriously wake up in a loop.

bugprone-string-constructor
Finds string constructors that are suspicious and probably errors.

A common mistake is to swap parameters to the 'fill’ string-constructor.
Examples:
std::string str(’x’, 50); // should be str(50, 'x’)

Calling the string-literal constructor with alength bigger than the literal is suspicious and adds
extrarandom characters to the string.

Examples:

std::string("test”, 200); // Will include random characters after "test".
std::string_view("test”, 200);

Creating an empty string from constructors with parameters is considered suspicious. The
programmer should use the empty constructor instead.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Examples:

std::string("test”, 0); // Creation of an empty string.
std::string_view("test”, 0);

Options

WarnOnL argel ength
When true, the check will warn on a string with a length greater than LargelLengthThreshold.
Default istrue.

LargelL engthThreshold
An integer specifying the large length threshold. Default is 0x800000.

StringNames
Default is::std::basic_string;::std::basic_string_view.

Semicolon-delimited list of class names to apply this check to. By default ::std::basic_string
appliesto std::string and std::wstring. Set to e.g. ::std::basic_string;llvm:: SringRef; QSring to
perform this check on custom classes.

bugprone-string-integer -assignment
The check finds assignments of an integer to std::basic_string<Char T> (std::string, std::wstring, etc.).
The source of the problem is the following assignment operator of std::basic_string<Char T>:

basic_string& operator=(CharT ch);
Numeric types can be implicitly casted to character types.
std::string s;
int X = 5965;
S=6;
S=X;
Use the appropriate conversion functions or character literals.
std::string s;
int X = 5965;

S='6;
s=std::to_string(x);

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

In order to suppress fal se positives, use an explicit cast.

std::string s;
s = dtatic_cast<char>(6);

bugprone-string-liter al-with-embedded-nul
Finds occurrences of string literal with embedded NUL character and validates their usage.

Invalid escaping
Special characters can be escaped within a string literal by using their hexadecimal encoding like \x42.
A common mistake is to escape them like this\0x42 where the \O stands for the NUL character.

const char* Example[] = "Invalid character: \Ox12 should be \x12";
const char* Byteg[] = "\x03\0x02\0x01\0x00\0xFF\OXFF\OXFF";

Truncated literal
String-like classes can manipulate strings with embedded NUL as they are keeping track of the bytes
and the length. Thisis not the case for achar* (NUL-terminated) string.

A common mistake is to pass a string-literal with embedded NUL to a string constructor expecting a
NUL-terminated string. The bytes after the first NUL character are truncated.

std::string str("abc\Odef"); // "def" istruncated
str +="\0"; Il This statement is doing nothing
if (str =="\0abc") return; // Thisexpression isawaystrue

bugprone-stringview-nullptr
Checks for various ways that the const Char T* constructor of std::basic_string_view can be passed a
null argument and replaces them with the default constructor in most cases. For the comparison
operators, braced initializer list does not compile so instead acall to .empty() or the empty string literal
are used, where appropriate.

This prevents code from invoking behavior which is unconditionally undefined. The single-argument
const Char T* constructor does not check for the null case before dereferencing its input. The standard

is dated to add an explicitly-deleted overload to catch some of these cases: wg21.link/p2166

To catch the additional cases of NULL (which expandsto __ null) and O, first run the
moder nize-use-nullptr check to convert the callersto nullptr.

std::string_view sv = nullptr;

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

sv = nullptr;

bool is_ empty = sv == nullptr;
bool isnt_empty = sv != nullptr;

accepts_sv(nullptr);

accepts sv({{}}); I/ A

accepts sv({nullptr, }); // B
istrandated into...

std::string_view sv ={};

sv={};

bool is_empty = sv.empty();
bool isnt_empty = !sv.empty();

accepts_sv("");
accepts sv("); I/ A
accepts sv({nullptr, G}); // B
NOTE:
The source pattern with trailing comment "A" selects the (const Char T*) constructor overload and
then value-initializes the pointer, causing a null dereference. It happens to not include the nullptr
literal, but it is till within the scope of this ClangTidy check.
NOTE:
The source pattern with trailing comment "B" selects the (const Char T*, size_type) constructor

which is perfectly valid, since the length argument is 0. It is not changed by this ClangTidy check.

bugpr one-suspicious-enum-usage
The checker detects various cases when an enum is probably misused (as a bitmask).

1. When"ADD" or "bitwise OR" is used between two enum which come from different types and
these types value ranges are not digoint.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

Extra Clang Tools

EXTRACLANGTOOL (1)

The following cases will be investigated only using SrictMode. We regard the enum as a
(suspicious) bitmask if the three conditions below are true at the same time:

® at most half of the elements of the enum are non pow-of-2 numbers (because of short enumerations)

® thereisanother non pow-of-2 number than the enum constant representing all choices (the result
"bitwise OR" operation of al enum elements)

® enum type variable/enumconstant is used as an argument of a+ or "bitwise OR " operator

So whenever the non pow-of-2 element is used as a bitmask element we diagnose a misuse and

give awarning.

2. Investigating the right hand side of += and |= operator.

3. Check only the enum value side of a| and + operator if one of them is not enum val.

4. Check both side of | or + operator where the enum values are from the same enum type.

Examples:

enum{ A, B, C};

enum{ D,E,F=5};
enum{ G=10,H=11,1=12};

unsigned flag;

flag =
Al

H; // OK, digoint value intervals in the enum types ->probably good use.
flag = B | F; // Warning, have common values so they are probably misused.

Il Case 2:
enum Bitmask {
Ol

I}
[EEN

’

1
N

1]
SN

I
o

A
B
C
D
E
F =16,
G

15

=31// OK, real bitmask.

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

h

enum Almostbitmask {

AA =0,

BB =1,

CC=2,

DD =4,

EE =8,

FF =16,
GG // Problem, forgot to initialize.
|

unsigned flag = 0;
flag |- E; // OK.

flag |=
EE; // Warning at the decl, and note that it was used here as a bitmask.

Options

StrictM ode
Default value: 0. When non-null the suspicious bitmask usage will be investigated additionally to

the different enum usage check.

bugprone-suspicious-include
The check detects various cases when an include refers to what appears to be an implementation file,

which often leads to hard-to-track-down ODR violations.
Examples:

#include "Dinosaur.hpp" // OK, .hpp files tend not to have definitions.
#include "Pterodactyl.h" // OK, .hfiles tend not to have definitions.
#include "V elociraptor.cpp” // Warning, filename is suspicious.
#include next <stdio.c> // Warning, filename is suspicious.

Options
Header FileExtensions
Default value: " ;h;hh;hpp;hxx" A semicolon-separated list of filename extensions of header files

(the filename extensions should not contain a"." prefix). For extension-less header files, use an
empty string or leave an empty string between ;" if there are other filename extensions.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

ImplementationFileExtensions
Default value: " c;cc;cpp;cxx” Likewise, a semicolon-separated list of filename extensions of
implementation files.

bugprone-suspicious-memaory-comparison

Finds potentially incorrect callsto memcmp() based on properties of the arguments. The following
cases are covered:

Case 1. Non-standar d-layout type

Comparing the object representations of non-standard-layout objects may not properly compare the
value representations.

Case 2: Typeswith no unique object representation

Objects with the same value may not have the same object representation. This may be caused by
padding or floating-point types.

See also: EXP42-C. Do not compare padding data and FLP37-C. Do not use object representations to
compare floating-point values

This check isaso related to and partially overlaps the CERT C++ Coding Standard rules OOP57-CPP.
Prefer special member functions and overloaded operatorsto C Standard Library functions and
EXP62-CPP. Do not access the bits of an object representation that are not part of the object’s value
representation

bugprone-suspicious-memset-usage

15

This check finds memset() calls with potential mistakes in their arguments. Considering the function
asvoid* memset(void* destination, int fill_value, size t byte count), the following cases are covered:

Case 1: Fill valueisacharacter *“’0'*"

Filling up amemory areawith ASCII code 48 charactersis not customary, possibly integer zeroes were
intended instead. The check offers areplacement of '0" with 0. Memsetting character pointerswith ' 0’
isalowed.

Case 2: Fill valueistruncated

Memset convertsfill_valueto unsigned char before usingit. If fill_valueisout of unsigned character
range, it gets truncated and memory will not contain the desired pattern.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Case 3. Bytecount iszero

Calling memset with aliteral zero inits byte count argument islikely to be unintended and swapped
with fill_value. The check offers to swap these two arguments.

Corresponding cpplint.py check name: runtime/memset.
Examples:

void foo() {
inti[5] ={1, 2, 3, 4, 5};
int*ip=i;
charc="1";
char *cp = &c;
intv=0;

/Il Case 1
memset(ip, '0", 1); // suspicious
memset(cp, '0", 1); // OK

I/l Case 2
memset(ip, Oxabcd, 1); // fill value gets truncated
memset(ip, 0x00, 1); // OK

/Il Case 3
memset(ip, sizeof(int), v); // zero length, potentially swapped
memset(ip, 0, 1); /I OK

}

bugprone-suspicious-missing-comma
String literals placed side-by-side are concatenated at translation phase 6 (after the preprocessor). This
feature is used to represent long string literal on multiple lines.

For instance, the following declarations are equivalent:

const char* A[] ="Thisisatest";
const char* B[] ="This" "isa" "test";

A common mistake done by programmersis to forget a comma between two string literalsin an
array initializer list.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

const char* Test[] ={
“line 1",
"line2" // Missing commal
"line 3",
"line 4",
"line 5"

s

The array containsthe string "line 2line3" at offset 1 (i.e. Test[1]). Clang won't generate
warnings at compiletime.

This check may warn incorrectly on cases like:

const char* SupportedFormat[] = {
"Error %s",
"Code" PRIU64, // May warn here.
"Warning %s",

|
Options

SizeThreshold
An unsigned integer specifying the minimum size of a string literal to be considered by the check.

Default is5U.

RatioT hreshold
A string specifying the maximum threshold ratio [0, 1.0] of suspicious string literals to be
considered. Defaultis™.2" .

MaxConcatenatedT okens
An unsigned integer specifying the maximum number of concatenated tokens. Default is5U.

bugprone-suspicious-semicolon
Finds most instances of stray semicolons that unexpectedly alter the meaning of the code. More
specificaly, it looksfor if, while, for and for -r ange statements whose body is a single semicolon, and
then analyzes the context of the code (e.g. indentation) in an attempt to determine whether that is
intentional .

if (x<vy);
{

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

X++;

Here the body of theif statement consists of only the semicolon at the end of the first line, and x
will be incremented regardless of the condition.

while ((line = readLine(file)) '= NULL);
processLine(line);

As aresult of this code, processLing() will only be called once, when the while loop with the

empty body exits with line == NULL. The indentation of the code indicates the intention of the
programmer.

if (x>=y);
X-=Y,

While the indentation does not imply any nesting, thereis simply no valid reason to have an if

statement with an empty body (but it can make sense for aloop). So this check issues awarning
for the code above.

To solve the issue remove the stray semicolon or in case the empty body isintentional, reflect
this using code indentation or put the semicolon in anew line. For example:

while (readWhitespace());
Token t = readNextToken();

Here the second line isindented in away that suggeststhat it is meant to be the body of the
while loop - whose body isin fact empty, because of the semicolon at the end of thefirst line.

Either remove the indentation from the second line;

while (readWhitespace());
Token t = readNextToken();

... or move the semicolon from the end of thefirst lineto anew line:

while (readWhitespace())

Token t = readNextToken();

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

In this case the check will assume that you know what you are doing, and will not raise a
warning.

bugprone-suspicious-string-compar e
Find suspicious usage of runtime string comparison functions. Thischeck isvalidin C and C++.

Checks for callswith implicit comparator and proposed to explicitly add it.
if (stremp(...)) // Implicitly compare to zero
if (Istremp(...)) //Won'twarn

if (stremp(...) '=0) // Won't warn

Checks that compare function results (i.e., strcmp) are compared to valid constant. The resulting
vaueis

< 0 when lower than,
> 0 when greater than,
==0 whenequals.
A common mistake isto compare the result to 1 or -1.

if (stremp(...) == -1) // Incorrect usage of the returned value.

Additionally, the check warnsif the results value isimplicitly cast to a suspicious non-integer
type. It's happening when the returned value is used in awrong context.

if (stremp(...) <0.) // Incorrect usage of the returned value.
Options

WarnOnlmplicitComparison
When true, the check will warn on implicit comparison. true by default.

WarnOnL ogicalNotComparison
When true, the check will warn on logical not comparison. false by default.

StringCompar el ikeFunctions
A string specifying the comma-separated names of the extra string comparison functions. Default
isan empty string. The check will detect the following string comparison functions:
__builtin_memcmp, __builtin_strcasecmp, __builtin_strcmp, __builtin_strncasecmp,

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

__builtin_strncmp, _mbscmp, _mbscmp_|, _mbsicmp, _mbsicmp_I, _mbsnbcmp, _mbsnbemp_,
_mbsnbicmp, _mbsnbicmp |, _mbsncmp, _mbsncmp_|, _mbsnicmp, _mbsnicmp_|, _memicmp,
memicmp|, _stricmp, _stricmp_|, _strnicmp, _strnicmp_|, _wecsicmp, _wesicmp_|, _wesnicmp,
_wesnicmp_l, Istremp, Istrempi, memcmp, memicmp, strcasecmp, strcmp, strempi, stricmp,

strncasecmp, strncmp, strnicmp, wescasecmp, WCSCmp, Wsicmp, Wesncmp, wesnicmp,
wmemcmp.

bugprone-swapped-ar guments
Finds potentially swapped arguments by looking at implicit conversions.

bugprone-terminating-continue

Detects do while loops with a condition always evaluating to false that have a continue statement, as
this continue terminates the loop effectively.

void f() {

do{
// some code
continue; // terminating continue
// some other code

} while(false);

bugpr one-throw-keywor d-missing

Warns about a potentially missing throw keyword. If atemporary object is created, but the object’s
type derives from (or is the same as) a classthat has’ EXCEPTION’, ' Exception’ or 'exception’ inits
name, we can assume that the programmer’ s intention was to throw that object.

Example:

void f(int i) {
if (1<0){
I/l Exception is created but is not thrown.
std::runtime_error("Unexpected argument™);

}
}

bugprone-too-small-loop-variable

Detects those for loopsthat have aloop variable with a"too small" type which means thistype can’t
represent all values which are part of the iteration range.

int main() {

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

long size = 294967296 ;
for (shorti = 0; i < size; ++i) {}

}

Thisfor loop is an infinite loop because the short type can’t represent all valuesin the [0..siz€]
interval.

In areal use case size means a container’ s size which depends on the user input.

int doSomething(const std::vector& items) {
for (shorti = 0; i < items.size(); ++) {}
}

This algorithm works for a small amount of objects, but will lead to freeze for alarger user
input.

MagnitudeBitsUpper Limit
Upper limit for the magnitude bits of the loop variable. If it's set the check filters out those catches
in which the loop variabl€e' s type has more magnitude bits as the specified upper limit. The default
valueis 16. For example, if the user sets this option to 31 (bits), then a 32-bit unsigned int is
ignored by the check, however a 32-bit int is not (A 32-bit signed int has 31 magnitude hits).

int main() {
long size = 294967296 ;
for (unsignedi = 0; i < size; ++i) {} // no warning with MagnitudeBitsUpperLimit = 31 on a system where unsigr
for (inti =0;i <size; ++i) {} // warning with MagnitudeBitsUpperLimit = 31 on a system whereint is 32-bit

}

bugprone-unchecked-optional-access
Note: This check uses aflow-sensitive static analysis to produce its results. Therefore, it may be more
resource intensive (RAM, CPU) than the average clang-tidy check.

This check identifies unsafe accesses to values contained in std::optional<T>, abd::optional<T>, or
base:: Optional<T> objects. Below we will refer to all these types collectively as optional<T>.

An access to the value of an optional<T> occurs when one of its value, operator*, or operator->
member functionsisinvoked. To align with common misconceptions, the check considers these
member functions as equivalent, even though there are subtle differences related to exceptions versus
undefined behavior. See go/optional -style-recommendations for more information on that topic.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

An access to the value of an optional<T> is considered safe if and only if code in the local scope (for
example, a function body) ensures that the optional<T> hasavalue in al possible execution paths that
can reach the access. That should happen either through an explicit check, using the

optional<T>::has value member function, or by constructing the optional<T> in away that shows that
it unambiguously holds avalue (e.g using std::make_optional which always returns a popul ated
std::optional<T>).

Below we list some examples, starting with unsafe optional access patterns, followed by safe access
patterns.

Unsafe access patterns
Accessthe value without checking if it exists
The check flags accesses to the value that are not locally guarded by existence check:

void f(std::optional<int> opt) {
use(* opt); // unsafe: it is unclear whether ‘opt hasavalue.
}

Accessthevaluein thewrong branch
The check is aware of the state of an optional object in different branches of the code. For example;

void f(std::optional<int> opt) {
if (opt.has_value()) {
} else{
use(opt.value()); // unsafe: it is clear that ‘opt' does* not* have avalue.
}
}

Assume a function result to be stable

The check is aware that function results might not be stable. That is, consecutive callsto the same
function might return different values. For example:

void f(Foo foo) {
if (foo.opt().has value()) {
use(*foo.opt()); // unsafe: it is unclear whether ‘foo.opt()' has avalue.
}
}

Rely on invariants of uncommon APIs
The check is unaware of invariants of uncommon APIs. For example:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

void f(Foo foo) {
if (foo.HasProperty("bar")) {
use(*foo.GetProperty("bar")); // unsafe: it is unclear whether *foo.GetProperty("bar")' has avalue.

}
}

Check if avalue exists, then passthe optional to another function
The check relies on local reasoning. The check and value access must both happen in the same
function. An accessis considered unsafe even if the caller of the function performing the access
ensures that the optional has avalue. For example:

void g(std::optional<int> opt) {
use(*opt); // unsafe: it is unclear whether ‘opt’ has avalue.

}

void f(std::optional<int> opt) {
if (opt.has_value()) {
g(opt);
}
}

Safe access patterns

Check if avalue exists, then accessthe value
The check recognizes all straightforward ways for checking if avalue exists and accessing the value
contained in an optional object. For example:

void f(std::optional<int> opt) {
if (opt.has_value()) {
use(* opt);
}
}

Check if avalue exists, then accessthe value from a copy
The criteria that the check uses is semantic, not syntactic. It recognizes when a copy of the optional
object being accessed is known to have a value. For example:

void f(std::optional<int> optl) {
if (optl.has value()) {
std::optional <int> opt2 = opt1;
use(* opt2);

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Ensurethat a value exists using common macr os
The check is aware of common macros like CHECK, DCHECK, and ASSERT_THAT. Those can be
used to ensure that an optional object has a value. For example:

void f(std::optional<int> opt) {
DCHECK (opt.has_value());
use(* opt);

}

Ensurethat a value exists, then accessthe valuein a correlated branch
The check is aware of correlated branchesin the code and can figure out when an optional object is
ensured to have avalue on all execution paths that |ead to an access. For example:

void f(std::optional<int> opt) {
bool safe = fase;
if (opt.has value() & & SomeOtherCondition()) {
safe = true;
}
/... more code...
if (safe) {
use(* opt);
}
}

Stabilize function results
Since function results are not assumed to be stable across cals, it is best to store the result of the
function call in alocal variable and use that variable to access the value. For example:

void f(Foo foo) {
if (const auto& foo_opt = foo.opt(); foo_opt.has value()) {
use(*foo_opt);
}
}

Do not rely on uncommon-API invariants
When uncommon APIs guarantee that an optional has contents, do not rely on it -- instead, check
explicitly that the optional object has avalue. For example:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

void f(Foo foo) {
if (const auto& property = foo.GetProperty("bar")) {
use(* property);
}
}

instead of the HasProperty, GetProperty pairing we saw above.

Do not rely on caller-performed checks
If you know that all of afunction’s callers have checked that an optional argument has a value, either
change the function to take the value directly or check the optional again in the local scope of the
callee. For example:

void g(int val) {
use(val);
}

void f(std::optional<int> opt) {
if (opt.has value()) {
g(* opt);
}
}

and

struct S{
std::optional<int> opt;
int x;

s

void g(const S &9) {
if (s.opt.has valueg() && s.x > 10) {
use(* s.opt);
}

void f(S9) {
if (s.opt.has value()) {
a(s);
}
}

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Additional notes
Aliases created via using declarations
The check is aware of aliases of optional types that are created via using declarations. For example:

using OptionalInt = std::optional<int>;

void f(Optionallnt opt) {
use(opt.value()); // unsafe: it is unclear whether ‘opt' hasavalue.

}

Lambdas
The check does not currently report unsafe optional accesesin lambdas. A future version will expand
the scope to lambdas, following the rules outlined above. It is best to follow the same principles when
using optionalsin lambdas.

bugpr one-undefined-memory-manipulation
Finds calls of memory manipulation functions memset(), memcpy() and memmove() on not
TriviallyCopyable objects resulting in undefined behavior.

bugprone-undelegated-constructor
Finds creation of temporary objects in constructors that look like afunction call to another constructor
of the same class.

The user most likely meant to use a delegating constructor or base class initializer.

bugprone-unhandled-exception-at-new
Finds callsto new with missing exception handler for std::bad_alloc.

Callsto new may throw exceptions of type std::bad_alloc that should be handled. Alternatively, the
nonthrowing form of new can be used. The check verifies that the exception is handled in the function
that calls new.

If anonthrowing version is used or the exception is allowed to propagate out of the function no
warning is generated.

The exception handler is checked if it catchesastd::bad_alloc or std::exception exception type, or all
exceptions (catch-all). The check assumes that any user-defined operator new is either noexcept or
may throw an exception of type std::bad_alloc (or one derived from it). Other exception class types are
not taken into account.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

int *f() noexcept {
int *p = new int[1000]; // warning: missing exception handler for allocation failure at ' new’
...
return p;

}

int *f1() { // not ' noexcept’
int *p = new int[1000]; // no warning: exception can be handled outside
/1 of thisfunction
...
return p;

}

int *f2() noexcept {
try {
int *p = new int[1000]; // no warning: exception is handled
...
return p;
} catch (std::bad_alloc &) {
...

int *f3() noexcept {
int *p = new (std::nothrow) int[1000]; // no warning: "nothrow" is used
...
return p;

}

bugprone-unhandled-self-assignment
cert-oop54-cpp redirects here as an adlias for this check. For the CERT dlias, the
WarnOnlylfThisHasSuspiciousField option is set to false.

Finds user-defined copy assignment operators which do not protect the code against self-assignment
either by checking self-assignment explicitly or using the copy-and-swap or the copy-and-move

method.

By default, this check searches only those classes which have any pointer or C array field to avoid false
positives. In case of apointer or aC array, it slikely that self-copy assignment breaks the object if the

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

copy assignment operator was not written with care.
See aso: OOP54-CPP. Gracefully handle self-copy assignment

A copy assignment operator must prevent that self-copy assignment ruins the object state. A typical use
case is when the class has a pointer field and the copy assignment operator first releases the pointed
object and then triesto assign it:

classT {
int* p;

public:
T(const T &rhs) : p(rhs.p ? new int(*rhs.p) : nullptr) {}
~T() { deletep; }

...

T& operator=(const T &rhs) {
delete p;
p = new int(*rhs.p);
return *this;
}
|

There are two common C++ patterns to avoid this problem. Thefirst is the self-assignment
check:

classT{
int* p;

public:
T(const T &rhs) : p(rhs.p ? new int(*rhs.p) : nullptr) {}
~T() { deletep; }
...
T& operator=(const T &rhs) {

if(this== &rhs)
return *this;

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

delete p;
p = new int(*rhs.p);
return *this;
}
|

The second one is the copy-and-swap method when we create atemporary copy (using the copy
constructor) and then swap this temporary object with this:

classT {
int* p;

public:
T(const T &rhs) : p(rhs.p ? new int(*rhs.p) : nullptr) {}
~T() { deletep; }

...

void swap(T &rhs) {
using std::swap;
swap(p, rhs.p);

}

T& operator=(const T &rhs) {
T(rhs).swap(*this);
return *this;
}
|

There isathird pattern which isless common. Let’s call it the copy-and-move method when we
create atemporary copy (using the copy constructor) and then move this temporary object into
this (needs a move assignment operator):

classT {
int* p;

public:

T(const T &rhs) : p(rhs.p ? new int(*rhs.p) : nullptr) {}
~T() { deletep; }

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

...

T& operator=(const T &rhs) {
Tt=rhs
*this = std::move(t);
return *this;

}

T& operator=(T &&rhs) {
p =rhs.p;
rhs.p = nullptr;
return *this;

}
|
WarnOnlylfThisHasSuspiciousField
When true, the check will warn only if the container class of the copy assignment operator has any

suspicious fields (pointer or C array). Thisoption is set to true by default.

bugprone-unused-raii
Finds temporaries that look like RAII objects.

The canonical example for thisis a scoped lock.

{
scoped_lock(&global_mutex);
critical_section();

}

The destructor of the scoped_lock is called before the critical_section is entered, leaving it
unprotected.

We apply a number of heuristics to reduce the fal se positive count of this check:
® Ignore code expanded from macros. Testing frameworks make heavy use of this.

© Ignore types with trivial destructors. They are very unlikely to be RAII objects and there’ sno
difference when they are deleted.

® |gnore objects at the end of a compound statement (doesn’t change behavior).

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® |gnore objects returned from a call.

bugprone-unused-return-value
Warns on unused function return values. The checked functions can be configured.

Options

CheckedFunctions
Semicolon-separated list of functions to check. The function is checked if the name and scope
matches, with any arguments. By default the following functions are checked: std::async,
std::launder, std::remove, std::remove if, std::unique, std::unique _ptr::release,
std::basic_string::empty, std::vector::.empty, std::back_inserter, std::distance, std::find, std::find_if,
std::inserter, std::lower_bound, std::make_pair, std::map::count, std::map::find,
std::map::lower_bound, std::multimap::equal_range, std::multimap::upper_bound, std::set::count,
std::set::find, std::setfill, std::setprecision, std::setw, std::upper_bound, std::vector::at, bsearch,
ferror, feof, isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace,
isupper, iswalnum, iswprint, iswspace, isxdigit, memchr, memcmp, strcmp, strcoll, strncmp,
strpbrk, strrchr, strspn, strstr, wescmp, access, bind, connect, difftime, dlsym, fnmatch,
getaddrinfo, getopt, htonl, htons, iconv_open, inet_addr, isascii, isatty, mmap, newlocale, openat,
pathconf, pthread_equal, pthread_getspecific, pthread_mutex_trylock, readdir, readlink, recvmsg,
regexec, scandir, semget, setjmp, shm_open, shmget, sigismember, strcasecmp, strsignal, ttyname

o std::async(). Not using the return value makes the call synchronous.

o std::launder (). Not using the return value usually means that the function interface was
misunderstood by the programmer. Only the returned pointer is "laundered", not the
argument.

o std::remove(), std::remove _if() and std::unique(). The returned iterator indicates the
boundary between elements to keep and elements to be removed. Not using the return value
means that the information about which elements to remove is|ost.

o std::unique _ptr::release(). Not using the return value can lead to resource leaks if the same
pointer isn't stored anywhere else. Often, ignoring the release() return value indicates that

the programmer confused the function with reset().

o std::basic_string::empty() and std::vector::empty(). Not using the return value often
indicates that the programmer confused the function with clear ().

cert-err33-cisan aias of this check that checks afixed and large set of standard library

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

functions.

bugprone-use-after-move
Warnsif an object is used after it has been moved, for example:

std::string str = "Hello, world'\n";
std::vector<std::string> messages;
messages.emplace_back(std::move(str));
std::cout << str;

Thelast line will trigger awarning that str is used after it has been moved.

The check does not trigger awarning if the object isreinitialized after the move and before the
use. For example, no warning will be output for this code:

messages.emplace_back(std::move(str));
str = "Greetings, stranger'\n";
std::cout << str;

Subsections below explain more precisely what exactly the check considers to be a move, use,
and reinitialization.

The check takes control flow into account. A warning is only emitted if the use can be reached
from the move. This means that the following code does not produce a warning:

if (condition) {
messages.emplace_back(std::move(str));
} else{
std::cout << str;

}

On the other hand, the following code does produce a warning:

for (inti =0;i<10; ++i){

std::cout << str;

messages.emplace back(std::move(str));
}

(The use-after-move happens on the second iteration of the loop.)

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

In some cases, the check may not be able to detect that two branches are mutually exclusive. For
example (assuming that i isan int):

if i ==1){
messages.emplace_back(std::move(str));
}
if i ==2){
std::cout << str;

}

In this case, the check will erroneously produce awarning, even though it is not possible for
both the move and the use to be executed. More formally, the analysis is flow-sensitive but not
path-sensitive.

Silencing erroneous war nings
An erroneous warning can be silenced by reinitializing the object after the move:

if i==1){
messages.emplace_back(std::move(str));
str=""

}

if i ==2){
std::cout << str;

}

If you want to avoid the overhead of actually reinitializing the object, you can create adummy
function that causes the check to assume the object was reinitialized:

template <class T>
void IS_INITIALIZED(T&) {}

Y ou can use this as follows:

if (i==1){
messages.emplace_back(std::move(str));

}

if i==2){

IS INITIALIZED(str);
std::cout << str;

}

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

The check will not output awarning in this case because passing the object to afunction asa
non-const pointer or reference counts as areinitialization (see section Reinitialization below).

Unsequenced moves, uses, and reinitializations
In many cases, C++ does not make any guarantees about the order in which sub-expressions of a
statement are evaluated. This means that in code like the following, it is not guaranteed whether the use
will happen before or after the move:

void f(int i, std::vector<int> v);
std::vector<int>v ={ 1, 2, 3};
f(v[1], std::move(V));

In thiskind of situation, the check will note that the use and move are unsequenced.

The check will aso take sequencing rules into account when reinitializations occur in the same
statement as moves or uses. A reinitialization is only considered to reinitialize avariable if it is
guaranteed to be evaluated after the move and before the use.

Move

The check currently only considers calls of std::move on local variables or function parameters. It does
not check moves of member variables or global variables.

Any call of std::move on avariable is considered to cause a move of that variable, even if the result of
std::moveis not passed to an rvalue reference parameter.

This means that the check will flag a use-after-move even on atype that does not define amove
constructor or move assignment operator. Thisisintentional. Developers may use std::move on such a
type in the expectation that the type will add move semanticsin the future. If such a std::move hasthe
potential to cause a use-after-move, we want to warn about it even if the type does not implement move
semantics yet.

Furthermore, if the result of std::moveis passed to an rvalue reference parameter, thiswill always be
considered to cause amove, even if the function that consumes this parameter does not move from it,
or if it does so only conditionally. For example, in the following situation, the check will assume that a
move always takes place:

std::vector<std::string> messages;

void f(std::string & &str) {
/I Only remember the message if it isn’t empty.
if (!str.empty()) {

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

messages.emplace_back(std::move(str));
}
}
std::string str="";
f(std::move(str));

The check will assume that the last line causes a move, even though, in this particular case, it
does not. Again, thisisintentional.

There is one specia case: A cal to std::moveinsideatry _emplace call is conservatively
assumed not to move. Thisisto avoid spurious warnings, as the check has no way to reason
about the bool returned by try_emplace.

When analyzing the order in which moves, uses and reinitializations happen (see section
Unsequenced moves, uses, and reinitializations), the move is assumed to occur in whichever
function the result of the std::moveis passed to.

Use

Any occurrence of the moved variable that is not areinitialization (see below) is considered to be a use.

An exception to this are objects of type std::unique_ptr, std::shared_ptr and std::weak_ptr, which have
defined move behavior (objects of these classes are guaranteed to be empty after they have been moved
from). Therefore, an object of these classes will only be considered to be used if it is dereferenced, i.e.

if operator*, operator-> or operator[] (in the case of std::unique_ptr<T []>) iscalled onit.

If multiple uses occur after amove, only the first of theseis flagged.

Reinitialization

15

The check considers avariable to be reinitialized in the following cases:
® The variable occurs on the left-hand side of an assignment.

® Thevariableis passed to afunction as a non-const pointer or non-const lvalue reference. (Itis
assumed that the variable may be an out-parameter for the function.)

o clear() or assign() is called on the variable and the variable is of one of the standard container
typesbasic_string, vector, deque, forward_list, list, set, map, multiset, multimap, unordered_set,

unordered_map, unordered_multiset, unordered_multimap.

o reset() iscalled on the variable and the variable is of type std::unique_ptr, std::shared_ptr or

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

std::weak_ptr.
® A member function marked with the [[clang::reinitializes]] attribute is called on the variable.

If the variable in question is a struct and an individual member variable of that struct iswritten
to, the check does not consider thisto be areinitialization -- even if, eventually, all member
variables of the struct are written to. For example:

struct S{

std::string str;

inti;
1
Ss={"Hdllo, world\n", 42 };
S's other = std::move(s);
s.str ="Lorem ipsum”;
si=99;

The check will not consider sto be reinitialized after the last line; instead, the line that assigns to
s.str will be flagged as a use-after-move. Thisisintentional as this pattern of reinitializing a
struct is error-prone. For example, if an additional member variableisaddedto S, it is easy to
forget to add the reinitialization for this additional member. Instead, it is safer to assign to the
entire struct in one go, and this will also avoid the use-after-move warning.

bugprone-virtual-near-miss
Warn if afunction is anear miss (i.e. the nameisvery similar and the function signature is the same) to
avirtual function from a base class.

Example:

struct Base {
virtual void func();

H

struct Derived : Base {
virtual void funk();
/[l warning: ' Derived::funk’ has a similar name and the same signature as virtual method ' Base::func’; did you me

|

cert-con36-c
The cert-con36-c check is an alias, please see bugprone-spuriously-wake-up-functions for more

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

information.

cert-con54-cpp
The cert-con54-cpp check is an alias, please see bugprone-spuriously-wake-up-functions for more
information.

cert-dcl03-c
The cert-dcl03-c check is an alias, please see misc-static-assert for more information.

cert-dcl16-c
The cert-dcl 16-c check is an alias, please see readability-upper case-literal-suffix for more information.

cert-dcl21-cpp
This check flags postfix operator ++ and operator-- declarations if the return type is not a const object.
Thisalso warnsif the return typeis areference type.

The object returned by a postfix increment or decrement operator is supposed to be a snapshot of the
object’ s value prior to modification. With such an implementation, any modifications made to the
resulting object from calling operator++(int) would be modifying a temporary object. Thus, such an
implementation of a postfix increment or decrement operator should instead return a const object,
prohibiting accidental mutation of atemporary object. Similarly, it is unexpected for the postfix
operator to return areference to its previous state, and any subsequent modifications would be
operating on a stale object.

This check corresponds to the CERT C++ Coding Standard recommendation DCL 21-CPP. Overloaded
postfix increment and decrement operators should return a const object. However, al of the CERT
recommendations have been removed from public view, and so their justification for the behavior of
this check requires an account on their wiki to view.

cert-dcl37-c
The cert-dcl37-c check is an dlias, please see bugprone-reserved-identifier for more information.

cert-dcl50-cpp
This check flags all function definitions (but not declarations) of C-style variadic functions.

This check corresponds to the CERT C++ Coding Standard rule DCL50-CPP. Do not define a C-style
variadic function.

cert-dcl51-cpp
The cert-dcl51-cpp check is an dlias, please see bugprone-reserved-identifier for more information.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

cert-dcl54-cpp

The cert-dcl54-cpp check is an alias, please see misc-new-del ete-overloads for more information.

cert-dcl58-cpp

15

Modification of the std or posix namespace can result in undefined behavior. This check warns for
such modifications. The std (or posix) namespace is allowed to be extended with (class or function)
template specializations that depend on an user-defined type (atype that is not defined in the standard
system headers).

The check detects the following (user provided) declarationsin namespace std or posix:
© Anything that is not atemplate specialization.

® Explicit specializations of any standard library function template or class template, if it does not
have any user-defined type as template argument.

® Explicit specializations of any member function of a standard library class template.

® Explicit specializations of any member function template of a standard library class or class
template.

® Explicit or partial specialization of any member class template of a standard library class or class
template.

Examples:

namespace std {
int x; // warning: modification of "std’ namespace can result in undefined behavior [cert-dcl58-cpp]

}

namespace posix::a{ // warning: modification of 'posix’ namespace can result in undefined behavior

}

template <>
struct ::std::hash<long> { // warning: modification of ’std’ namespace can result in undefined behavior
unsigned long operator()(const long & K) const {
return K;

}
|

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

struct MyData{ long data; };

template <>
struct ::std::hash<MyData> { // no warning: specialization with user-defined type
unsigned long operator()(const MyData & K) const {
return K.data;

}
s

namespace std {
template <>
void swap<bool>(bool &a, bool &b); // warning: modification of 'std’ namespace can result in undefined behavic

template <>
bool less<void>::operator()<MyData & &, MyData & & >(MyData & &, MyData & &) const { // warning: modifics
return true;
}
}

This check corresponds to the CERT C++ Coding Standard rule DCL58-CPP. Do not modify
the standard namespaces.

cert-dcl59-cpp
The cert-dcl59-cpp check is an dlias, please see google-build-namespaces for more information.

cert-env33-c
This check flags calls to system(), popen(), and _popen(), which execute a command processor. It does
not flag callsto system() with anull pointer argument, as such a call checks for the presence of a
command processor but does not actually attempt to execute a command.

This check correspondsto the CERT C Coding Standard rule ENV33-C. Do not call system().

cert-err09-cpp
The cert-err09-cpp check is an dias, please see misc-throw-by-val ue-catch-by-reference for more
information.

This check corresponds to the CERT C++ Coding Standard recommendation ERR09-CPP. Throw

anonymous temporaries. However, al of the CERT recommendations have been removed from public
view, and so their justification for the behavior of this check requires an account on their wiki to view.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

cert-err33-c
Warns on unused function return values. Many of the standard library functions return a value that

indicatesif the call was successful. Ignoring the returned value can cause unexpected behavior if an
error has occured. The following functions are checked:

15

@

@

aligned_alloc()
asctime_s()
at_quick_exit()
atexit()
bsearch()
bsearch_s()
btowc()
c16rtomb()
c32rtomb()
calloc()

clock()
cnd_broadcast()
cnd_init()
cnd_signal ()
cnd_timedwait()
cnd_wait()
ctime_s()

fclose()

Extra Clang Tools

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

15

o fflush()
® fgetc()

o fgetpos()
® fgets()

® fgetwc()

® fopen()

® fopen_s()
o fprintf()

o fprintf_ <)
o fputc()

o fputs()

® fputwc()

® fputws()

o fread()

& freopen()
® freopen_s()
o fscanf()

o fscanf ()
o fseek()

o fsetpos()

Extra Clang Tools

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

15

o ftell()
® fwprintf()
® fwprintf_s()
® fwrite()

o fwscanf()
o fwscanf_g()
® getc()

® getchar()

o getenv()

® getenv_9()
® gets s()

® getwc()

® getwchar()
® gmtime()

® gmtime_s()

<2

localtime()

o locatime_g()

<

malloc()

@

mbrtoc16()

@

mbrtoc32()

Extra Clang Tools

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

15

o

o

mbsrtowcs()
mbsrtowcs_S()
mbstowcs()
mbstowcs ()
memchr()
mktime()
mtx_init()
mtx_lock()
mtx_timedlock()
mtx_trylock()

mtx_unlock()

printf_s()
putc()
putwc()
raise()
realloc()
remove()
rename()
setlocale()

setvhbuf()

Extra Clang Tools

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

15

scanf()
scanf_s()
signal()
snprintf()
snprintf_s()
sprintf()
sprintf_s()
sscanf()
sscanf_s()
strchr()
strerror_s()
strtime()
strpbrk()
strrchr()
strstr()
strtod()
strtof ()
strtoimax()
strtok()

strtok_s()

Extra Clang Tools

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

15

o

o

strtol ()
strtold()

strtol| ()
strtoumax()
strtoul ()
strtoull()
strxfrm()
swprintf()
swprintf_s()
swscanf()
swscanf_s()
thrd_create()
thrd_detach()
thrd_join()
thrd_sleep()
time()
timespec_get()
tmpfile()
tmpfile_s()

tmpnam()

Extra Clang Tools

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

15

o

o

tmpnam_s()
tss_create()
tss_get()
tss_set()
ungetc()
ungetwc()
viprintf()
viprintf_s()
vfscanf()
vfscanf_s()
viwprintf()
viwprintf_s()
viwscanf()
viwscanf_s()
vprintf_s()
vscanf()
vscanf_s()
vsnprintf()
vsnprintf_s()

vsprintf()

Extra Clang Tools

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

15

o

o

vsprintf_s()
vsscanf()
vsscanf_s()
vswprintf()
vswprintf_s()
vswscanf()
vswscanf_s()
vwprintf_s()
vwscanf()
vwscanf_s()
wertomby()
weschr()
wesftime()
wespbrk()
wesrchr()
wesrtombsy()
wesrtombs_s()
wesstr()
westod()

westof ()

Extra Clang Tools

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

15

o

o

westoimax()
westok()
westok_s()
westol ()
westold()
westoll()
wcstombs()
westombs_s()
westoumax()
westoul ()
westoull ()
wesxfrm()
wetob()
wetrans()
wetype()
wmemchr()
wprintf_s()
wscanf()

wscanf_s()

Extra Clang Tools

EXTRACLANGTOOL (1)

This check isan alias of check bugprone-unused-return-value with afixed set of functions.

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

The check corresponds to a part of CERT C Coding Standard rule ERR33-C. Detect and handle
standard library errors. Thelist of checked functionsis taken from the rule, with following
exception:

® The check can not differentiate if afunction is called with NUL L argument. Therefore the following
functions are not checked: mblen, mbrlen, mbrtowc, mbtowc, wctomb, wctomb_s

cert-err34-c
This check flags calls to string-to-number conversion functions that do not verify the validity of the
conversion, such as atoi() or scanf(). It does not flag callsto strtol(), or other, related conversion
functions that do perform better error checking.

#include <stdlib.h>

void func(const char *buff) {
int si;

if (buff) {
si = atoi(buff); /* "atoi’ used to convert astring to an integer, but function will
not report conversion errors; consider using ’strtol’ instead. */
} else{
[* Handle error */

}
}

This check corresponds to the CERT C Coding Standard rule ERR34-C. Detect errors when
converting a string to a number.

cert-err52-cpp
This check flags all call expressions involving setjmp() and longjmp().

This check corresponds to the CERT C++ Coding Standard rule ERR52-CPP. Do not use setjmp() or
longjmp().

cert-err58-cpp
This check flags al static or thread_local variable declarations where the initializer for the object may
throw an exception.

This check correspondsto the CERT C++ Coding Standard rule ERR58-CPP. Handle all exceptions
thrown before main() begins executing.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

cert-err60-cpp
This check flags all throw expressions where the exception object is not nothrow copy constructible.

This check corresponds to the CERT C++ Coding Standard rule ERR60-CPP. Exception objects must
be nothrow copy constructible.

cert-err61-cpp
The cert-err61-cpp check is an dias, please see misc-throw-by-val ue-catch-by-reference for more
information.

cert-exp42-c
The cert-exp42-c check is an alias, please see bugprone-suspicious-memory-comparison for more
information.

cert-fio38-c
The cert-fio38-c check is an alias, please see misc-non-copyable-objects for more information.

cert-flp30-c
This check flags for 1oops where the induction expression has a floating-point type.

This check correspondsto the CERT C Coding Standard rule FLP30-C. Do not use floating-point
variables as|oop counters.

cert-flp37-c
The cert-flp37-c check is an alias, please see bugprone-suspicious-memory-comparison for more
information.

cert-mem57-cpp
This check flags uses of default operator new where the type has extended alignment (an alignment
greater than the fundamental alignment). (The default operator new is guaranteed to provide the correct
alignment if the requested alignment is less or equal to the fundamental alignment). Only cases are
detected (by design) where the operator new is not user-defined and is not a placement new (the reason
isthat in these cases we assume that the user provided the correct memory allocation).

This check corresponds to the CERT C++ Coding Standard rule MEM57-CPP. Avoid using default
operator new for over-aligned types.

cert-msc30-c
The cert-msc30-c check is an aias, please see cert-msc50-cpp for more information.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

cert-msc32-c
The cert-msc32-c¢ check is an dlias, please see cert-msc51-cpp for more information.

cert-msc50-cpp
Pseudorandom number generators use mathematical algorithms to produce a sequence of numbers with
good statistical properties, but the numbers produced are not genuinely random. The std::rand()
function takes a seed (number), runs a mathematical operation on it and returns the result. By
manipulating the seed the result can be predictable. This check warns for the usage of std::rand().

cert-msch1-cpp
This check flags all pseudo-random number engines, engine adaptor instantiations and srand() when
initialized or seeded with default argument, constant expression or any user-configurable type.
Pseudo-random number engines seeded with a predictable value may cause vulnerabilitiese.g. in
security protocols. Thisisa CERT security rule, see MSC51-CPP. Ensure your random number
generator is properly seeded and MSC32-C. Properly seed pseudorandom number generators.

Examples:

void foo() {
std::mt19937 enginel; // Diagnose, always generate the same sequence
std::mt19937 engine2(1); // Diagnose
enginel.seed(); // Diagnose
engine2.seed(1); // Diagnose

std:;time _tt;
enginel.seed(std::time(&t)); // Diagnose, system time might be controlled by user

int x = atoi(argv[1]);
std::mt19937 engine3(x); // Will not warn
Options
DisallowedSeedTypes
A comma-separated list of the type names which are disallowed. Default values aretime t,
std::time t.
cert-oop11-cpp

The cert-oopl11-cpp check is an dlias, please see performance-move-constructor-init for more
information.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

This check corresponds to the CERT C++ Coding Standard recommendation OOP11-CPP. Do not
copy-initialize members or base classes from a move constructor. However, all of the CERT
recommendations have been removed from public view, and so their justification for the behavior of
this check requires an account on their wiki to view.

cert-oop54-cpp
The cert-oop54-cpp check is an dlias, please see bugprone-unhandl ed-self-assignment for more
information.

cert-oop57-cpp
Flags use of the C standard library functions memset, memcpy and memcmp and similar
derivatives on non-trivial types.

Options

MemSetNames
Specify extrafunctionsto flag that act similarly to memset. Specify namesin a semicolon
delimited list. Default isan empty string. The check will detect the following functions: memset,
std: : memset.

MemCpyNames
Specify extrafunctionsto flag that act similarly to memcpy. Specify namesin a semicolon
delimited list. Default isan empty string. The check will detect the following functions:
std: : memcpy, memcpy, std::memmove, memmove, std:: strcpy, strcpy, memccpy, stpnepy, strncpy.

MemCmpNames
Specify extrafunctionsto flag that act similarly to memcmp. Specify namesin asemicolon
delimited list. Default isan empty string. The check will detect the following functions:
std: : memecmp, memcmp, std:: strcmp, stremp, strncmp.

This check corresponds to the CERT C++ Coding Standard rule OOP57-CPP. Prefer special
member functions and overloaded operatorsto C Standard Library functions.

cert-oop58-cpp
Finds assignments to the copied object and its direct or indirect membersin copy constructors and copy

assignment operators.

This check correspondsto the CERT C Coding Standard rule OOP58-CPP. Copy operations must not
mutate the source object.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

cert-posd4-c
The cert-pos44-c check is an alias, please see bugprone-bad-signal-to-kill-thread for more information.

cert-pos47-c
The cert-pos47-c check is an alias, please see concurrency-thread-cancel type-asynchronous for more
information.

cert-sig30-c
The cert-sig30-c check is an alias, please see bugprone-signal-handler for more information.

cert-str34-c
The cert-str34-c check is an alias, please see bugprone-signed-char-misuse for more information.

clang-analyzer -core.CallAndM essage
The clang-analyzer-core.Call AndMessage check is an alias, please see Clang Satic Analyzer Available
Checkers for more information.

clang-analyzer-core.DivideZero
The clang-analyzer-core.DivideZero check is an alias, please see Clang Satic Analyzer Available
Checkers for more information.

clang-analyzer -core.DynamicT ypePropagation
Generate dynamic type information

clang-analyzer-cor e NonNullParamChecker
The clang-analyzer-core.NonNullParamChecker check is an alias, please see Clang Satic Analyzer
Available Checkers for more information.

clang-analyzer -core.NullDer eference
The clang-analyzer-core.Null Dereference check is an alias, please see Clang Satic Analyzer Available
Checkers for more information.

clang-analyzer -cor e.Stack Addr essEscape
The clang-analyzer-core.Stack AddressEscape check is an alias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer -core.UndefinedBinar yOper ator Result

The clang-analyzer-core.UndefinedBinaryOperatorResult check is an alias, please see Clang Satic
Analyzer Available Checkers for more information.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

clang-analyzer-coreVLASize
The clang-analyzer-core.VLASIi ze check is an alias, please see Clang Satic Analyzer Available
Checkers for more information.

clang-analyzer -core.uninitialized.ArraySubscript
The clang-analyzer-core.uninitialized.ArraySubscript check is an alias, please see Clang Static
Analyzer Available Checkers for more information.

clang-analyzer-cor e.uninitialized.Assign
The clang-analyzer-core.uninitialized.Assign check is an alias, please see Clang Satic Analyzer
Available Checkers for more information.

clang-analyzer-cor e.uninitialized.Branch
The clang-analyzer-core.uninitialized.Branch check is an aias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer-cor e.uninitialized.CapturedBlockVariable
Check for blocks that capture uninitialized values

clang-analyzer -core.uninitialized.UndefReturn
The clang-analyzer-core.uninitialized.UndefReturn check is an alias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer -cplusplus.I nner Pointer
Check for inner pointers of C++ containers used after re/deallocation

clang-analyzer-cplusplus.M ove
The clang-analyzer-cplusplus.Move check is an alias, please see Clang Satic Analyzer Available
Checkers for more information.

clang-analyzer-cplusplus.NewDelete
The clang-analyzer-cplusplus.NewDelete check is an dlias, please see Clang Satic Analyzer Available
Checkers for more information.

clang-analyzer-cplusplus.NewDeletel eaks
The clang-analyzer-cplusplus.NewDel etel_eaks check is an alias, please see Clang Satic Analyzer

Available Checkers for more information.

clang-analyzer -deadcode.DeadStor es
The clang-analyzer-deadcode.DeadStores check is an adlias, please see Clang Static Analyzer Available

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Checkers for more information.

clang-analyzer -nullability.NullPassed ToNonnull
The clang-analyzer-nullability.Null PassedToNonnull check is an alias, please see Clang Satic
Analyzer Available Checkers for more information.

clang-analyzer-nullability.NullRetur nedFromNonnull
The clang-analyzer-nullability.Null ReturnedFromNonnull check is an alias, please see Clang Satic
Analyzer Available Checkers for more information.

clang-analyzer-nullability.NullableDer efer enced
The clang-analyzer-nullability.NullableDereferenced check is an alias, please see Clang Satic
Analyzer Available Checkers for more information.

clang-analyzer-nullability.NullablePassed ToNonnull
The clang-analyzer-nullability.NullablePassedToNonnull check is an alias, please see Clang Satic
Analyzer Available Checkers for more information.

clang-analyzer-nullability.NullableRetur nedFr omNonnull
Warns when a nullable pointer is returned from a function that has _Nonnull return type.

clang-analyzer -optin.cplusplus.UninitializedObj ect
The clang-analyzer-optin.cplusplus.UninitializedObject check is an alias, please see Clang Satic
Analyzer Available Checkersfor more information.

clang-analyzer-optin.cplusplus.Virtual Call
The clang-analyzer-optin.cplusplus.Virtual Call check is an alias, please see Clang Satic Analyzer
Available Checkers for more information.

clang-analyzer -optin.mpi.M PI-Checker
The clang-analyzer-optin.mpi.MPI-Checker check is an dias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer-optin.osx.OSObj ect CStyleCast
Checker for C-style casts of OSObjects

clang-analyzer -optin.osx.cocoa.localizability. EmptyL ocalizationContextChecker

The clang-analyzer-optin.osx.cocoalocalizability. EmptyL ocalizationContextChecker check isan alias,
please see Clang Satic Analyzer Available Checkersfor more information.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

clang-analyzer -optin.osx.cocoa.localizability.NonL ocalized StringChecker
The clang-analyzer-optin.osx.cocoa.l ocalizability.NonL ocalizedStringChecker check is an alias, please
see Clang Static Analyzer Available Checkers for more information.

clang-analyzer-optin.performance. GCDAntipattern
Check for performance anti-patterns when using Grand Central Dispatch

clang-analyzer-optin.per formance.Padding
Check for excessively padded structs.

clang-analyzer-optin.portability.UnixAPI
Finds implementation-defined behavior in UNIX/Posix functions

clang-analyzer-osx.API
The clang-analyzer-osx.API check is an alias, please see Clang Static Analyzer Available Checkersfor
more information.

clang-analyzer-osx.M|1G
Find violations of the Mach Interface Generator calling convention

clang-analyzer-osx.Number ObjectConver sion
Check for erroneous conversions of objects representing numbersinto numbers

clang-analyzer-osx.OSObjectRetainCount
Check for leaks and improper reference count management for OSObject

clang-analyzer-osx.ObjCProperty
Check for proper uses of Objective-C properties

clang-analyzer-osx.SecK eychainAPI
The clang-analyzer-osx.SecKeychainAPI check is an dlias, please see Clang Satic Analyzer Available
Checkers for more information.

clang-analyzer-osx.cocoa.AtSync
The clang-analyzer-osx.cocoa.AtSync check is an alias, please see Clang Satic Analyzer Available
Checkers for more information.

clang-analyzer-osx.cocoa.Autor eleaseWrite

Warn about potentially crashing writes to autoreleasing objects from different autoreleasing poolsin
Objective-C

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

clang-analyzer-osx.cocoa.ClassRelease
The clang-analyzer-osx.cocoa.ClassRel ease check is an alias, please see Clang Satic Analyzer
Available Checkers for more information.

clang-analyzer -osx.cocoa.Dealloc
The clang-analyzer-osx.cocoa.Dealloc check is an dlias, please see Clang Satic Analyzer Available
Checkers for more information.

clang-analyzer-osx.cocoa.l ncompatibleM ethodTypes
The clang-analyzer-osx.cocoa.lncompatibleM ethodTypes check is an alias, please see Clang Static
Analyzer Available Checkers for more information.

clang-analyzer-osx.cocoa.L oops
Improved modeling of loops using Cocoa collection types

clang-analyzer -osx.cocoa.MissingSuper Call
Warn about Objective-C methods that lack a necessary call to super

clang-analyzer -osx.cocoa.NSAutor el easePool
The clang-analyzer-osx.cocoa.NSA utorel easePool check is an alias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer-osx.cocoa.NSError
The clang-analyzer-osx.cocoa.NSError check is an alias, please see Clang Satic Analyzer Available
Checkers for more information.

clang-analyzer-osx.cocoa.NilArg
The clang-analyzer-osx.cocoa.NilArg check is an alias, please see Clang Static Analyzer Available
Checkers for more information.

clang-analyzer -osx.cocoa.NonNilReturnValue
Model the APIsthat are guaranteed to return a non-nil value

clang-analyzer-osx.cocoa.ObjCGenerics
The clang-analyzer-osx.cocoa.ObjCGenerics check is an alias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer -osx.cocoa.RetainCount

The clang-analyzer-osx.cocoa.RetainCount check is an alias, please see Clang Static Analyzer
Available Checkers for more information.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

clang-analyzer-osx.cocoa.RunL copAutor el easel eak
Check for leaked memory in autorel ease pools that will never be drained

clang-analyzer -osx.cocoa.SelfI nit
The clang-analyzer-osx.cocoa. SelfInit check is an alias, please see Clang Satic Analyzer Available
Checkers for more information.

clang-analyzer -osx.cocoa.Super Dealloc
The clang-analyzer-osx.cocoa.SuperDealloc check is an dlias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer -osx.cocoa.Unusedlvars
The clang-analyzer-osx.cocoa.Unusedlvars check is an alias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer -osx.cocoa.VariadicM ethodTypes
The clang-analyzer-osx.cocoa.V ariadicM ethodTypes check is an alias, please see Clang Satic
Analyzer Available Checkers for more information.

clang-analyzer -osx.cor eFoundation.CFError
The clang-analyzer-osx.coreFoundation.CFError check is an alias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer -osx.cor eFoundation.CFNumber
The clang-analyzer-osx.coreFoundation.CFNumber check is an alias, please see Clang Satic Analyzer
Available Checkers for more information.

clang-analyzer -osx.cor eFoundation.CFRetainRelease
The clang-analyzer-osx.coreFoundation.CFRetainRel ease check is an alias, please see Clang Satic
Analyzer Available Checkers for more information.

clang-analyzer -osx.cor eFoundation.container s.OutOfBounds
The clang-analyzer-osx.corefFoundation.contai ners.OutOf Bounds check is an alias, please see Clang
Satic Analyzer Available Checkers for more information.

clang-analyzer -osx.cor eFoundation.container s.Pointer SizedValues
The clang-analyzer-osx.coreFoundation.containers.PointerSizedV alues check is an alias, please see

Clang Static Analyzer Available Checkers for more information.

clang-analyzer -security.FloatL oopCounter

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

The clang-analyzer-security.FloatL oopCounter check is an alias, please see Clang Satic Analyzer
Available Checkers for more information.

clang-analyzer -security.insecur eAPI .Depr ecatedOr UnsafeBuffer Handling
The clang-analyzer-security.insecureA Pl .DeprecatedOrUnsafeBufferHandling check isan alias, please
see Clang Static Analyzer Available Checkersfor more information.

clang-analyzer-security.insecur eAPI .UncheckedReturn
The clang-analyzer-security.insecureAPl.UncheckedReturn check is an alias, please see Clang Satic
Analyzer Available Checkers for more information.

clang-analyzer -security.insecur eAPI.bcmp
The clang-analyzer-security.insecureAPl.bcmp check is an dlias, please see Clang Satic Analyzer
Available Checkers for more information.

clang-analyzer-security.insecur eAPI .bcopy
The clang-analyzer-security.insecureA Pl .bcopy check is an alias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer -security.insecur eAPI .bzero
The clang-analyzer-security.insecureA Pl .bzero check is an dlias, please see Clang Satic Analyzer
Available Checkers for more information.

clang-analyzer -security.insecur eAPI .getpw
The clang-analyzer-security.insecureAPl.getpw check is an alias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer -security.insecur eAPI .gets
The clang-analyzer-security.insecureA Pl .gets check is an alias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer -security.insecur eAPl.mkstemp
The clang-analyzer-security.insecureAPl.mkstemp check is an alias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer -security.insecur eAPI.mktemp
The clang-analyzer-security.insecureAPl.mktemp check is an dlias, please see Clang Satic Analyzer

Available Checkers for more information.

clang-analyzer -security.insecur eAPI .rand

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

The clang-analyzer-security.insecureAPI.rand check is an alias, please see Clang Satic Analyzer
Available Checkers for more information.

clang-analyzer -security.insecur eAPI .str cpy
The clang-analyzer-security.insecureA Pl .strcpy check is an alias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer-security.insecur eAPI .vfork
The clang-analyzer-security.insecureA Pl .vfork check is an alias, please see Clang Static Analyzer
Available Checkers for more information.

clang-analyzer-unix.API
The clang-analyzer-unix.API check is an alias, please see Clang Static Analyzer Available Checkers
for more information.

clang-analyzer -unix.Malloc
The clang-analyzer-unix.Malloc check is an alias, please see Clang Satic Analyzer Available Checkers
for more information.

clang-analyzer -unix.M allocSizeof
The clang-analyzer-unix.MallocSizeof check is an alias, please see Clang Satic Analyzer Available
Checkers for more information.

clang-analyzer -unix.MismatchedDeall ocator
The clang-analyzer-unix.MismatchedDeallocator check is an alias, please see Clang Satic Analyzer
Available Checkers for more information.

clang-analyzer-unix.Vfork
The clang-analyzer-unix.Vfork check isan alias, please see Clang Satic Analyzer Available Checkers
for more information.

clang-analyzer -unix.cstring.BadSizeArg
The clang-analyzer-unix.cstring.BadSizeArg check is an alias, please see Clang Satic Analyzer
Available Checkers for more information.

clang-analyzer-unix.cstring.NullArg
The clang-analyzer-unix.cstring.Null Arg check is an dias, please see Clang Satic Analyzer Available

Checkers for more information.

clang-analyzer -valist.Copy T oSelf

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Check for va_lists which are copied onto itself.

clang-analyzer-valist.Uninitialized

Check for usages of uninitialized (or already released) va lists.

clang-analyzer -valist.Unter minated

Check for va_lists which are not released by ava end call.

concurrency-mt-un%fe

15

Checks for some thread-unsafe functions against a black list of known-to-be-unsafe functions. Usually
they access static variables without synchronization (e.g. gmtime(3)) or utilize signalsin aracy way.
The set of functionsto check is specified with the FunctionSet option.

Note that using some thread-unsafe functions may be still valid in concurrent programming if only a
single thread is used (e.g. setenv(3)), however, some functions may track a state in global variables
which would be clobbered by subsequent (non-parallel, but concurrent) callsto arelated function. E.g.
the following code suffers from unprotected accesses to aglobal state:

I getnetent(3) maintains global state with DB connection, etc.
/I'If aconcurrent green thread calls getnetent(3), the global state is corrupted.
netent = getnetent();

yield();
netent = getnetent();
Examples:

tm = gmtime(timep); // uses aglobal buffer

sleep(1); // implementation may use SIGALRM

FunctionSet

Specifies which functions in libc should be considered thread-safe, possible values are posix, glibc,
or any.

posix means POSI X defined thread-unsafe functions. POSIX.1-2001 in "2.9.1 Thread-Safety"
defines that all functions specified in the standard are thread-safe except a predefined list of
thread-unsafe functions.

Glibc defines some of them as thread-safe (e.g. dirname(3)), but adds non-POSI X thread-unsafe
ones (e.g. getopt_long(3)). Glibc’slist is compiled from GNU web documentation with a search

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

for MT-Safe tag:
https:. //mww.gnu.or g/softwar e/libc/manual/html_node/POS X-Safety-Concepts.html

If you want to identify thread-unsafe API for at least one libc or unsure which libc will be used,
use any (default).

concurrency-thread-canceltype-asynchronous

Finds pthread_setcanceltype function calls where athread’ s cancellation type is set to asynchronous.
Asynchronous cancellation type (PTHREAD_CANCEL_ASYNCHRONOUS) is generally unsafe, use
type PTHREAD_CANCEL_DEFERRED instead which is the default. Even with deferred cancellation,
a cancellation point in an asynchronous signal handler may still be acted upon and the effect isasif it
was an asynchronous cancellation.

This check corresponds to the CERT C Coding Standard rule POSA7-C. Do not use threads that can be
canceled asynchronously.

cppcor eguidelines-avoid-c-arrays

The cppcoreguidelines-avoid-c-arrays check is an alias, please see moder nize-avoid-c-arrays for more
information.

cppcor eguidelines-avoid-goto

15

The usage of goto for control flow iserror prone and should be replaced with looping constructs. Only
forward jumps in nested |oops are accepted.

This check implements ES.76 from the CppCoreGuidelines and 6.3.1 from High Integrity C++.

For more information on why to avoid programming with goto you can read the famous paper A Case
against the GO TO Satement..

The check diagnoses goto for backward jumps in every language mode. These should be replaced with
C/C++ looping constructs.

/I Bad, handwritten for loop.
inti=0;

// Jump label for the loop
loop_start:
do_some_operation();

if (i <100){
++i;

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

goto loop_start;

}

// Better
for(inti = 0;i < 100; ++i)
do_some_operation();

Modern C++ needs goto only to jump out of nested loops.

for(inti =0;i < 100; ++i) {
for(intj = 0; j < 100; ++j) {
if (i * j > 500)
goto early_exit;
}
}

early_exit:
some_operation();

All other uses of goto are diagnosed in C++.

cppcor eguidelines-avoid-magic-numbers
The cppcoreguidelines-avoid-magic-numbers check is an alias, please see readability-magic-numbers
for more information.

cppcor eguidelines-avoid-non-const-global-variables
Finds non-const global variables as described in 1.2 of C++ Core Guidelines. AsR.6 of C++ Core
Guideinesisaduplicate of rulel.2 it aso coversthat rule.

char a; // Warns!
const char b = 0;

namespace some_namespace

{

char c; // Warns!
const char d =0;

char * ¢_ptrl = &some_namespace::c; // Warns!
char *const ¢_const_ptr = & some_namespace:.c; // Warns!

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

char & ¢ _reference = some_namespace::c; // Warns!

classFoo // No Warnings inside Foo, only namespace scope is covered
{
public:
chare=0;
const char f =0;
protected:
char g =0;
private:
char h=0;
|

Variables: g, ¢, c_ptrl, c_ptr2, c_const_ptr and c_reference, will all generate warnings since
they are either: aglobally accessible variable and non-const, a pointer or reference providing
global access to non-const data or both.

cppcor eguidelines-c-copy-assignment-signatur e
The cppcoreguidelines-c-copy-assignment-signature check is an alias, please see
mi sc-unconventional-assign-operator for more information.

cppcor eguidelines-explicit-virtual-functions
The cppcoreguidelines-explicit-virtual-functions check is an alias, please see moder nize-use-override
for more information.

cppcor eguidelines-init-variables
Checks whether there are local variables that are declared without an initial value. These may lead to
unexpected behavior if there is a code path that reads the variable before assigning to it.

Only integers, booleans, floats, doubles and pointers are checked. The fix option initializes al detected
values with the value of zero. An exception isfloat and double types, which are initialized to NaN.

As an example a function that looks like this:
void function() {
int x;
char *txt;

doubled;

/I Rest of the function.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Would be rewritten to look like this:
#include <math.h>

void function() {
intx=0;
char *txt = nullptr;
doubled = NAN;

/I Rest of the function.
}

It warns for the uninitialized enum case, but without a Fix|t:

enum A {A1, A2, A3};

enumA _c:char{ A cl1, A c2, A c3};

enumclassB{ B1, B2, B3};

enumclassB i:int{ B i1,B i2,B i3};

void function() {
A a //Warning: variable’a isnot initialized
A_ca c;/l Warning: variable’a_¢’ isnot initialized
Bb; //Warning: variable’b’ isnot initialized
B_ib_i;// Warning: variable'b_i’ isnot initialized

}

Options

IncludeStyle
A string specifying which include-style is used, llvm or google. Default is [lvm.

MathHeader
A string specifying the header to include to get the definition of NAN. Default is <math.h>.

cppcor eguideines-inter faces-global-init
This check flags initializers of globals that access extern objects, and therefore can lead to

order-of-initialization problems.

Thisruleis part of the "Interfaces’ profile of the C++ Core Guidelines, see

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

https://github.convisocpp/CppCor eGuidelines/bl ob/master/CppCor eGuidelines.md#Ri-gl obal -init

Note that currently this does not flag calls to non-constexpr functions, and therefore globals could till
be accessed from functions themselves.

cppcor eguidelines-macr o-to-enum
The cppcoreguidelines-macro-to-enum check is an alias, please see moder nize-macro-to-enum for
more information.

cppcor eguidelines-macr o-usage
Finds macro usage that is considered problematic because better language constructs exist for the task.

The relevant sections in the C++ Core Guidelines are ES.31, and ES.32.
Examples:

#defineC 0

#define F1(x, y) ((@) > (b) ?(a) : (b))

#define F2(...) (_VA_ARGS)

#define COMMA ,

#define NORETURN [[noreturn]]

#define DEPRECATED attribute((deprecated))
#if LIB_EXPORTS

#define DLLEXPORTS __ declspec(dilexport)
#else

#define DLLEXPORTS __ declspec(dilimport)
#endif

results in the following warnings:

4 warnings generated.
test.cpp:1:9: warning: macro 'C’ used to declare a constant; consider using a’ constexpr’ constant [cppcoreguidelin
#defineC 0

AN
test.cpp:2:9: warning: function-like macro 'F1' used; consider a’ constexpr’ template function [cppcoreguidelines-
#define F1(x, y) ((@ > (b) ? (a) : (b))

N
test.cpp:3:9: warning: variadic macro ' F2' used; consider using a’ constexpr’ variadic template function [cppcoreg
#define F2(...) (_VA_ARGS)

N

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Options
AllowedRegexp
A regular expression to filter allowed macros. For example
DEBUG*|LIBTORRENT* |[TORRENT* |[UNI* could be applied to filter libtorrent. Default valueis
"DEBUG _*.
CheckCapsOnly
Boolean flag to warn on all macros except those with CAPS_ONLY names. Thisoptionis

intended to ease introduction of this check into older code bases. Default valueis false.

IgnoreCommandLineM acr os
Boolean flag to toggle ignoring command-line-defined macros. Default valueistrue.

cppcor eguidelines-nar r owing-conver sions
Checksfor silent narrowing conversions, e.g: inti = 0; i +=0.1;. While the issue is obviousin this

former example, it might not be so in the following: void MyClass:.:f(doubled) { int_member_ +=d; }.

Thisruleis part of the "Expressions and statements" profile of the C++ Core Guidelines, corresponding
torule ES.46. See

https: //github.com/isocpp/CppCor eGuidelines/bl ob/master/CppCor eGui delines. md#es46-avoi d-1 0ssy-nar r owi ng-trunc:
We enforce only part of the guideline, mor e specifically, we flag narrowing conver sions from:

© aninteger to anarrower integer (e.g. char to unsigned char) if
WarnOnlntegerNarrowingConversion Option is set,

© aninteger to anarrower floating-point (e.g. uint64 _t to float) if
WarnOnlntegerToFl oatingPointNarrowingConversion Option is Set,

o afloating-point to an integer (e.g. doubletoint),

o afloating-point to a narrower floating-point (e.g. doubleto float) if
WarnOnFloatingPointNarrowingConversion Option is set.

This check will flag:

® All narrowing conversions that are not marked by an explicit cast (c-style or static_cast).
For example: int i = 0; i +=0.1;, void f(int); f(0.1);,

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

© All applications of binary operators with anarrowing conversions. For example: int i; i+=
0.1;.

Options

WarnOnlnteger NarrowingConversion
When true, the check will warn on narrowing integer conversion (e.g. int to size t). true by default.

WarnOnlnteger ToFloatingPointNar rowingConver sion
When true, the check will warn on narrowing integer to floating-point conversion (e.g. size t to
double). true by default.

WarnOnFloatingPointNarrowingConversion
When true, the check will warn on narrowing floating point conversion (e.g. doubleto float). true
by default.

WarnWithinTemplatel nstantiation
When true, the check will warn on narrowing conversions within template instantiations. false by
default.

WarnOnEquivalentBitWidth
When true, the check will warn on narrowing conversions that arise from casting between types of
equivalent bit width. (e.g. int n = uint(0); or long long n = double(0);) true by default.

I gnoreConversionFromTypes
Narrowing conversions from any type in this semicolon-separated list will be ignored. This may be
useful to weed out commonly occurring, but less commonly problematic assignments such asint n
= std::vector<char>().size(); or int n = std::difference(itl, it2);. The default list is empty, but one
suggested list for alegacy codebase would be size t;ptrdiff_t;size type;difference_type.

PedanticM ode
When true, the check will warn on assigning a floating point constant to an integer value even if
the floating point value is exactly representable in the destination type (e.g. int i = 1.0;). false by
default.
FAQ

® What does "narrowing conversion from’int’ to'float’" mean?

An |EEE754 Floating Point number can represent al integer valuesin the range

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

[-2"PrecisionBits, 2"\PrecisionBits] where PrecisionBits is the number of bits in the mantissa.

For float thiswould be [-2723, 2/23], where int can represent values in the range [-2/31,
2731-1].

® What does "implementation-defined" mean?

Y ou may have encountered messages like "narrowing conversion from 'unsigned int’ to signed
type’int’ isimplementation-defined”. The C/C++ standard does not mandate two’'s
complement for signed integers, and so the compiler is free to define what the semantics are for
converting an unsigned integer to signed integer. Clang’s implementation uses the two’s
complement format.

cppcor eguidelines-no-malloc
This check handles C-Style memory management using malloc(), realloc(), calloc() and free(). It warns
about its use and tries to suggest the use of an appropriate RAIl object. Furthermore, it can be
configured to check against a user-specified list of functions that are used for memory management
(e.g. posix_memalign()). See C++ Core Guiddlines.

Thereis no attempt made to provide fix-it hints, since manual resource management isn’t easily
transformed automatically into RAII.

/Il Warns each of the following lines.

Il Containers like std::vector or std::string should be used.
char* some_string = (char*) malloc(sizeof(char) * 20);
char* some_string = (char*) realloc(sizeof(char) * 30);
free(some_string);

int* int_array = (int*) calloc(30, sizeof(int));

// Rather use a smartpointer or stack variable.
struct some_struct* s = (struct some_struct*) malloc(sizeof(struct some_struct));

Options
Allocations
Semicolon-separated list of fully qualified names of memory allocation functions. Defaultsto

::malloc;::calloc.

Deallocations

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Semicolon-separated list of fully qualified names of memory allocation functions. Defaults to
free.

Reallocations

Semicolon-separated list of fully qualified names of memory allocation functions. Defaults to
::realloc.

cppcor eguidelines-non-private-member -variables-in-classes

The cppcoreguidelines-non-private-member-variables-in-classes check is an alias, please see
mi sc-non-private-member-variabl es-in-classes for more information.

cppcor eguidelines-owning-memory

15

This check implements the type-based semantics of gsl::owner <T*>, which allows static analysis on
code, that uses raw pointers to handle resources like dynamic memory, but won't introduce RAII
concepts.

The relevant sectionsin the C++ Core Guidelinesare |.11, C.33, R.3 and GSL.Views The definition of
agd::owner<T*> is gtraight forward

namespace gdl { template <typename T> owner = T; }

It istherefore simple to introduce the owner even without using an implementation of the
Guideline Support Library.

All checks are purely type based and not (yet) flow sensitive.

The following examples will demonstrate the correct and incorrect initializations of owners,
assignment is handled the same way. Note that both new and malloc()-like resource functions
are considered to produce resources.

/I Creating an owner with factory functionsis checked.
gsl::owner<int*> function_that_returns_owner() { return gs::owner<int*>(new int(42)); }

// Dynamic memory must be assigned to an owner

int* Something = new int(42); // BAD, will be caught
gd::owner<int*> Owner = new int(42); // Good
gd::owner<int*> Owner = new int[42]; // Good as well

// Returned owner must be assigned to an owner
int* Something = function_that_returns_owner(); // Bad, factory function

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

gd::owner<int*> Owner = function_that_returns_owner(); // Good, result lands in owner

/I Something not a resource or owner should not be assigned to owners
int Stack = 42;
gdl::owner<int*> Owned = & Stack; // Bad, not aresource assigned

In the case of dynamic memory as resource, only gsl::owner <T*> variables are alowed to be
deleted.

// Example Bad, non-owner as resource handle, will be caught.
int* NonOwner = new int(42); // First warning here, since new must land in an owner
delete NonOwner; // Second warning here, since only owners are allowed to be deleted

// Example Good, Ownership correctly stated
gsl::owner<int*> Owner = new int(42); // Good
delete Owner; // Good as well, statically enforced, that only owners get deleted

The check will furthermore ensure, that functions, that expect a gdl::owner<T*> as argument get
called with either agdl::owner<T*> or anewly created resource.

void expects_owner(gd::owner<int*> 0) { delete o; }

// Bad Code
int NonOwner = 42;
expects_owner(& NonOwner); // Bad, will get caught

/I Good Code

gd::owner<int*> Owner = new int(42);

expects_owner(Owner); // Good

expects_owner(new int(42)); // Good as well, recognized created resource

I/ Port legacy code for better resource-safety
gsl::owner<FILE*> File = fopen("my_filetxt", "rw+");
FILE* BadFile = fopen("another_file.txt", "w"); // Bad, warned

/I ... usethefile

fclose(File); // Ok, Fileis annotated as’ owner<>’
fclose(BadFile); // BadFileis not an’ owner<>", will be warned

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Options

L egacyResour ceProducers
Semicolon-separated list of fully qualified names of legacy functions that create resources but
cannot introduce gdl::owner <>. Defaultsto
::malloc;::aligned_alloc;::realloc;::calloc;::fopen;::freopen;::tmpfile.

L egacyResour ceConsumer's
Semicolon-separated list of fully qualified names of legacy functions expecting resource owners as
pointer arguments but cannot introduce gsl::owner<>. Defaultsto ::free;::realloc;::freopen;::fclose.

Limitations
Using gdl::owner<T*> in atypedef or aiasisnot handled correctly.

using heap_int = gsl::owner<int*>;
heap_int alocated = new int(42); // False positive!

The gd::owner <T*> isdeclared as atemplated type adias. Intemplate functions and classes,
like in the example below, the information of the type aliases gets lost. Therefore using
gd::owner<T*> in a heavy templated code base might lead to false positives.
Known code constructs that do not get diagnosed correctly are:
® std::exchange
® std::vector<gd::owner<T*>>
/I Thistemplate function works as expected. Type information doesn’t get lost.
template <typename T>
void delete_owner(gsl::owner<T*> owned_object) {
delete owned_object; // Everything alright
}
gd::owner<int*> function_that_returns_owner() { return gd::owner<int*>(new int(42)); }
/I Type deduction does not work for auto variables.
/I Thisis caught by the check and will be noted accordingly.

auto OwnedObject = function_that_returns_owner(); // Type of OwnedObject will be int*

/I Problematic function template that |0oses the typeinformation on owner

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

template <typename T>

void bad_template_function(T some_object) {
/I Thisline will trigger the warning, that a non-owner is assigned to an owner
gdl::owner<T*> new_owner = some_object;

}

/I Calling the function with an owner still yields afalse positive.
bad_template_function(gs::owner<int*>(new int(42)));

/I The same issue occurs with templated classes like the following.
template <typename T>
class OwnedVaue{
public:
const T getValue() const { return _val; }
private:
T val;
|

/I Code, that yields a false positive.

OwnedV alue<gdl::owner<int*>> Owner(new int(42)); // Type deduction yield T -> int *
I/ False positive, getVaue returnsint* and not gdl::owner<int* >

gdl::owner<int*> Ownedint = Owner.getVaue();

Another limitation of the current implementation is only the type based checking. Suppose you
have code like the following:

/I Two owners with assigned resources
gd::owner<int*> Ownerl = new int(42);
gsl::owner<int*> Owner2 = new int(42);

Owner2 = Ownerl; // Conceptual Leak of initial resource of Owner?2!
Ownerl = nullptr;

The semantic of agd::owner<T*>ismostly like a std::unique_ptr<T>, therefore assignment of
two gd::owner<T*> is considered a move, which requires that the resource Owner 2 must have
been released before the assignment. This kind of condition could be caught in later
improvements of this check with flowsensitive analysis. Currently, the Clang Static Analyzer
catches this bug for dynamic memory, but not for general types of resources.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

cppcor eguidelines-pr efer-member -initializer
Finds member initializations in the constructor body which can be converted into member initializers
of the constructor instead. This not only improves the readability of the code but also positively affects
its performance. Class-member assignmentsinside a control statement or following the first control
statement are ignored.

This check implements C.49 from the CppCoreGuidelines.

If the language version is C++ 11 or above, the constructor is the default constructor of the class, the

field is not a bitfield (only in case of earlier language version than C++ 20), furthermore the assigned
valueisaliteral, negated literal or enum constant then the preferred place of the initialization is at the
class member declaration.

Thislatter ruleis C.48 from CppCoreGuidelines.

Please note, that this check does not enforce this latter rule for initializations aready implemented as
member initializers. For that purpose see check moder nize-use-default-member -init.

Example 1

classC{
intn;
intm;
public:
COA{
n=1; // Literal in default constructor
if (dice())
return;
m=1;
}
|

Here n can beinitialized using a default member initializer, unlike m, as m’sinitialization
follows a control statement (if):

classC{
int n{1};
int m;

public:
COA{

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

if (dice())
return;
m=1;

}

Example 2

classC{
intn;

int m;

public:

C(int nn, int mm) {
n = nn; // Neither default constructor nor litera
if (dice())

return;
m = mm;
}
|

Here n can beinitialized in the constructor initialization list, unlike m, as m’sinitialization
follows a control statement (if):

C(int nn, int mm) : n(nn) {
if (dice())
return;
m = mm,

}

UseAssignment
If this option is set to true (default is false), the check will initialize members with an assignment.
In this case the fix of the first example looks like this:

classC{
intn=1
int m;
public:
CO{
if (dice())
return;
m=1;

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

}
s

cppcor eguidelines-pro-bounds-array-to-pointer -decay

This check flags al array to pointer decays.

Pointers should not be used as arrays. span<T > is a bounds-checked, safe aternative to using pointers
to access arrays.

Thisruleis part of the "Bounds safety" profile of the C++ Core Guidelines, see
https://github.convisocpp/CppCor eGui delines/bl ob/master/CppCor eGuidelines.md#Pr o-bounds-decay.

cppcor eguidelines-pr o-bounds-constant-ar ray-index

This check flags all array subscript expressions on static arrays and std::arrays that either do not have a
constant integer expression index or are out of bounds (for std::array). For out-of-bounds checking of
static arrays, see the -Warray-bounds Clang diagnostic.

Thisruleis part of the "Bounds safety” profile of the C++ Core Guidelines, see
https://github.convisocpp/CppCor eGuidelines/bl ob/master/CppCor eGui delines.md#Pr o-bounds-arrayindex.

Optionally, this check can generate fixes using gdl::at for indexing.

Options

GslHeader
The check can generate fixes after this option has been set to the name of the include file that
contains gsl::at(), e.g. "gsl/gs.h".

IncludeStyle
A string specifying which include-style is used, llvm or google. Default is [lvm.

cppcor eguidelines-pro-bounds-pointer-arithmetic

15

This check flags all usage of pointer arithmetic, because it could lead to an invalid pointer. Subtraction
of two pointersis not flagged by this check.

Pointers should only refer to single objects, and pointer arithmetic is fragile and easy to get wrong.
span<T> is a bounds-checked, safe type for accessing arrays of data.

Thisruleis part of the "Bounds safety” profile of the C++ Core Guidelines, see
https: //github.convisocpp/CppCor eGui delines/bl ob/master/CppCor eGuidelines.md#Pr o-bounds-arithmetic.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

cppcor eguidelines-pr o-type-const-cast

This check flags all uses of const_cast in C++ code.
Modifying avariable that was declared const is undefined behavior, even with const_cast.

Thisruleis part of the "Type safety” profile of the C++ Core Guidelines, see
https: //github.convisocpp/CppCor eGuidelines/bl ob/master/CppCor eGuidelines.md#Pr o-type-constcast.

cppcor eguidelines-pro-type-cstyle-cast

This check flags all use of C-style casts that perform astatic_cast downcast, const_cast, or
reinterpret_cast.

Use of these casts can violate type safety and cause the program to access a variable that is actualy of
type X to be accessed asif it were of an unrelated type Z. Note that a C-style (T)expression cast means
to perform the first of the following that is possible: aconst_cast, astatic_cast, astatic_cast followed
by aconst_cast, areinterpret_cast, or areinterpret_cast followed by aconst_cast. Thisrule bans
(T)expression only when used to perform an unsafe cast.

Thisruleis part of the "Type safety" profile of the C++ Core Guidelines, see
https:.//github.com/isocpp/CppCoreGuidelines/bl ob/master/CppCor eGui del ines.md#Pr o-type-cstyl ecast.

cppcor eguidelines-pr o-type-member -init

The check flags user-defined constructor definitions that do not initialize all fields that would beleft in
an undefined state by default construction, e.g. builtins, pointers and record types without
user-provided default constructors containing at least one such type. If these fields aren’t initialized, the
constructor will leave some of the memory in an undefined state.

For C++11 it suggests fixes to add in-class field initializers. For older versions it inserts the field
initializers into the constructor initializer list. It will also initialize any direct base classes that need to
be zeroed in the constructor initializer list.

The check takes assignment of fields in the constructor body into account but generates fal se positives
for fieldsinitialized in methods invoked in the constructor body.

The check also flags variables with automatic storage duration that have record types without a
user-provided constructor and are not initialized. The suggested fix isto zero initialize the variable via
{} for C++11 and beyond or = {} for older language versions.

Options

15

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

IgnoreArrays
If set to true, the check will not warn about array members that are not zero-initialized during
construction. For performance critical code, it may be important to not initialize fixed-size array
members. Default is false.

UseAssignment
If set to true, the check will provide fix-itswith literal initializers (int i = 0;) instead of curly
braces (inti{};).

Thisruleis part of the "Type safety" profile of the C++ Core Guidelines, corresponding to rule
Type.6. See
https:.//github.com/isocpp/CppCor eGuidelines/bl ob/master/CppCor eGui delines.md#Pr o-type-memberinit.

cppcor eguidelines-pro-type-reinter pret-cast
This check flags all uses of reinterpret_cast in C++ code.

Use of these casts can violate type safety and cause the program to access a variable that is actually of
type X to be accessed asif it were of an unrelated type Z.

Thisruleis part of the "Type safety” profile of the C++ Core Guidelines, see
https://github.convisocpp/CppCor eGuidelines/bl ob/master/CppCor eGuidelines.md#Pr o-type-reinter pretcast.

cppcor eguidelines-pro-type-static-cast-downcast
This check flags all usages of static_cast, where a base classis casted to a derived class. In those cases,
afix-it is provided to convert the cast to adynamic_cast.

Use of these casts can violate type safety and cause the program to access a variable that is actually of
type X to be accessed asif it were of an unrelated type Z.

Thisruleis part of the "Type safety” profile of the C++ Core Guidelines, see
https: //github.convisocpp/CppCor eGui delines/bl ob/master/CppCor eGuidelines.md#Pr o-type-downcast.

cppcor eguidelines-pr o-type-union-access
This check flags all access to members of unions. Passing unions as awhole is not flagged.

Reading from a union member assumes that member was the last one written, and writing to aunion
member assumes another member with a nontrivial destructor had its destructor called. Thisisfragile
because it cannot generally be enforced to be safe in the language and so relies on programmer
disciplineto get it right.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Thisruleis part of the "Type safety” profile of the C++ Core Guidelines, see
https: //github.convisocpp/CppCor eGui delines/bl ob/master/CppCor eGuidelines.md#Pr o-type-unions.

cppcor eguidelines-pro-type-vararg
This check flags all callsto c-style vararg functions and all use of va_arg.

To alow for SFINAE use of vararg functions, acall is not flagged if alitera O is passed as the only
vararg argument.

Passing to varargs assumes the correct type will be read. Thisis fragile because it cannot generally be
enforced to be safe in the language and so relies on programmer discipline to get it right.

Thisruleis part of the "Type safety” profile of the C++ Core Guidelines, see
https://github.convisocpp/CppCor eGui delines/bl ob/master/CppCor eGuidelines.md#Pr o-type-varargs.

cppcoreguidelines-dicing
Flags dicing of member variables or vtable. Slicing happens when copying a derived object into a base
object: the members of the derived object (both member variables and virtual member functions) will
be discarded. This can be misleading especially for member function slicing, for example:

struct B { int & virtua int f(); };
struct D : B { int b; int f() override; };

void use(B b) { // Missing reference, intended?
b.f(); // CallsB::f.
}

Dd;
use(d); // Slice.

See the relevant C++ Core Guidelines sections for details:
https: //github.convisocpp/CppCor eGui delines/bl ob/master/CppCor eGuidelines.md#es63-dont-slice
https: //github.convisocpp/CppCor eGui delines/bl ob/master/CppCor eGuidelines.md#c145-access-pol ymor phic-0

cppcor eguidelines-special-member -functions
The check finds classes where some but not all of the special member functions are defined.

By default the compiler defines a copy constructor, copy assignment operator, move constructor, move

assignment operator and destructor. The default can be suppressed by explicit user-definitions. The
relationship between which functions will be suppressed by definitions of other functionsis

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

complicated and it is advised that all five are defaulted or explicitly defined.
Note that defining afunction with = delete is considered to be a definition.

Thisruleis part of the "Constructors, assignments, and destructors' profile of the C++ Core
Guidelines, corresponding to rule C.21. See

https: //github.convisocpp/CppCor eGuidelines/bl ob/master/CppCor eGui delines.md#c21-if-you-define-or-del ete-any-de
Options

AllowSoleDefaultDtor

When set to true (default is false), this check doesn’t flag classes with a sole, explicitly defaulted
destructor. An example for such aclassis:

struct A {
virtual ~A() = default;
1

AllowMissingM oveFunctions
When set to true (default is false), this check doesn’t flag classes which define no move operations

at all. It still flags classes which define only one of either move constructor or move assignment
operator. With this option enabled, the following class won't be flagged:

struct A {

A(const A&);

A& operator=(const A&);
~A();
|3

AllowMissingM oveFunctionsWhenCopyl sDeleted
When set to true (default is false), this check doesn’t flag classes which define deleted copy
operations but don’'t define move operations. Thisflag is related to Google C++ Style Guide

https://google.github.io/styl eguide/cppguide.html#Copyable_Movable Types. With this option
enabled, the following class won't be flagged:

struct A {
A(const A&) = delete;
A& operator=(const A&) = delete;
~A();

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

h

cppcor eguidelines-virtual-class-destructor
Finds virtual classes whose destructor is neither public and virtual nor protected and non-virtual. A
virtual class s destructor should be specified in one of these ways to prevent undefined behavior.

This check implements C.35 from the CppCoreGuidelines.

Note that this check will diagnose a class with a virtual method regardless of whether the classis used
as a base class or not.

Fixes are available for user-declared and implicit destructors that are either public and non-virtual or
protected and virtual. No fixes are offered for private destructors. There, the decision whether to make
them private and virtual or protected and non-virtual depends on the use case and is thus | eft to the
user.

Example
For example, the following classes/structs get flagged by the check since they violate guideline C.35:

struct Foo { /I NOK, protected destructor should not be virtual
virtual void f();

protected:

virtual ~Foo(){}

b

class Bar { /I NOK, public destructor should be virtual
virtual void f();

public:

~Bar(){}

b

Thiswould be rewritten to look like this;

struct Foo { // OK, destructor is not virtual anymore
virtual void f();
protected:

~Foo(){}
h

class Bar { // OK, destructor is now virtual

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

virtual void f();
public:
virtual ~Bar(){}
|

darwin-avoid-spinlock
Finds usages of OSSpinlock, which is deprecated due to potential livelock problems.

This check will detect following function invocations:
® OSSpinlockL ock

® OSSpinlockTry

® OSSpinlockUnlock

The corresponding information about the problem of OSSpinlock:
https: /bl og.postmates.com/why-spinlocks-ar e-bad-on-ios-b69fc5221058

darwin-dispatch-once-nonstatic
Finds declarations of dispatch_once _t variables without static or global storage. The behavior of using
dispatch_once _t predicates with automatic or dynamic storage is undefined by libdispatch, and should
be avoided.
It isacommon pattern to have functions initialize internal static or global data once when the function
runs, but programmers have been known to miss the static on the dispatch_once t predicate, leading to
an uninitialized flag value at the mercy of the stack.
Programmers have a so been known to make dispatch_once _t variables be members of structs or
classes, with the intent to lazily perform some expensive struct or class member initialization only
once; however, this violates the libdispatch requirements.

See the discussion section of Apple’s dispatch_once documentation for more information.

fuchsia-default-arguments-calls
Warnsif afunction or method is called with default arguments.

For example, given the declaration:

int foo(int value = 5) { return vaue; }

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

A function call expression that uses a default argument will be diagnosed. Calling it without
defaults will not cause awarning:

foo(); // warning
foo(0); // no warning

See the features disallowed in Fuchsia at
https: //fuchsia.googlesour ce.com/zircon/+/master/docs/cxx.md

fuchsia-default-arguments-declar ations
Warns if afunction or method is declared with default parameters.

For example, the declaration:
int foo(int value = 5) { return value; }
will cause awarning.

See the features disallowed in Fuchsia at
https:.//fuchsia.googlesour ce.convzir con/+/master/docs/cxx.md

fuchsia-header-anon-namespaces
The fuchsi a-header-anon-namespaces check is an alias, please see google-build-namespace for more
information.

fuchsia-multiple-inheritance
Warns if aclassinherits from multiple classes that are not pure virtual .

For example, declaring a class that inherits from multiple concrete classes is disallowed:

classBase A {

public:

virtual int foo() { return O; }
|

classBase B {

public:

virtual int bar() { return 0; }
}s

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

/[Warning
classBad Childl: public Base A, Base B {};

A classthat inherits from apure virtual is allowed:

class Interface A {
public:

virtual int foo() = 0;
|

class Interface B {
public:

virtual int bar() = 0;
|

/ No warning

class Good_Childl : public Interface A, Interface B {
virtual int foo() override{ return O; }
virtual int bar() override { return O; }

s

See the features disallowed in Fuchsia at
https: //fuchsia.googlesour ce.com/zircon/+/master/docs/cxx.md

fuchsia-overloaded-operator
Warns if an operator is overloaded, except for the assignment (copy and move) operators.

For example:
int operator+(int); // Warning

B & operator=(const B & Other); // No warning
B & operator=(B & & Other) // No warning

See the features disallowed in Fuchsia at
https:.//fuchsia.googlesour ce.convzir con/+/master/docs/cxx.md

fuchsia-statically-constructed-obj ects

Warnsif global, non-trivial objects with static storage are constructed, unless the object is statically
initialized with a constexpr constructor or has no explicit constructor.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

For example:
classA {};

classB {
public:
B(int Val) : va(va) {}
private:
int Val;
|

classC{

public:
C(int Va) : va(va) {}
constexpr C() : Va(0) {}

private:
intval;
|

static A a; / No warning, as there is no explicit constructor
static C c(0); // No warning, as constructor is constexpr

static B b(0); // Warning, as constructor is not constexpr
static C c2(0, 1); // Warning, as constructor is not constexpr

staticinti; // No warning, asit istrivial

externint get_i();
static C(get_i()) // Warning, as the constructor is dynamicaly initialized

See the features disallowed in Fuchsia at
https: //fuchsia.googlesour ce.com/zircon/+/master/docs/cxx.md

fuchsia-trailing-return
Functions that have trailing returns are disallowed, except for those using decltype specifiers and

lambda with otherwise unutterable return types.

For example:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

// No warning
int add_one(const int arg) { return arg; }

/I Warning
auto get_add_one() -> int (*)(const int) {
return add_one;

}

Exceptions are made for lambdas and decltype specifiers:

// No warning
auto lambda = [](double x, double y) -> double {return x +y;};

/ No warning

template <typename T1, typename T2>

auto fn(const T1 &lhs, const T2 &rhs) -> decltype(lhs + rhs) {
return Ihs + rhs;

}

See the features disallowed in Fuchsia at
https: //fuchsi a.googlesour ce.com/zircon/+/master/docs/cxx.md

fuchsia-virtual-inheritance
Warns if classes are defined with virtual inheritance.

For example, classes should not be defined with virtual inheritance:
classB : public virtual A {}; // warning

See the features disallowed in Fuchsia at
https: //fuchsia.googlesour ce.com/zircon/+/master/docs/cxx.md

google-build-explicit-make-pair
Check that make pair’s template arguments are deduced.

EXTRACLANGTOOL (1)

G++ 4.6 in C++11 mode fails badly if make pair’stemplate arguments are specified explicitly, and

such useisn’t intended in any case.

Corresponding cpplint.py check name: build/explicit_make pair.

15 December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

google-build-namespaces
cert-dcl59-cpp redirects here as an alias for this check. fuchsia-header-anon-namespaces redirects here
asan diasfor this check.
Finds anonymous namespaces in headers.
https://google.github.io/styl eguide/cppgui de.html#Namespaces
Corresponding cpplint.py check name: build/namespaces.

Options

Header FileExtensions
A comma-separated list of filename extensions of header files (the filename extensions should not
include"." prefix). Default is "h,hh,hpp,hxx". For header files without an extension, use an empty
string (if there are no other desired extensions) or leave an empty element in thelist. E.g.,
"h,hh,hpp,hxx," (note the trailing comma).

google-build-using-namespace
Finds using namespace directives.

The check implements the following rule of the Google C++ Style Guide:
Y ou may not use a using-directive to make all names from a namespace available.

// Forbidden -- This pollutes the namespace.
using namespace foo;

Corresponding cpplint.py check name: build/namespaces.

google-default-arguments
Checks that default arguments are not given for virtual methods.

See https://googl e.github.io/styl eguide/cppguide.htmli#Default_Arguments
google-explicit-constructor
Checks that constructors callable with a single argument and conversion operators are marked explicit

to avoid the risk of unintentional implicit conversions.

Consider this example:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

struct S{
int x;
operator bool() const { return true; }

H

bool f() {
Sa{1};
Sh{2};
return a==Db;

}

The function will return true, since the objects are implicitly converted to bool before
comparison, which is unlikely to be the intent.

The check will suggest inserting explicit before the constructor or conversion operator
declaration. However, copy and move constructors should not be explicit, aswell as
constructors taking asingle initializer _list argument.

This code:

struct S{
S(int a);
explicit S(const S&);
operator bool() congt;

will become
struct S{
explicit S(int a);

S(const S&);
explicit operator bool() congt;

See https://google.github.io/styl eguide/cppguide.ntml#Explicit_Constructors
google-global-names-in-header s

Flag global namespace pollution in header files. Right now it only triggers on using declarations and
directives.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

The relevant style guide section is https://google.github.io/styl eguide/cppgui de.html#Namespaces.
Options
Header FileExtensions
A commarseparated list of filename extensions of header files (the filename extensions should not
contain "." prefix). Default is"h". For header files without an extension, use an empty string (if
there are no other desired extensions) or leave an empty element in thelist. E.g., "h,hh,hpp,hxx,"

(note the trailing comma).

google-obj c-avoid-nsobject-new
Finds callsto +new or overrides of it, which are prohibited by the Google Objective-C style guide.

The Google Objective-C style guide forbids calling +new or overriding it in class implementations,
preferring +alloc and -init methods to instantiate objects.

An example:

NSDate * now = [NSDate new];
Foo *bar = [Foo new];

Instead, code should use +alloc/-init or class factory methods.

NSDate *now = [NSDate date];
Foo *bar = [[Foo aloc] init];

This check corresponds to the Google Objective-C Style Guide rule Do Not Use +new.

google-obj c-avoid-thr owing-exception
Finds uses of throwing exceptions usages in Objective-C files.

For the same reason as the Google C++ style guide, we prefer not throwing exceptions from
Objective-C code.

The corresponding C++ style guide rule: https://googl e.github.io/styl eguide/cppguide.html#Exceptions
Instead, prefer passing in NSError ** and return BOOL to indicate success or failure.

A counterexample:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

- (void)readFile {
if ([self isError]) {
@throw [NSException exceptionWithName:....];

}
}

Instead, returning an error viaNSError ** is preferred:

- (BOOL)readFileWithError:(NSError **)error {
if ([self isError]) {
*error = [NSError errorWithDomain:...];
return NO;

}
return YES,

}

The corresponding style guide rule:
https: //google.github.io/styl egui de/obj cgui de.htmi#avoi d-thr owing-exceptions

google-objc-function-naming
Finds function declarations in Objective-C files that do not follow the pattern described in the Google

Objective-C Style Guide.

The corresponding style guide rule can be found here:
https:.//googl e.github.io/styl eguide/obj cguide. html#function-names

All function names should be in Pascal case. Functions whaose storage class is not static should have an
appropriate prefix.

The following code sample does not follow this pattern:

static bool is_positive(int i) { returni >0; }
bool IsNegative(int i) { returni <0; }

The sample above might be corrected to the following code:

static bool IsPositive(int i) { returni > 0; }
bool * ABClsNegative(int i) { returni <0; }

google-objc-global-variable-declar ation

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Finds global variable declarations in Objective-C files that do not follow the pattern of variable names
in Googl€e' s Objective-C Style Guide.

The corresponding style guide rule; https.//google.github.io/styl eguide/obj cguide.htmi#variable-names

All the global variables should follow the pattern of g[A-Z].* (variables) or k[A-Z].* (constants). The
check will suggest a variable name that follows the pattern if it can be inferred from the original name.

For code:
static NSString* myString = @"hello";
The fix will be:
static NSString* gMyString = @"hello";
Another example of constant:
static NSString* const myConstString = @"hello";
The fix will be:
static NSString* const kMyConstString = @"hello”;
However for code that prefixed with non-al phabetical characters like:
static NSString* __anotherString = @"world";

The check will give awarning message but will not be able to suggest afix. The user needsto
fix it on their own.

google-readability-avoid-under scor e-in-googletest-name
Checks whether there are underscores in googletest test and test case names in test macros:

® TEST
® TEST F

® TEST P

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® TYPED_TEST

® TYPED TEST P
The FRIEND_TEST macro is not included.
For example:

TEST(TestCaseName, lllegal_TestName) {}
TEST(Illegal_TestCaseName, TestName) {}

would trigger the check. Underscores are not allowed in test names nor test case names.

The DISABLED_ prefix, which may be used to disable individual tests, is ignored when
checking test names, but the rest of the rest of the test nameis still checked.

This check does not propose any fixes.
google-readability-braces-ar ound-statements
The google-readability-braces-around-statements check is an alias, please see

readability-braces-around-statements for more information.

google-readability-casting
Finds usages of C-style casts.

https://google.github.io/styleguide/cppguide.html#Casting
Corresponding cpplint.py check name: readability/casting.

This check issimilar to -Wold-style-cast, but it suggests automated fixes in some cases. The reported
locations should not be different from the ones generated by -Wold-style-cast.

google-readability-function-size
The google-readability-function-size check is an alias, please see readability-function-size for more
information.

google-r eadability-namespace-comments

The googl e-readability-namespace-comments check is an alias, please see [lvm-namespace-comment
for more information.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

google-readability-todo
Finds TODO comments without a username or bug number.

The relevant style guide section is
https://google.github.io/styleguide/cppguide.htm#TODO_Comments.

Corresponding cpplint.py check: readability/todo

google-runtime-int
Finds uses of short, long and long long and suggest replacing them with u?intXX(_t)?.

The corresponding style guide rule: https.//google.github.io/styleguide/cppguide.html#integer _ Types.
Corresponding cpplint.py check: runtime/int.
Options

UnsignedTypePr efix
A string specifying the unsigned type prefix. Default is uint.

SignedTypePr efix
A string specifying the signed type prefix. Default isint.

TypeSuffix
A string specifying the type suffix. Default is an empty string.

google-runtime-oper ator
Finds overloads of unary operator &.

https://google.github.io/styleguide/cppguide.html#Operator_Overloading
Corresponding cpplint.py check name: runtime/operator.
google-upgrade-googletest-case
Finds uses of deprecated Google Test version 1.9 APIs with names containing case and replaces them

with equivalent APIswith suite.

All names containing case are being replaced to be consistent with the meanings of "test case" and "test
suite" as used by the International Software Testing Qualifications Board and 1SO 29119.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

The new names are a part of Google Test version 1.9 (rel ease pending). It is recommended that users
update their dependency to version 1.9 and then use this check to remove deprecated names.

The affected APIs are;

® Member functions of testing:: Test, testing:: Testl nfo, testing:: TestEventListener, testing::UnitTest,
and any type inheriting from these types

® Themacros TYPED_TEST_CASE, TYPED_TEST_CASE_P,
REGISTER_TYPED_TEST_CASE_P, and INSTANTIATE_TYPED_TEST_CASE_P

® Thetypealiastesting::TestCase
Examples of fixes created by this check:

class FooTest : public testing:: Test {
public:

static void SetUpTestCase();
static void TearDownTestCase();

b
TYPED_TEST_CASE(BarTest, BarTypes);
becomes

class FooTest : public testing:: Test {
public:

static void SetUpTestSuite();
static void TearDownTestSuite();

H

TYPED_TEST SUITE(BarTest, BarTypes);
For better consistency of user code, the check renames both virtual and non-virtual member
functions with matching names in derived types. The check tries to provide only awarning

when afix cannot be made safely, asis the case with some template and macro uses.

hicpp-avoid-c-arrays
The hicpp-avoid-c-arrays check is an dlias, please see moder nize-avoid-c-arrays for more information.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

hicpp-avoid-goto
The hicpp-avoid-goto check is an alias to cppcoreguidelines-avoid-goto. Rule 6.3.1 High Integrity
C++ requires that goto only skips parts of a block and is not used for other reasons.

Both coding guidelines implement the same exception to the usage of goto.

hicpp-br aces-ar ound-statements

The hicpp-braces-around-statements check is an alias, please see readability-braces-around-statements
for more information. It enforcestherule6.1.1.

hicpp-depr ecated-header s

The hicpp-deprecated-headers check is an alias, please see moder nize-deprecated-headers for more
information. It enforcestherule 1.3.3.

hicpp-exception-baseclass
Ensure that every value that in athrow expression is an instance of std::exception.

Thisenforcesrule 15.1 of the High Integrity C++ Coding Standard.
class custom_exception {};

void throwing() noexcept(false) {
/I Problematic throw expressions.
throw int(42);
throw custom_exception();

}
class mathematical_error : public std::exception {};

void throwing2() noexcept(false) {
Il These kind of throws are ok.
throw mathematical_error();
throw std::runtime_error();
throw std::exception();

}

hicpp-explicit-conversions
This check isan alias for google-explicit-constructor. Used to enforce parts of rule 5.4.1. This check
will enforce that constructors and conversion operators are marked explicit. Other forms of casting
checks are implemented in other places. The following checks can be used to check for more forms of

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

casting:
© cppcoreguidelines-pro-type-static-cast-downcast
® cppcoreguidelines-pro-type-reinterpret-cast
® cppcoreguidelines-pro-type-const-cast
® cppcoreguidelines-pro-type-cstyle-cast
hicpp-function-size
This check isan alias for readability-function-size. Useful to enforce multiple sections on function
complexity.
® rule8.2.2
® rule8.3.1

® rule8.3.2

hicpp-invalid-access-moved
This check isan alias for bugprone-use-after-move.

Implements parts of the rule 8.4.1 to check if moved-from objects are accessed.

hicpp-member -init
This check isan alias for cppcoreguidelines-pro-type-member-init. Implements the check for rule
12.4.2 to initialize class membersin the right order.

hicpp-move-const-arg
The hicpp-move-const-arg check is an alias, please see performance-move-const-arg for more
information. It enforcestherule 17.3.1.

hicpp-multiway-paths-covered
This check discovers situations where code paths are not fully-covered. It furthermore suggests using
if instead of switch if the code will be more clear. Therule 6.1.2 and rule 6.1.4 of the High Integrity
C++ Coding Standard are enforced.

if-elseif chainsthat missafina else branch might lead to unexpected program execution and be the
result of alogical error. If the missing else branch isintended you can leave it empty with aclarifying

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

comment. Thiswarning can be noisy on some code bases, so it is disabled by default.

void f1() {
int i = determineTheNumber();

if(i >0){
/I Some Calculation
} elseif (i <0){
/I Precondition violated or something else.

}
...

}

Similar arguments hold for switch statements which do not cover all possible code paths.

// The missing default branch might be alogical error. It can be kept empty
/I if there is nothing to do, making it explicit.
void f2(int i) {
switch (i) {
case 0: // something
break;
case 1: // something else
break;

}
/I All other numbers?

}

/I Violates thisrule as well, but already emits a compiler warning (-Wswitch).
enum Color { Red, Green, Blue, Yellow };
void f3(enum Color c) {
switch (c) {
case Red: // We can't drive for now.
break;
case Green: // We are allowed to drive.
break;
}

/I Other cases missing

}

Therule 6.1.4 requires every switch statement to have at least two case |abels other than a

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

default label. Otherwise, the switch could be better expressed with an if statement.
Degenerated switch statements without any |abels are caught as well.

/I Degenerated switch that could be better written as *if*
inti=42;
switch(i) {

case 1: // do something here

default: // do something else here

}

[/ Should rather be the following:
if (1==1){
// do something here
}
else{
// do something here
}

/I A completely degenerated switch will be diagnosed.
inti=42;
switch(i) {}

Options

WarnOnMissingElse
Boolean flag that activates awarning for missing else branches. Default isfalse.

hicpp-named-parameter
This check isan dias for readability-named-parameter .

Implementsrule 8.2.1.

hicpp-new-delete-operator s
This check is an alias for misc-new-delete-overloads. Implementsrule 12.3.1 to ensure the new and
delete operators have the correct signature.

hicpp-no-array-decay

The hicpp-no-array-decay check isan alias, please see
cppcor eguidelines-pro-bounds-array-to-pointer-decay for more information. It enforcestherule4.1.1.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

hicpp-no-assembler
Check for assembler statements. No fix is offered.

Inline assembler is forbidden by the High Integrity C++ Coding Standard as it restricts the portability
of code.

hicpp-no-malloc
The hicpp-no-malloc check is an dias, please see cppcoreguidelines-no-malloc for more information.
It enforcestherule 5.3.2.

hicpp-noexcept-move
This check isan alias for performance-noexcept-move-constructor. Checksrule 12.5.4 to mark move
assignment and move construction noexcept.

hicpp-signed-bitwise
Finds uses of bitwise operations on signed integer types, which may lead to undefined or
implementation defined behavior.

The according rule is defined in the High Integrity C++ Sandard, Section 5.6.1.
Options

I gnor ePositivel nteger Literals
If thisoption is set to true, the check will not warn on bitwise operations with positive integer
literals, e.g. ~0, 2 << 1, etc. Default valueisfalse.

hicpp-special-member -functions
This check isan alias for cppcoreguidelines-special-member-functions. Checks that special member
functions have the correct signature, according to rule 12.5.7.

hicpp-static-assert
The hicpp-static-assert check is an alias, please see misc-static-assert for more information. It enforces
therule 7.1.10.

hicpp-undelegated-constr uctor
This check isan alias for bugprone-undel egated-constructor. Partialy implementsrule 12.4.5 to find

misplaced constructor calls inside a constructor.

struct Ctor {
Ctor();

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Ctor(int);

Ctor(int, int);

Ctor(Ctor *i) {
/I All Ctor() callsresult in atemporary object
Ctor(); // did you intend to call a delegated constructor?
Ctor(0); // did you intend to call adelegated constructor?
Ctor(1, 2); // did you intend to call a delegated constructor?
foo();

}

|3

hicpp-upper case-liter al-suffix
The hicpp-uppercase-literal-suffix check is an alias, please see readability-upper case-literal-suffix for
more information.

hicpp-use-auto
The hicpp-use-auto check is an dias, please see modernize-use-auto for more information. It enforces
therule7.1.8.

hicpp-use-emplace
The hicpp-use-emplace check is an alias, please see moder nize-use-emplace for more information. 1t
enforcestherule 17.4.2.

hicpp-use-equals-default
This check is an alias for modernize-use-equals-default. Implementsrule 12.5.1 to explicitly default
special member functions.

hicpp-use-equals-delete
This check is an alias for modernize-use-equals-delete. Implementsrule 12.5.1 to explicitly default or
delete specia member functions.

hicpp-use-noexcept
The hicpp-use-noexcept check is an alias, please see moder nize-use-noexcept for more information. It
enforcestherule 1.3.5.

hicpp-use-nullptr
The hicpp-use-nullptr check is an alias, please see modernize-use-nullptr for more information. It

enforcestherule 2.5.3.

hicpp-use-override

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

This check isan alias for modernize-use-override. Implements rule 10.2.1 to declare avirtual function
override when overriding.

hicpp-vararg
The hicpp-vararg check isan aias, please see cppcoreguidelines-pro-type-vararg for more information.
It enforcestherule 14.1.1.

linuxkernel-must-use-errs
Checks Linux kernel code to seeif it uses the results from the functionsin linux/err.h. Also checksto
seeif code uses the results from functions that directly return avalue from one of these error functions.

Thisisimportant in the Linux kernel because ERR_PTR, PTR_ERR, IS ERR, IS ERR_OR_NULL,
ERR_CAST, and PTR_ERR_OR_ZERO return values must be checked, since positive pointers and
negative error codes are being used in the same context. These functions are marked with

__attribute__ ((warn_unused_result)), but some kernel versions do not have this warning enabled for
clang.

Examples:

/* Trivia unused call to an ERR function */
PTR_ERR_OR_ZERO(some _function_call());

/* A function that returns ERR_PTR. */
void *fn() { ERR_PTR(-EINVAL); }

/* Aninvalid useof fn. */

fn();
[lvm-else-after-return
The llvm-else-after-return check is an alias, please see readability-else-after-return for more

information.

[lvm-header-guard
Finds and fixes header guards that do not adhereto LLVM style.

Options
Header FileExtensions

A comma-separated list of filename extensions of header files (the filename extensions should not
include"." prefix). Default is "h,hh,hpp,hxx". For header files without an extension, use an empty

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

string (if there are no other desired extensions) or leave an empty element in thelist. E.g.,
"h,hh,hpp,hxx," (note the trailing comma).

[lvm-include-order
Checks the correct order of #includes.

See https://Ilvm.org/docs/CodingStandar ds.html#include-style

[lvm-namespace-comment
google-readability-namespace-comments redirects here as an alias for this check.

Checks that long namespaces have a closing comment.
https://llvm.or g/docs/CodingStandar ds.html#namespace-indentation
https:.//google.github.io/styl eguide/cppgui de.html#Namespaces

namespace nl {
void f();
}

/I becomes

namespace n1 {
void f();
} / namespace nl

Options

ShortNamespacel ines
Requires the closing brace of the namespace definition to be followed by a closing comment if the
body of the namespace has more than ShortNamespaceLines lines of code. The valueisan
unsigned integer that defaults to 1U.

SpacesBeforeComments
An unsigned integer specifying the number of spaces before the comment closing a namespace

definition. Default is 1U.

[lvm-pr efer -isa-or -dyn-cast-in-conditionals
Looks at conditionals and finds and replaces cases of cast<>, which will assert rather than return a null

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

pointer, and dyn_cast<> where the return value is not captured. Additionally, finds and replaces cases
that match the pattern var & & isa<X>(var), where var isevaluated twice.

/l Finds these:

if (auto x = cast<X>(y)) {}

Il is replaced by:

if (auto x = dyn_cast<X>(y)) {}

if (cast<X>(y)) {}
Il is replaced by:
if (iss<X>(y)) {}

if (dyn_cast<X>(y)) {}
Il is replaced by:
if (isa<X>(y)) {}

if (var && isa<T>(var)) {}
Il is replaced by:
if (isa_and_nonnull<T>(var.foo())) {}

I/l Other cases areignored, e.g.:
if (auto f = cast<Z>(y)->foo()) {}

if (cast<Z>(y)->foo()) {}
if (X.cast(y)) {}

[lvm-pr efer -register -over -unsigned
Finds historical use of unsigned to hold vregs and physregs and rewrites them to use Register.

Currently thisworks by finding all variables of unsigned integer type whose initializer begins with an
implicit cast from Register to unsigned.

void example(MachineOperand & MO) {
unsigned Reg = MO.getReg();

becomes;

void example(MachineOperand & MO) {
Register Reg = MO.getReg();

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

llvm-qualified-auto
The llvm-qualified-auto check is an alias, please see readability-qualified-auto for more information.

[lvm-twine-local
Looksfor local Twine variables which are prone to use after frees and should be generally avoided.

static Twine Moo = Twine("bark™) + "bah";
// becomes
static std::string Moo = (Twine("bark™) + "bah").str();

[lvmlibc-callee-namespace
Checks all calsresolve to functions within __llvm_libc namespace.

namespace __ llvm libc{

Il Allow callswith the fully qualified name.
__llvm_libc::strlen("hello");

/I Allow calls to compiler provided functions.
(void)__builtin_abs(-1);

// Bare calls are allowed as long as they resolve to the correct namespace.
strien(*world");

// Disallow calling into functions in the global namespace.
sstrien(™!™);

} // namespace __llvm_libc

[lvmlibc-implementation-in-namespace
Checks that all declarations in the llvm-libc implementation are within the correct namespace.

/I Correct: implementation inside the correct namespace.

namespace __llvm_libc {
void LLVM_LIBC_ENTRY POINT(strcpy)(char *dest, const char *src) {}

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

I/l Namespaces within __[lvm_libc namespace are allowed.
namespace inner{
intlocaVar =0;
}
/I Functions with C linkage are allowed.
extern "C" void str_fuzz(){}

I/ Incorrect: implementation not in a namespace.
void LLVM_LIBC _ENTRYPOINT(strcpy)(char *dest, const char *src) {}

/I Incorrect: outer most namespace is hot correct.
namespace something_else {

void LLVM_LIBC_ENTRY POINT (strcpy)(char * dest, const char *src) {}
}

[lvmlibc-restrict-system-libc-header s
Finds includes of system libc headers not provided by the compiler within llvm-libc implementations.

#include <stdio.h> /I Not allowed because it is part of system libc.
#include <stddef.h> /I Allowed becauseit is provided by the compiler.
#include "internal/stdio.n™ // Allowed becauseit is NOT part of system libc.

This check is necessary because accidentally including system libc headers can lead to subtle
and hard to detect bugs. For example consider a system libc whose dirent struct has sightly
different field ordering than Ilvm-libc. While thiswill compile successfully, this can cause
issues during runtime because they are ABI incompatible.

Options
Includes
A string containing a comma separated glob list of allowed include filenames. Similar to the
-checks glob list for running clang-tidy itself, the two wildcard characters are * and -, to include

and exclude globs, respectively. The default is-*, which disallows al includes.

This can be used to allow known safe includes such as Linux development headers. See
portability-restrict-system-includes for more details.

misc-confusable-identifiers
Warn about confusable identifiers, i.e. identifiers that are visually close to each other, but use different

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Unicode characters. This detects a potential attack described in CVE-2021-42574.
Example:

int fo; // Initial character is U+0066 (LATIN SMALL LETTERF).
int <?>0; // Initial character is U+1234 (SUPER COOL AWESOME UPPERCASE NOT LATIN F) not U+0066 (1

misc-const-cor rectness

15

This check implements detection of local variables which could be declared as const but are not.
Declaring variables as const is required or recommended by many coding guidelines, such as:
CppCoreGuiddines ES.25 and AUTOSAR C++14 Rule A7-1-1 (6.7.1 Specifiers).

Please note that this check’s analysisis type-based only. Variables that are not modified but used to
create a non-const handle that might escape the scope are not diagnosed as potential const.

/l Declare avariable, whichisnot ‘‘const'* ...

inti=42;
// but use it as read-only. Thismeansthat ‘i* can be declared *‘const*‘.
intresult=i* i; /] Before transformation

int const result =1 * i; // After transformation
The check can analyze values, pointers and references but not (yet) pointees:

/ Normal values like built-ins or objects.
int potential_const_int =42; // Before transformation
int const potential_const_int = 42; // After transformation
int copy_of value = potentia_const_int;

MyClass could be const; // Before transformation
MyClass const could_be_const; // After transformation
could_be_const.const_qualified_method();

I/ References can be declared const aswell.

int &reference value = potential_const_int; // Before transformation
int const& reference value = potential_const_int; // After transformation
int another_copy = reference_value;

/I The similar semantics of pointers are not (yet) analyzed.

int *pointer_variable = &potential_const_int; // _NO_’const int * pointer_variable’ suggestion.
int last_copy = *pointer_variable;

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

The automatic code transformation is only applied to variables that are declared in single
declarations. Y ou may want to prepare your code base with readability-isolate-declaration first.

Note that there is the check cppcoreguidelines-avoid-non-const-global-variables to enforce const
correctness on all globals.

Known Limitations
The check does not run on C code.

The check will not analyze templated variables or variables that are instantiation dependent. Different
instantiations can result in different const correctness properties and in general it is not possible to find

al instantiations of atemplate. The template might be used differently in an independent translation
unit.

Pointees can not be analyzed for constness yet. The following code shows this limitation.

/I Declare avariable that will not be modified.
int constant_value = 42;

/I Declare a pointer to that variable, that does not modify either, but misses’const’.
// Could be’const int *pointer_to_constant = & constant_value;’

int *pointer_to_constant = & constant_value;

// Usage:
int result =520 * 120 * (*pointer_to_constant);

This limitation affects the capability to add const to methods which is not possible, too.

Options

15

AnalyzeValues (default = true)
Enable or disable the analysis of ordinary value variables, likeint i = 42;

/I Warning
inti=42;

/I No warning
int const i =42;

/Il Warning
int a] = {42, 42, 42},

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

/I No warning
int const a]] ={42, 42, 42} ;

AnalyzeRefer ences (default = true)
Enable or disable the analysis of reference variables, likeint &ref =1i;

inti =42;

/[l Warning

int& ref =i;

// No warning

int const& ref =i;

WarnPointer sAsValues (default = false)
This option enables the suggestion for const of the pointer itself. Pointer values have two
possibilities to be const, the pointer and the value pointing to.

int value = 42;

/I Warning

const int * pointer_variable = &value;

// No warning

const int * const pointer_variable = &value;

TransformValues (default = true)
Provides fixit-hints for value types that automatically add const if its a single declaration.

/I Before

int value = 42;

I/l After

int const value = 42;

/I Before

int a] ={42, 42, 42},

Il After

int const a]] ={42, 42, 42} ;

/l Result is modified later initslife-time. No diagnostic and fixit hint will be emitted.

int result = value* 3;
result -= 10;

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

TransformRefer ences (default = true)
Provides fixit-hints for reference types that automatically add const if its asingle declaration.

/I Thisvariable could still be a constant. But because there is a non-const reference to

/l'it, it can not be transformed (yet).

int value = 42;

/I Thereference 'ref_value' isnot modified and can be made 'const int &ref value = value;’
/I Before

int &ref value = value;

Il After

int const &ref_value = value;

// Result is modified later inits life-time. No diagnostic and fixit hint will be emitted.
int result = ref_value* 3;
result -= 10;

TransformPointer sAsValues (default = false)
Provides fixit-hints for pointersif their pointee is not changed. This does not analyze if the
value-pointed-to is unchanged!

Requires’WarnPointersAsVaues' to be’true'.
int value = 42;

/| Before

const int * pointer_variable = &value;

Il After

const int *const pointer_variable = &value;

// Before

constint* g] ={&vaue, &value};

Il After

const int *const d] = {&value, &value} ;

/| Before

int *ptr_value = &value;

/I After

int *const ptr_value = & value;

int result = 100 * (*ptr_value); // Does not modify the pointer itself.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

/I This modification of the pointeeis still allowed and not diagnosed.
*ptr_value=0;

/I The following pointer may not become a’int *const’.
int *changing_pointee = &value;
changing_pointee = & resullt;

misc-definitions-in-headers
Finds non-extern non-inline function and variable definitions in header files, which can lead to
potential ODR violations in case these headers are included from multiple trandation units.

/l Foo.h
inta=1; // Warning: variable definition.
externint d; // OK: extern variable.

namespace N {
int e = 2; // Warning: variable definition.
}

/I Warning: variable definition.
const char* str = "foo";

/I OK: internal linkage variable definitions are ignored for now.

/I Although these might also cause ODR violations, we can be less certain and
// should try to keep the false-positive rate down.

staticintb=1;

constintc=1;

const char* const str2 = "foo";

constexpr intk =1,

/Il Warning: function definition.

int g() {
return 1;

}

/I OK: inline function definition is allowed to be defined multiple times.
inlineint &) {
return 1;

}

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

class A {
public:

EXTRACLANGTOOL (1)

intf1() { return 1; } // OK: implicitly inline member function definition is allowed.

int 20);

static int d;
s

[/ Warning: not an inline member function definition.
int A:f20) { return 1; }

/I OK: class static data member declaration is allowed.
intA::d=1;

/I OK: function template is allowed.
template<typename T>
T30 {
Ta=1;
return &
}

/' Warning: full specialization of afunction templateis not allowed.

template <>

int f3() {
inta=1;
return a;

}

template <typename T>
struct B {

void f1();

b

// OK: member function definition of a classtemplateis allowed.
template <typename T>
void B<T>::f1() {}

class CE {
constexpr static int i = 5; // OK: inline variable definition.

s

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

inlineint i = 5; // OK: inline variable definition.
constexpr int f10() { return O; } // OK: constexpr function impliesinline.

// OK: C++14 variable templates are inline.
template <class T>
constexpr T pi = T(3.1415926L);

Options

Header FileExtensions
A comma-separated list of filename extensions of header files (the filename extensions should not
include"." prefix). Default is "h,hh,hpp,hxx". For header files without an extension, use an empty
string (if there are no other desired extensions) or leave an empty element in thelist. E.g.,
"h,hh,hpp,hxx," (note the trailing comma).

UseHeader FileExtension
When true, the check will use the file extension to distinguish header files. Default istrue.

misc-misleading-bidirectional
Warn about unterminated bidirectional unicode sequence, detecting potential attack as described in the
Trojan Source attack.

Example:
#include <iostream>

int main() {
bool isAdmin = fase;
[*<?>1} <?>if (iISAdmin)<?> <?> begin admins only */
std::cout << "You are an admin.\n";
/* end admins only <?> { <?>*/
return O;

misc-misleading-identifier
Findsidentifiers that contain Unicode characters with right-to-left direction, which can be confusing as
they may change the understanding of awhole statement line, as described in Trojan Source.

An example of such misleading code follows:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

#include <stdio.h>

short int <?> = (short int)0;
short int <?> = (short int)12345;

int main() {
int <?>=<?>; /[alocal variable, set to zero?
printf("<?> is %d\n", <?>);
printf("<?> is %d\n", <?>);

}

misc-misplaced-const
This check diagnoses when a const qualifier is applied to atypedef/ using to a pointer type rather than
to the pointee, because such constructs are often misleading to devel opers because the const appliesto
the pointer rather than the pointee.

For instance, in the following code, the resulting typeisint * const rather than const int *:

typedef int *int_ptr;

void f(const int_ptr ptr) {
*ptr = 0; // potentially quite unexpectedly the int can be modified here
ptr = 0; // does not compile

}

The check does not diagnose when the underlying typedef/using type is a pointer to aconst type
or afunction pointer type. Thisis because the const qualifier islesslikely to be mistaken
because it would be redundant (or disallowed) on the underlying pointee type.

misc-new-delete-overloads
cert-dcl54-cpp redirects here as an alias for this check.

The check flags overloaded operator new() and operator delete() functions that do not have a
corresponding free store function defined within the same scope. For instance, the check will flag a
class implementation of a non-placement operator new() when the class does not also define a

non-placement operator delete() function aswell.

The check does not flag implicitly-defined operators, deleted or private operators, or placement
operators.

This check corresponds to CERT C++ Coding Standard rule DCL54-CPP. Overload allocation and

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

deallocation functions as a pair in the same scope.

Misc-no-recursion
Finds strongly connected functions (by analyzing the call graph for SCC’s (Strongly Connected
Components) that are loops), diagnoses each function in the cycle, and displays one example of a
possible call graph loop (recursion).
References:

® CERT C++ Coding Standard rule DCL56-CPP. Avoid cycles during initialization of static objects.

© JPL Institutional Coding Standard for the C Programming Language (JPL DOCID D-60411) rule 2.4
Do not use direct or indirect recursion.

® OpenCL Specification, Version 1.2 rule 6.9 Restrictions: i. Recursion is not supported..
Limitations:

® The check does not handle calls done through function pointers

® The check does not handle C++ destructors

misc-non-copyable-objects
cert-fio38-c redirects here as an alias for this check.

The check flags dereferences and non-pointer declarations of objects that are not meant to be passed by
value, such as C FILE objects or POSIX pthread_mutex_t objects.

This check correspondsto CERT C++ Coding Standard rule FIO38-C. Do not copy a FILE object.

misc-non-private-member -variables-in-classes
cppcoreguidelines-non-private-member -variables-in-classes redirects here as an alias for this check.

Finds classes that contain non-static data members in addition to user-declared non-static member
functions and diagnose all data members declared with a non-public access specifier. The data
members should be declared as private and accessed through member functions instead of exposed to

derived classes or class consumers.

Options

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

I gnor eClassesWithAlIM ember VariablesBeingPublic
Allows to completely ignore classesif all the member variablesin that class a declared with a
public access specifier.

IgnorePublicM ember Variables
Allowsto ignore (not diagnose) all the member variables declared with a public access specifier.

misc-redundant-expression
Detect redundant expressions which are typically errors due to copy-paste.

Depending on the operator expressions may be
® redundant,

® awaystrue,

® awaysfalse,

® aways a constant (zero or one).

Examples:
((x+1) | (x+1)) I (x+1) is redundant
(p->x == p->X) Il dwaystrue
(p->X < p->X) Il alwaysfalse

(speed - speed + 1 == 12) // speed - speed is aways zero

misc-static-assert
cert-dcl03-c redirects here as an dias for this check.

Replaces assert() with static_assert() if the condition is evaluable at compile time.

The condition of static_assert() is evaluated at compile time which is safer and more efficient.
misc-thr ow-by-value-catch-by-r efer ence

cert-err09-cpp redirects here as an alias for this check. cert-err61-cpp redirects here as an aias for this

check.

Finds violations of the rule "Throw by value, catch by reference" presented for examplein "C++
Coding Standards" by H. Sutter and A. Alexandrescu, as well asthe CERT C++ Coding Standard rule

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

ERR61-CPP. Catch exceptions by Ivalue reference.
Exceptions:

® Throwing string literals will not be flagged despite being a pointer. They are not susceptible
to dicing and the usage of string literalsisidiomatic.

© Catching character pointers (char, wchar_t, unicode character types) will not be flagged to
allow catching sting literals.

© Moved named values will not be flagged as not throwing an anonymous temporary. In this
case we can be sure that the user knows that the object can’t be accessed outside catch
blocks handling the error.

© Throwing function parameters will not be flagged as not throwing an anonymous
temporary. This allows helper functions for throwing.

© Re-throwing caught exception variables will not be flagged as not throwing an anonymous
temporary. Although this can usually be done by just writing throw; it happens often enough
inreal code.

Options

CheckThrowTemporaries
Triggers detection of violations of the CERT recommendation ERR09-CPP. Throw anonymous
temporaries. Default istrue.

WarnOnL ar geObj ect
Also warns for any large, trivial object caught by value. Catching alarge object by value is not
dangerous but affects the performance negatively. The maximum size of an object allowed to be
caught without warning can be set using the MaxSize option. Default isfalse.

MaxSize
Determines the maximum size of an object allowed to be caught without warning. Only applicable
if WarnOnLargeObject is set to true. If the option is set by the user to
std::numeric_limits<uint64 _t>::max() then it revertsto the default value. Default isthe size of
size t.

misc-unconventional-assign-oper ator
Finds declarations of assign operators with the wrong return and/or argument types and definitions with

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

good return type but wrong retur n statements.
© The return type must be Class& .

® The assignment may be from the class type by value, const Ivalue reference, non-const rvalue
reference, or from a completely different type (e.g. int).

® Private and deleted operators are ignored.
© The operator must always return *this.

misc-uniqueptr-reset-release
Find and replace unique_ptr::reset(release()) with std::move().

Example:

std::unique_ptr<Foo> x, y;
x.reset(y.release()); -> x = std::move(y);

If y isaready rvalue, std::move() is nhot added. x and y can also be std::unique_ptr<Foo>*.
Options

IncludeStyle
A string specifying which include-style is used, llvm or google. Default islvm.

misc-unused-alias-decls
Finds unused namespace alias declarations.

namespace my_namespace {
classC{};
}

namespace unused_alias = ::my_namespace;

misc-unused-parameter s
Finds unused function parameters. Unused parameters may signify a bug in the code (e.g. when a
different parameter is used instead). The suggested fixes either comment parameter name out or
remove the parameter completely, if all callers of the function are in the same trangation unit and can
be updated.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

The check is similar to the -Wunused-parameter compiler diagnostic and can be used to prepare a
codebase to enabling of that diagnostic. By default the check is more permissive (see SrictMode).

void a(int i) { /*some code that doesn’t use 'i‘*/ }
// becomes
void a(int /*i*/) { /*some code that doesn't use‘i‘*/ }

static void staticFunctionA(int i);
static void staticFunctionA(int i) { /*some code that doesn't use ‘i‘*/ }

/I becomes

static void staticFunctionA()
static void staticFunctionA() { /*some code that doesn't use ‘i**/ }

Options

StrictMode
When false (default value), the check will ignore trivially unused parameters, i.e. when the
corresponding function has an empty body (and in case of constructors - no constructor
initializers). When the function body is empty, an unused parameter is unlikely to be unnoticed by
ahuman reader, and there’ s basically no place for a bug to hide.

misc-unused-using-decls

Finds unused using declarations.
Example:

namespacen { classC; }
using n::C; /I Never actualy used.

moder nize-avoid-bind

15

The check finds uses of std::bind and boost::bind and replaces them with lambdas. Lambdas will use
value-capture unless reference capture is explicitly requested with std::ref or boost::ref.

It supports arbitrary callables including member functions, function objects, and free functions, and all

variations thereof. Anything that you can pass to the first argument of bind should be diagnosable.
Currently, the only known case where afix-it is unsupported is when the same placeholder is specified

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

multiple timesin the parameter list.

Given:

int add(int x, inty) { returnx +vy; }

Then:
void f() {
intx=2;
auto clj = std::bind(add, x, _1);
}
isreplaced by:
void f() {
intx =2
auto clj = [=](auto && argl) { return add(x, argl); };
}
std::bind can be hard to read and can result in larger object files and binaries due to type
information that will not be produced by equivalent lambdas.
Options

Per missiveParameterList
If the option is set to true, the check will append auto& & ... to the end of every placehol der
parameter list. Without this, it is possible for afix-it to perform an incorrect transformation in the
case where the result of the bind isused in the context of atype erased functor such as
std::function which allows mismatched arguments. For example:

int add(int x, inty) { returnx +vy; }

int foo() {
std::function<int(int,int)> ignore_args = std::bind(add, 2, 2);
return ignore_args(3, 3);

}

isvalid code, and returns 4. The actual values passed to ignore_args are ssimply ignored.
Without Per missivePar ameter List, this would be transformed into

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

intadd(int x, inty) { returnx +vy; }

int foo() {
std::function<int(int,int)> ignore_args =[] { return add(2, 2); }
return ignore_args(3, 3);

}

which will not compile, since the lambda does not contain an oper ator () that accepts 2
arguments. With permissive parameter list, it instead generates

intadd(int x, inty) { returnx +vy; }

int foo() {
std::function<int(int,int)> ignore_args = [](auto& &...) { return add(2, 2); }
return ignore_args(3, 3);

}

which is correct.

This check requires using C++14 or higher to run.

moder nize-avoid-c-arrays

15

cppcoreguidelines-avoid-c-arrays redirects here as an aias for this check.
hicpp-avoid-c-arrays redirects here as an alias for this check.

Finds C-style array types and recommend to use std::array<> / std::vector<>. All types of C arrays are
diagnosed.

However, fix-it are potentially dangerous in header files and are therefore not emitted right now.
int a[] ={1, 2}, // warning: do not declare C-style arrays, use std::array<> instead
int b[1]; // warning: do not declare C-style arrays, use std::array<> instead

void foo() {
int c[b[0O]]; // warning: do not declare C VLA arrays, use std::vector<> instead

}

template <typename T, int Size>
classarray {
T d[Siz€]; // warning: do not declare C-style arrays, use std::array<> instead

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

int g[1]; // warning: do not declare C-style arrays, use std::array<> instead
|

array<int[4], 2> d; // warning: do not declare C-style arrays, use std::array<> instead
using k = int[4]; // warning: do not declare C-style arrays, use std::array<> instead

However, the extern " C" codeisignored, sinceit is common to share such headers between C
code, and C++ code.

/I Some header
extern "C" {

int f[] = {1, 2}; // not diagnosed
int j[1]; // not diagnosed

inline void bar() {
{
int j[j[0]]; // not diagnosed
}
}

Similarly, the main() function is ignored. Its second and third parameters can be either char*
argv[] or char** argv, but cannot be std::array<>.

moder nize-concat-nested-namespaces
Checksfor use of nested namespaces such as namespace a { namespace b { ... } } and suggests
changing to the more concise syntax introduced in C++17: namespace a::b { ... }. Inline namespaces
are not modified.

For example:

namespace nl {
namespace n2 {
void t();

}

}

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

moder nize-depr ecated-header s
Some headers from C library were deprecated in C++ and are no longer welcome in C++ codebases.
Some have no effect in C++. For more details refer to the C++ 14 Standard [depr.c.headers] section.

15

namespace n3 {
namespace n4 {
namespace n5 {
void t();

}

}

namespace n6 {
namespace n7 {
void t();

}

}

}

Will be modified to:

namespace n1::n2 {
void t();
}

namespace n3 {
namespace n4::n5 {
void t();

}

namespace n6::n7 {
void t();

}

}

/I C++ sourcefile...
#include <assert.h>

#include <stdbool .h>

/I becomes

Extra Clang Tools

December 15, 2023

EXTRACLANGTOOL (1)

This check replaces C standard library headers with their C++ alternatives and removes redundant
Oones.

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

#include <cassert>
/I No ’stdbool.h’ here.

Important note; the Standard doesn’t guarantee that the C++ headers declare all the same
functions in the global namespace. The check in its current form can break the code that uses
library symbols from the global namespace.

® <assert.h>

® <complex.h>

® <ctype.h>

® <errno.h>

® <fenv.n> /[deprecated since C++11

® <float.h>

® <inttypes.h>

® <limits.h>

® <locale.h>

® <math.h>

® <setjmp.h>

® <signal.h>

® <stdarg.h>

® <stddef.h>

® <stdint.h>

® <stdio.h>

o <stdlib.h>

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

<string.h>

<tgmath.h> // deprecated since C++11
<time.h>

<uchar.h> // deprecated since C++11
<wchar.h>

<wctype.h>

If the specified standard is older than C++11 the check will only replace headers deprecated
before C++11, otherwise -- every header that appeared in the previous list.

These headers don’t have effect in C++:
<is0646.h>
<stdalign.h>
<stdbool.h>

The checker ignoresinclude directives within extern "C" { ... } blocks, since alibrary might
want to expose some API for C and C++ libraries.

/l C++ sourcefile...

extern "C" {

#include <assert.h> // Left intact.
#include <stdbool.h> // Left intact.

}

Options

15

CheckHeaderFile

clang-tidy cannot know if the header file included by the currently analyzed C++ source file is not
included by any other C source files. Hence, to omit false-positives and wrong fixit-hints, we
ignore emitting reports into header files. One can set this option to true if they know that the
header filesin the project are only used by C++ sourcefile. Default isfalse.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

moder nize-depr ecated-ios-base-aliases

Detects usage of the deprecated member types of std::ios_base and replaces those that have a
non-deprecated equivalent.

+ + +
|Deprecated member |Replacement |
[type | I
+ + +

|std::ios base::io_state |std::ios base::iostate |

+ + +
|std::ios_base::open_modelstd::ios_base::openmode |
+ + +
[std::ios_base::seek dir [std::ios base::seekdir |

+ + +

|std::ios_base::streamoff | |
+ + +

|std::ios_base::streampos | |
+ + +

moder nize-loop-convert

This check convertsfor(...; ...; ...) loopsto use the new range-based loopsin C++11.
Three kinds of loops can be converted:

® Loopsover statically allocated arrays.

® Loops over containers, using iterators.

©® Loopsover array-like containers, using oper ator[] and at().

MinConfidence option
risky

15

In loops where the container expression is more complex than just areference to a declared expression
(avariable, function, enum, etc.), and some part of it appears elsewhere in the loop, we lower our
confidence in the transformation due to the increased risk of changing semantics. Transformations for
these loops are marked as risky, and thus will only be converted if the minimum required confidence
level is set to risky.

int arr[10][20];
intl=5;

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

for (intj =0;) <20; +4))
intk =arr[l][j] +1; // using | outside arr[l] is considered risky

for (inti = 0; i < obj.getVector().size(); ++i)
obj.foo(10); // using 'obj’ is considered risky

See Range-based loops evaluate end() only once for an example of an incorrect transformation
when the minimum required confidence level is set to risky.

reasonable (Default)
If aloop calls.end() or .size() after each iteration, the transformation for that loop is marked as
reasonable, and thus will be converted if the required confidence level is set to reasonable (default) or
lower.

I/ using size() is considered reasonable
for (inti =0; i < container.size(); ++i)
cout << container[i];

safe
Any other loops that do not match the above criteriato be marked as risky or reasonable are marked
safe, and thus will be converted if the required confidence level is set to safe or lower.

intarr[] ={1,2,3};

for (inti =0;i < 3; ++i)
cout << arrJi];

Example
Original:

constint N = 5;
intarr[] ={1,2,3,4,5};
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);

/I safe conversion

for (inti =0; i <N; ++i)
cout << arrJi];

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

/[reasonable conversion
for (vector<int>::iterator it = v.begin(); it '= v.end(); ++it)
cout << *it;

/I reasonable conversion
for (inti =0; i <v.sze&(); ++i)
cout << V[i];

After applying the check with minimum confidence level set to reasonable (default):

constint N =5;
intarr[] ={1,2,3,4,5};
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);

/I safe conversion
for (auto & elem: arr)
cout << elem;

/I reasonable conversion
for (auto & elem: v)
cout << elem;

/I reasonable conversion
for (auto & elem: v)
cout << elem;

Reverselterator Support

15

The converter is also capable of transforming iterator loops which use rbegin and rend for looping
backwards over a container. Out of the box thiswill automatically happen in C++20 mode using the
ranges library, however the check can be configured to work without C++20 by specifying a function
to reverse arange and optionally the header file where that function lives.

UseCxx20Rever seRanges
When set to true convert loops when in C++20 or later mode using std::ranges.:reverse view.

Default valueistrue.

M akeRever seRangeFunction

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Specify the function used to reverse an iterator pair, the function should accept a class with rbegin
and rend methods and return a class with begin and end methods that call the rbegin and rend
methods respectively. Common examples areranges.:reverse view and llvm::reverse. Default
value is an empty string.

M akeRever seRangeHeader
Specifies the header file where MakeRever seRangeFunction is declared. For the previous
examples this option would be set to range/v3/view/rever se.hpp and llvm/ADT/STL Extras.h
respectively. If thisisan empty string and MakeRever seRangeFunction is set, the check will
proceed on the assumption that the function is already available in the trandation unit. This can be
wrapped in angle brackets to signify to add the include as a system include. Default valueisan
empty string.

IncludeStyle
A string specifying which include-style is used, llvm or google. Default is [lvm.

Limitations
There are certain situations where the tool may erroneously perform transformations that remove
information and change semantics. Users of the tool should be aware of the behavior and limitations of
the check outlined by the cases below.

Commentsinside loop headers
Commentsinside the original loop header are ignored and deleted when transformed.

for (inti =0;i <N;/* Thiswill be deleted */ ++i) { }

Range-based loops evaluate end() only once
The C++11 range-based for loop calls .end() only once during the initialization of the loop. If in the
original loop .end() is called after each iteration the semantics of the transformed loop may differ.

/I Thefollowing is semantically equivalent to the C++11 range-based for loop,
/I therefore the semantics of the header will not change.
for (iterator it = container.begin(), e = container.end(); it '= e; ++it) { }

Il Instead of calling .end() after each iteration, thisloop will be
/I transformed to call .end() only once during the initialization of the loop,
// which may affect semantics.

for (iterator it = container.begin(); it != container.end(); ++it) { }

As explained above, calling member functions of the container in the body of the loop is

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

considered risky. If the called member function modifies the container the semantics of the
converted loop will differ dueto .end() being called only once.

bool flag = falseg;
for (vector<T>::iterator it = vec.begin(); it != vec.end(); ++it) {
// Add a copy of thefirst element to the end of the vector.
if ('flag) {
Il Thisline makes this transformation 'risky’.
vec.push_back(*it);
flag = true;
}
cout << *it;

}

The original code above prints out the contents of the container including the newly added
element while the converted loop, shown below, will only print the original contents and not the
newly added element.

bool flag = false;
for (auto & elem: vec) {
// Add a copy of thefirst element to the end of the vector.
if (flag) {
// Thisline makes this transformation ' risky’
vec.push_back(elem);
flag = true;
}

cout << elem;

}

Semantics will also be affected if .end() has side effects. For example, in the case where calls to
.end() are logged the semantics will change in the transformed loop if .end() was originaly
called after each iteration.

iterator end() {
num_of_end_calls++;
return container.end();

}

Overloaded operator->() with side effects
Similarly, if operator->() was overloaded to have side effects, such as logging, the semantics will

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

change. If theiterator’s operator->() was used in the original loop it will be replaced with <container
element>.<member > instead due to the implicit dereference as part of the range-based for loop.
Therefore any side effect of the overloaded oper ator->() will no longer be performed.

for (iterator it = c.begin(); it != c.end(); ++it) {
it->func(); // Using operator->()

}

I Will be transformed to:

for (auto & elem: ¢) {
elem.func(); // No longer using operator->()

}

Pointers and r eferencesto containers

While most of the check’srisk analysisis dedicated to determining whether the iterator or container
was modified within the loop, it is possible to circumvent the analysis by accessing and modifying the
container through a pointer or reference.

If the container were directly used instead of using the pointer or reference the following
transformation would have only been applied at the risky level since calling a member function of the
container is considered risky. The check cannot identify expressions associated with the container that
are different than the one used in the loop header, therefore the transformation below ends up being
performed at the safe level.

vector<int> vec;

vector<int> *ptr = & vec;
vector<int> &ref = vec;

for (vector<int>::iterator it = vec.begin(), e = vec.end(); it !=e; ++it) {
if ('flag) {
Il Accessing and madifying the container is considered risky, but the risk
I/l level isnot raised here.
ptr->push_back(*it);
ref.push_back(*it);
flag = true;

OpenMP

15

As range-based for loops are only available since OpenMP 5, this check should not be used on code

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

with a compatibility requirement of OpenMP prior to version 5. It isintentional that this check does not
make any attempts to exclude incorrect diagnostics on OpenMP for loops prior to OpenMP 5.

To prevent this check to be applied (and to break) OpenMP for loops but still be applied to
non-OpenMP for loops the usage of NOLINT (see Suppressing Undesired Diagnostics) on the specific
for loops is recommended.

moder nize-macr o-to-enum

15

Replaces groups of adjacent macros with an unscoped anonymous enum. Using an unscoped
anonymous enum ensures that everywhere the macro token was used previously, the enumerator name
may be safely used.

This check can be used to enforce the C++ core guideline Enum.1: Prefer enumerations over macros,
within the constraints outlined bel ow.

Potential macros for replacement must meet the following constraints:

® Macros must expand only to integral literal tokens or expressions of literal tokens. The expression
may contain any of the unary operators -, +, ~or !, any of the binary operators,, -, +,*,/, %, &, |, *,
<, >, <=,>=, == 1= ||, & &, <<, >> or <=>, the ternary operator ?: and its GNU extension.
Parenthesized expressions are also recognized. This recognizes most valid expressions. In

particular, expressions with the sizeof operator are not recognized.

® Macros must be defined on sequential source file lines, or with only comment linesin between
macro definitions.

® Macros must all be defined in the same source file.

® Macros must not be defined within a conditional compilation block. (Conditiona include guards are
exempt from this constraint.)

® Macros must not be defined adjacent to other preprocessor directives.
® Macros must not be used in any conditional preprocessing directive.
® Macros must not be used as arguments to other macros.

® Macros must not be undefined.

® Macros must be defined at the top-level, not inside any declaration or definition.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

Each cluster of macros meeting the above constraints is presumed to be a set of values suitable
for replacement by an anonymous enum. From there, a developer can give the anonymous
enum a name and continue refactoring to a scoped enum if desired. Comments on the same line
as amacro definition or between subsequent macro definitions are preserved in the output. No
formatting is assumed in the provided replacements, although clang-tidy can optionally format
all fixes.

WARNING:
Initializing expressions are assumed to be valid initializers for an enum. C requires that enum
values fit into an int, but this may not be the case for some accepted constant expressions. For
instance 1 << 40 will not fit into an int when the size of anint is 32 bits.

Examples:

#define RED OxFF0000
#define GREEN 0x00FFO00
#define BLUE Ox0000FF

#define TM_NONE (-1) // No method selected.

#define TM_ONE 1 // Usetailored method one.

#define TM_TWO 2 // Use tailored method two. Method two
/I is preferable to method one.

#define TM_THREE 3 // Use tailored method three.

becomes

enum {

RED = OxFF0000,
GREEN = 0x00FFQO0,
BLUE = 0x0000FF

s

enum {

TM_NONE = (-1), // No method sel ected.

TM_ONE=1, // Usetalored method one.

TM_TWO =2, // Usetailored method two. Method two
/I is preferable to method one.

TM_THREE = 3 // Use tailored method three.

s

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

moder nize-make-shared
This check finds the creation of std::shared_ptr objects by explicitly calling the constructor and a new
expression, and replacesit with acall to std::make_shared.
auto my_ptr = std::shared_ptr<MyPair>(new MyPair(1, 2));
I/ becomes

auto my_ptr = std::make_shared<MyPair>(1, 2);

This check also finds callsto std::shared_ptr::reset() with a new expression, and replacesit with
acall to std::make_shared.

my_ptr.reset(new MyPair(1, 2));

I/ becomes

my_ptr = std::make_shared<MyPair>(1, 2);
Options

M akeSmartPtr Function
A string specifying the name of make-shared-ptr function. Default is std::make_shared.

M akeSmartPtr FunctionHeader
A string specifying the corresponding header of make-shared-ptr function. Default is memory.

IncludeStyle
A string specifying which include-style is used, llvm or google. Default is [Ilvm.

IgnoreM acros
If set to true, the check will not give warnings inside macros. Default istrue.

I gnor eDefaultl nitialization
If set to non-zero, the check does not suggest edits that will transform default initialization into
value initialization, as this can cause performance regressions. Default is 1.

maoder nize-make-unique

This check finds the creation of std::unique_ptr objects by explicitly calling the constructor and a new
expression, and replacesit with acal to std::make_unique, introduced in C++14.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

auto my_ptr = std::unique_ptr<MyPair>(new MyPair(1, 2));
// becomes
auto my_ptr = std::make_unique<MyPair>(1, 2);

This check also finds callsto std::unique_ptr::reset() with anew expression, and replacesit with
acall to std::make_unique.

my_ptr.reset(new MyPair(1, 2));
// becomes

my_ptr = std::make_unique<MyPair>(1, 2);

Options

M akeSmartPtr Function
A string specifying the name of make-unique-ptr function. Default is std::make_unique.

MakeSmartPtr FunctionHeader
A string specifying the corresponding header of make-unique-ptr function. Default is <memory>.

IncludeStyle
A string specifying which include-style is used, llvm or google. Default islvm.

IgnoreM acr os
If set to true, the check will not give warnings inside macros. Default istrue.

IgnoreDefaultlnitialization
If set to non-zero, the check does not suggest edits that will transform default initialization into
valueinitialization, as this can cause performance regressions. Default is 1.

moder nize-pass-by-value

15

With move semantics added to the language and the standard library updated with move constructors
added for many typesit is now interesting to take an argument directly by value, instead of by
const-reference, and then copy. This check allows the compiler to take care of choosing the best way to
construct the copy.

The transformation is usually beneficial when the calling code passes an rvalue and assumes the move

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

construction is a cheap operation. This short example illustrates how the construction of the value
happens:

void foo(std::string s);
std::string get_str();

void f(const std::string &str) {
foo(str); //lvalue -> copy construction
foo(get_str()); // prvalue -> move construction

}

NOTE:
Currently, only constructors are transformed to make use of pass-by-value. Contributions that
handle other situations are welcome!

Pass-by-valuein constructors
Replaces the uses of const-references constructor parameters that are copied into classfields. The
parameter is then moved with std: : move().

Since std::move() isalibrary function declared in <utility> it may be necessary to add thisinclude. The
check will add the include directive when necessary.

#include <string>

class Foo {
public:
- Foo(const std::string & Copied, const std::string & ReadOnly)
- Copied(Copied), ReadOnly(ReadOnly)
+ Foo(std::string Copied, const std::string & ReadOnly)
+ : Copied(std::move(Copied)), ReadOnly(ReadOnly)
{}

private:

std::string Copied;
const std::string & ReadOnly;
h
std::string get_cwd();

void f(const std::string & Path) {

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

/I The parameter corresponding to 'get_cwd()’ is move-constructed. By
/I using pass-by-value in the Foo constructor we managed to avoid a

/I copy-construction.

Foo foo(get_cwd(), Path);

}

If the parameter is used more than once no transformation is performed since moved objects
have an undefined state. It means the following code will be left untouched:

#include <string>
void pass(const std::string & S);

struct Foo {
Foo(const std::string &S) : Str(S) {
pass(S);
}

std::string Str;
h

Known limitations
A situation where the generated code can be wrong is when the object referenced is modified before the
assignment in the init-list through a"hidden" reference.

Example:
std::string s("foo");

struct Base {
Base() {
s="bar",
}
¥

struct Derived : Base{

- Derived(const std::string & S) : Field(S)

+ Derived(std::string S) : Field(std::move(S))
{}

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

std::string Field;
|3

void f() {

- Derived d(s); // d.Field holds "bar"
+ Derived d(s); // d.Field holds "foo"
}

Note about delayed template parsing
When delayed template parsing is enabled, constructors part of templated contexts; templated
constructors, constructorsin class templates, constructors of inner classes of template classes, etc., are
not transformed. Delayed template parsing is enabled by default on Windows as a Microsoft extension:
Clang Compiler User’s Manual - Microsoft extensions.

Delayed template parsing can be enabled using the -fdelayed-template-parsing flag and disabled using
-fno-delayed-templ ate-parsing.

Example:

template <typename T> class C {
std::string S;

public:
= /[using -fdelayed-template-parsing (default on Windows)
= C(const std::string &S) : S(S) {}
+ /I using -fno-del ayed-template-parsing (default on non-Windows systems)
+ C(std::string S) : S(std::move(S)) {}
|3

SEE ALSO:
For more information about the pass-by-value idiom, read: Want Speed? Pass by Value.

Options

IncludeStyle
A string specifying which include-style is used, llvm or google. Default is llvm.

ValuesOnly
When true, the check only warns about copied parameters that are already passed by value. Default

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

isfalse.

moder nize-raw-string-literal
This check selectively replaces string literal s containing escaped characters with raw string literals.

Example:

const char * const Quotes{ "embedded \"quotes\""} ;

const char * const Paragraph{"Line one\nLine two.\nLine three\n"};
const char *const SingleLing{"Singleline\n"};

const char *const TrailingSpace{"Look here ->\n"};

const char * const Tab{"One\tTwo\n"};

const char *const Bell{"Hello\a And welcome!"};

const char * const Path{"C:\\Program Files\\Vendor\\A pplication.exe"} ;
const char * const RegeEx{"\W\\([a-Z]\\)"};

becomes

const char * const Quotes{ R"(embedded "quotes')"} ;

const char * const Paragraph{ "Line one.\nLine two.\nLine three\n"};
const char *const SingleLing{"Singleline\n"};

const char *const TrailingSpace{ "Look here->\n"};

const char *const Tab{"One\tTwo\n"};

const char *const Bell{ "HelloNa And welcome!"};

const char * const Path{ R"(C:\Program Files\\VVendor\A pplication.exe)"} ;
const char * const Regex{ R"(\W\([a-Z]\))"};

The presence of any of the following escapes can cause the string to be converted to araw string
literal: \\, \', \",\?, and octal or hexadecimal escapes for printable ASCII characters.

A string literal containing only escaped newlines is a common way of writing lines of text
output. Introducing physical newlines with raw string literalsin this caseis likely to impede
readability. These string literals are left unchanged.

An escaped horizontal tab, form feed, or vertical tab preventsthe string literal from being
converted. The presence of a horizontal tab, form feed or vertical tab in source code is not

visually obvious.

moder nize-redundant-void-arg
Find and remove redundant void argument lists.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

Examples:

moder nize-r eplace-auto-ptr

Extra Clang Tools EXTRACLANGTOOLS(1)
+ + +
[Initial |Code with applied |
|code [fixes |
+ + +
lint lint I
[f(void); If0); I
+ + +
lint lint I
|(*f(void))(void); IC£0)0; I
+ + +
[typedef int [typedef int |
|(*f_t(void))(void); |(*f_t0)0): I
+ + +
lvoid lvoid |
|(C::*p)(void); I(C::*p)0); I
+ + +
|C::C(void) IC::C() |
I} I} |
+ + +
|C::~C(void) |C::~C() |
I} I} |
+ + +

This check replaces the uses of the deprecated class std::auto_ptr by std::unique ptr (introduced in
C++11). Thetransfer of ownership, done by the copy-constructor and the assignment operator, is
changed to match std::unique_ptr usage by using explicit calls to std::move().

Migration example:

-void take_ownership_fn(std::auto_ptr<int>int_ptr);

+void take_ownership_fn(std::unique_ptr<int>int_ptr);

void f(int x) {

- std::auto_ptr<int> a(new int(x));

- std::auto_ptr<int> b;

+ std::unique_ptr<int> a(new int(x));
+ std::unique_ptr<int> b;

15

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

-b=a
- take _ownership_fn(b);

+ b =std::move(a);

+ take _ownership_fn(std::move(b));

}

Since std::move() isalibrary function declared in <utility> it may be necessary to add this
include. The check will add the include directive when necessary.

Known Limitations

15

o |If headers modification is not activated or if a header is not alowed to be changed this check will
produce broken code (compilation error), where the headers’ code will stay unchanged while the

code using them will be changed.

® Client code that declares areferenceto an std::auto_ptr coming from code that can’'t be migrated
(such as a header coming from a 3rd party library) will produce a compilation error after migration.
Thisis because the type of the reference will be changed to std::unique_ptr but the type returned by
the library won't change, binding areference to std::unique_ptr from an std::auto_ptr. This pattern
doesn’t make much sense and usually std::auto_ptr are stored by value (otherwise what is the point

in using them instead of areference or a pointer?).

Il <3rd-party header...>
std::auto_ptr<int> get_value();
const std::auto_ptr<int> & get_ref();

/I <calling code (with migration)...>

-std::auto_ptr<int> a(get_vaue());
+std::unique_ptr<int> a(get_value()); // ok, unique_ptr constructed from auto_ptr

-const std::auto_ptr<int> & p = get_ptr();
+const std::unique_ptr<int> & p = get_ptr(); // won't compile

® Non-instantiated templates aren’t modified.

template <typename X>

void f() {
std::auto_ptr<X> p;

}

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

/l only "f<int>()" (or similar) will trigger the replacement.
Options

IncludeStyle
A string specifying which include-style is used, llvm or google. Default is [lvm.

mader nize-r eplace-disall ow-copy-and-assign-macr o
Finds macro expansions of DISALLOW_COPY_AND_ASSIGN(Type) and replaces them with a
deleted copy constructor and a deleted assignment operator.

Before the delete keyword was introduced in C++11 it was common practice to declare a copy
constructor and an assignment operator as private members. This effectively makes them unusable to
the public API of aclass.

With the advent of the delete keyword in C++11 we can abandon the private access of the copy
constructor and the assignment operator and del ete the methods entirely.

When running this check on a code like this:

class Foo {
private:
DISALLOW_COPY_AND_ASSIGN(Foo);

b

It will be transformed to this:

class Foo {
private:
Foo(const Foo &) = delete;
const Foo & operator=(const Foo &) = delete;

})
Known Limitations

® Notice that the migration example above leaves the private access specification untouched. Y ou

might want to run the check moder nize-use-equal s-del ete to get warnings for deleted functionsin

private sections.

Options

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

M acroName
A string specifying the macro name whose expansion will be replaced. Default is
DISALLOW_COPY_AND_ASS GN.

See: https://en.cppr eference.com/w/cpp/language/function#Deleted _functions

maoder nize-r eplace-random-shuffle
This check will find occurrences of std::random_shuffle and replace it with std::shuffle. In C++17
std::random_shuffle will no longer be available and thus we need to replaceiit.

Below are two examples of what kind of occurrences will be found and two examples of what it will be
replaced with.

std::vector<int> v;

Il First example
std::random_shuffle(vec.begin(), vec.end());

I/ Second example
std::random_shuffle(vec.begin(), vec.end(), randomFunc);

Both of these examples will be replaced with:
std::shuffle(vec.begin(), vec.end(), std::mt19937(std::random_device()()));

The second example will also receive awarning that randomFunc is no longer supported in the
same way as before so if the user wants the same functionality, the user will need to change the
implementation of the randomFunc.

One thing to be aware of here isthat std::random_device is quite expensive to initialize. So if
you are using the code in a performance critical place, you probably want to initidize it
elsewhere. Another thing isthat the seeding quality of the suggested fix is quite poor:
std::mt19937 has an internal state of 624 32-bit integers, but is only seeded with a single integer.
So if you require higher quality randomness, you should consider seeding better, for example:

std::shuffle(v.begin(), v.end(), [1() {
std::mt19937::result_type seedqstd::mt19937:.state size];
std::random_device device;
std::uniform_int_distribution<typename std::mt19937::result_type> dist;
std::generate(std::begin(seeds), std::end(seeds), [&] { return dist(device); });

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

std::seedseq seq(std::begin(seeds), std::end(seeds));
return std::mt19937(seq);
10);

moder nize-r etur n-braced-init-list
Replaces explicit calsto the constructor in areturn with a braced initializer list. Thisway the return
typeis not needlessly duplicated in the function definition and the return statement.

Foo bar() {
Baz baz;
return Foo(baz);

}

/I transforms to:

Foo bar() {
Baz baz;
return { baz};

}

moder nize-shrink-to-fit
Replace copy and swap tricks on shrinkable containers with the shrink_to_fit() method call.

The shrink_to_fit() method is more readable and more effective than the copy and swap trick to reduce
the capacity of ashrinkable container. Note that, the shrink_to_fit() method isonly available in C++11
and up.

moder nize-unary-static-assert
The check diagnoses any static_assert declaration with an empty string literal and provides afix-it to
replace the declaration with a single-argument static_assert declaration.
The check is only applicable for C++17 and later code.
The following code:
void f_textless(int a) {

static_assert(sizeof(a) <= 10, "");

}

isreplaced by:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

void f_textless(int a) {
static_assert(sizeof(a) <= 10);

}

moder nize-use-auto
This check is responsible for using the auto type specifier for variable declarations to improve code
readability and maintainability. For example:

std::vector<int>::iterator | = my_container.begin();

/I transforms to:

auto | = my_container.begin();
The auto type specifier will only be introduced in situations where the variable type matches the
type of the initiaizer expression. In other words auto should deduce the same type that was

originally spelled in the source. However, not every situation should be transformed:

int val =42;
InfoStruct &I = SomeObject.getinfo();

/I Should not become:

auto val = 42;
auto &1 = SomeObject.getinfo();

In this example using auto for builtins doesn’t improve readability. In other situations it makes
the code less self-documenting impairing readability and maintainability. Asaresult, autois
used only introduced in specific situations described below.

Iterators
Iterator type specifiers tend to be long and used frequently, especially in loop constructs. Since the
functions generating iterators have a common format, the type specifier can be replaced without
obscuring the meaning of code while improving readability and maintainability.

for (std::vector<int>::iterator | = my_container.begin(),

E = my_container.end();
I1=E; ++I) {

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL S(1)
// becomes
for (auto | = my_container.begin(), E = my_container.end(); | != E; ++1) {
}

15

® Theiterator isfor one of the standard containersin std namespace:

The check will only replace iterator type-specifiers when all of the following conditions are

satisfied:

® array

®

@

deque

forward_list

list

vector

map

multimap

set

multiset
unordered_map
unordered_multimap
unordered_set
unordered_multiset

queue

® priority_queue

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® stack
© Theiterator is one of the possible iterator types for standard containers:
® iterator
® reverse iterator
® const_iterator
® const_reverse iterator

o In addition to using iterator types directly, typedefs or other ways of referring to those types are also
allowed. However, implementation-specific types for which atype like std::vector <int>::iterator is
itself atypedef will not be transformed. Consider the following examples:

/I The following direct uses of iterator types will be transformed.
std::vector<int>::iterator | = MyVec.begin();
{
using namespace std;
list<int>::iterator | = MyList.begin();
}

Il The type specifier for Jwould transform to auto since it’s a typedef
// to a standard iterator type.

typedef std::map<int, std::string>::const_iterator map_iterator;

map _iterator J= MyMap.begin();

I/l The following implementation-specific iterator type for which
/1 std::vector<int>::iterator could be atypedef would not be transformed.
__gnu_cxx::__normal_iterator<int*, std::vector> K = MyVec.begin();

® Theinitializer for the variable being declared is not a braced initializer list. Otherwise, use of auto
would cause the type of the variable to be deduced as std::initializer _list.

New expressions
Frequently, when a pointer is declared and initialized with new, the pointee type is written twice: in the
declaration type and in the new expression. In this case, the declaration type can be replaced with auto
improving readability and maintainability.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

TypeName *my_pointer = new TypeName(my_param);
// becomes
auto *my_pointer = new TypeName(my_param);

The check will aso replace the declaration type in multiple declarations, if the following
conditions are satisfied:

® All declared variables have the same type (i.e. al of them are pointers to the same type).
© All declared variables are initialized with a new expression.
® Thetypes of all the new expressions are the same than the pointee of the declaration type.
TypeName *my_first_pointer = new TypeName, *my_second_pointer = new TypeName;
I/ becomes
auto *my_first_pointer = new TypeName, *my_second_pointer = new TypeName;
Cast expressions
Frequently, when avariable is declared and initialized with a cast, the variable type is written twice: in
the declaration type and in the cast expression. In this case, the declaration type can be replaced with
auto improving readability and maintainability.
TypeName *my_pointer = static_cast<TypeName>(my_param);
// becomes
auto *my_pointer = static_cast<TypeName>(my_param);
The check handles static_cast, dynamic_cast, const_cast, reinterpret_cast, functional casts,
C-style casts and function templates that behave as casts, such asllvm::dyn_cast,
boost::lexical_cast and gdl::narrow_cast. Callsto function templates are considered to behave as
casts if the first template argument is explicit and is atype, and the function returns that type, or

apointer or referenceto it.

Known Limitations

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

o If theinitiaizer is an explicit conversion constructor, the check will not replace the type specifier
even though it would be safe to do so.

® User-defined iterators are not handled at thistime.
Options
MinTypeNameL ength
If the option is set to non-zero (default 5), the check will ignore type names having alength less
than the option value. The option affects expressions only, not iterators. Spaces between
multi-lexeme type names (long int) are considered as one. If the RemoveStars option (see below)

is set to true, then *sin the type are also counted as a part of the type name.

/I MinTypeNameL ength = 0, RemoveStars=0

int a= static_cast<int>(foo()); /l--->autoa=...
// length(bool *) =4
bool *b = new bool; /I --->auto*b = ...

unsigned ¢ = static_cast<unsigned>(foo()); // --->autoc= ...

/I MinTypeNameL ength = 5, RemoveStars=0

int a= static_cast<int>(foo()); Il--->int a=...
bool b = static_cast<bool>(foo()); /[--->bool b=...
bool *pb = static_cast<bool* >(foo()); /[--->bool *pb = ...

unsigned ¢ = static_cast<unsigned>(foo()); //--->autoc=...
// length(long <on-or-more-spaces> int) = 8
long int d = static_cast<long int>(foo()); // --->autod = ...

/I MinTypeNameLength = 5, RemoveStars=1

int a= static_cast<int>(foo()); Il --->int a=...
/[length(int* *) =5

int **pa = gtatic_cast<int**>(foo()); /[--->auto pa= ...
bool b = static_cast<bool>(foo()); Il --->bool b=...
bool *pb = static_cast<bool*>(foo()); Il ---> auto pb = ...

unsigned ¢ = static_cast<unsigned>(foo()); //--->autoc=...
longint d = gtatic_cast<long int>(foo()); //--->autod = ...

RemoveStars

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

If the option is set to true (default is false), the check will remove stars from the non-typedef
pointer types when replacing type names with auto. Otherwise, the check will leave stars. For
example:

TypeName *my_first_pointer = new TypeName, *my_second_pointer = new TypeName;
/I RemoveStars = 0

auto *my_first_pointer = new TypeName, *my_second pointer = new TypeName;

// RemoveStars = 1

auto my_first_pointer = new TypeName, my_second_pointer = new TypeName;

moder nize-use-bool-literals
Finds integer literals which are cast to bool.

bool p=1,;

bool f = static_cast<bool>(1);
std:;ios_base::sync_with_stdio(0);
bool x=p?1:0;

/I transforms to

bool p = true;

bool f =true;
std::ios_base::sync_with_stdio(false);
bool x = p ?true: falseg;

Options

IgnoreM acros
If set to true, the check will not give warnings inside macros. Default istrue.

moder nize-use-default
This check has been renamed to moder nize-use-equal s-default.

moder nize-use-default-member -init
This check converts constructors: member initializers into the new default member initializersin
C++11. Other member initializers that match the default member initializer are removed. This can

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

reduce repeated code or allow use of '= default’.

struct A {

A() :1(5),j(10.0) {}
A(inti) :i(i), j(10.0) {}
inti;
doublej;
|3

/I becomes

struct A {

AQ {3

A(inti) :i(i) {3

int i{ 5};
double j{10.0};
|3

NOTE:
Only converts member initializers for built-in types, enums, and pointers. The
readability-redundant-member-init check will remove redundant member initializers for classes.

Options

UseAssignment
If thisoption is set to true (default is false), the check will initialize members with an assignment.
For example:

struct A {

AQ {3

A(inti) :i(i) {}

inti =5;
doublej = 10.0;
|

I gnoreM acr os
If this option is set to true (default is true), the check will not warn about members declared inside
macros.

maoder nize-use-emplace

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

The check flags insertions to an STL-style container done by calling the push_back method with an
explicitly-constructed temporary of the container element type. In this case, the corresponding

emplace back method resultsin less verbose and potentially more efficient code. Right now the check
doesn’t support push_front and insert. It also doesn’'t support insert functions for associative containers
because replacing insert with emplace may result in speed regression, but it might get support with
some addition flag in the future.

By default only std::vector, std::deque, std::list are considered. Thislist can be modified using the
ContainersWithPushBack option.

This check also reports when an emplace-like method isimproperly used, for example using

emplace _back while aso calling a constructor. This creates atemporary that requires at best a move

and at worst a copy. Almost all emplace-like functionsin the STL are covered by this, with

try_emplace on std::map and std::unordered_map being the exception asit behaves dightly differently
than all the others. More containers can be added with the EmplacyFunctions option, so long as the
container defines avalue_type type, and the emplace-like functions construct avalue_type aobject.

Before:

std::vector<MyClass> v;
v.push_back(MyClass(21, 37));
v.emplace_back(MyClass(21, 37));

std::vector<std::pair<int, int>> w;

w.push_back(std::pair<int, int>(21, 37));
w.push_back(std::make_pair(21L, 37L));
w.emplace back(std::make pair(21L, 37L));

After:

std::vector<MyClass> v;
v.emplace_back(21, 37);
v.emplace back(21, 37);

std::vector<std::pair<int, int>> w;
w.emplace back(21, 37);
w.emplace_back(21L, 37L);
w.emplace_back(21L, 37L);

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

By default, the check is able to remove unnecessary std::make pair and std::make tuple calls
from push_back calls on containers of std::pair and std::tuple. Custom tuple-like types can be
modified by the TupleTypes option; custom make functions can be modified by the
TupleMakeFunctions option.

The other situation is when we pass arguments that will be converted to atypeinside a
container.

Before:

std::vector<boost::optional<std::string> > v;
v.push_back("abc");

After:

std::vector<boost::optional<std::string> > v;
v.emplace back("abc");

In some cases the transformation would be valid, but the code wouldn’t be exception safe. In
this case the calls of push_back won't be replaced.

std::vector<std::unique_ptr<int>>v;
v.push_back(std::unique_ptr<int>(new int(0)));
auto * ptr = new int(1);
v.push_back(std::unique_ptr<int>(ptr));
Thisis because replacing it with emplace back could cause aleak of this pointer if
emplace back would throw exception before emplacement (e.g. not enough memory to add a

new element).

For more info read item 42 - "Consider emplacement instead of insertion.” of Scott Meyers
"Effective Modern C++".

The default smart pointers that are considered are std::unique_ptr, std::shared_ptr, std::auto_ptr.
To specify other smart pointers or other classes use the SmartPointers option.

Check also doesn't fire if any argument of the constructor call would be;

o abit-field (bit-fields can’t bind to rvalue/universal reference)

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® anew expression (to avoid leak)
o if the argument would be converted via derived-to-base cast.
This check requires C++11 or higher to run.
Options

ContainersWithPushBack
Semicolon-separated list of class names of custom containers that support push_back.

IgnorelmplicitConstructors
When true, the check will ignore implicitly constructed arguments of push_back, e.g.

std::vector<std::string> v;
v.push_back("a"); // Ignored when IgnorelmplicitConstructorsis ‘true'.

Default is false.

SmartPointers
Semicolon-separated list of class names of custom smart pointers.

TupleTypes
Semicolon-separated list of std::tuple-like class names.

TupleMakeFunctions
Semicolon-separated list of std::make_tuple-like function names. Those function calls will be
removed from push_back calls and turned into emplace back.

EmplacyFunctions
Semicolon-separated list of containers without their template parameters and some emplace-like
method of the container. Example: vector ::emplace_back. Those methods will be checked for
improper use and the check will report when atemporary is unnecessarily created.

Example
std::vector<MyTuple<int, bool, char>> x;

X.push_back(MakeMyTuple(1, false, 'x"));
x.emplace_back(MakeMyTuple(1, false, 'x));

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

transforms to:

std::vector<MyTuple<int, bool, char>> x;
x.emplace back(1, false, 'x’);
x.emplace_back(1, false, 'x’);

when TupleTypesis set to MyTuple, TupleMakeFunctionsis set to MakeMyTuple, and
EmplacyFunctionsis set to vector ::emplace_back.

moder nize-use-equals-default
This check replaces default bodies of special member functions with = default;. The explicitly
defaulted function declarations enable more opportunities in optimization, because the compiler might
treat explicitly defaulted functions as trivial.

struct A {
AQ {}
~A();

b

A:~A() {}

/I becomes

struct A {
A() = default;
~AQ);

|3

A::~A() = defaullt;

NOTE:
Move-constructor and move-assignment operator are not supported yet.

Options

I gnoreM acr os
If set to true, the check will not give warnings inside macros. Default istrue.

moder nize-use-equals-delete
This check marks unimplemented private special member functions with = delete. To avoid
false-positives, this check only appliesin atranslation unit that has al other member functions
implemented.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

struct A {
private:
A(const A&);
A& operator=(const A&);
|

/I becomes

struct A {
private:
A(const A&) = delete;
A& operator=(const A&) = delete;
|

IgnoreM acros

EXTRACLANGTOOL (1)

If thisoption is set to true (default is true), the check will not warn about functions declared inside

macros.

moder nize-use-nodiscar d

Adds [[nodiscard]] attributes (introduced in C++17) to member functionsin order to highlight at

compile time which return values should not be ignored.

Member functions need to satisfy the following conditions to be considered by this check:

©® no [[nodiscard]], [[noreturn]], _ attribute ((warn_unused_result)),
[[clang::warn_unused_result]] nor [[gce::warn_unused_result]] attribute,

© non-void return type,

® non-template return types,

® const member function,

® non-variadic functions,

® Nno non-const reference parameters,
© NO pointer parameters,

© no template parameters,

15 December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

©® no template function parameters,

® not be amember of aclass with mutable member variables,
® no Lambdas,

® no conversion functions.

Such functions have no means of altering any state or passing values other than viathe return
type. Unless the member functions are altering state via some external cal (e.g. 1/0).

Example

bool empty() const;
bool empty(int i) const;

transforms to:

[[nodiscard]] bool empty() const;
[[nodiscard]] bool empty(int i) const;

Options
ReplacementString
Specifies amacro to useinstead of [[nodiscard]]. Thisis useful when maintaining source code that
needs to compile with a pre-C++17 compiler.

Example

bool empty() const;
bool empty(int i) const;

transforms to:

NO_DISCARD bool empty() const;
NO_DISCARD bool empty(int i) const;

if the ReplacementString option is set to NO_DISCARD.

NOTE:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

If the ReplacementString is not a C++ attribute, but instead a macro, then that macro must be
defined in scope or the fix-it will not be applied.

NOTE:
For aternative __attribute__ syntax options to mark functions as [[nodiscar d]] in non-c++17

source code. See
https:.//clang.llvm.or g/docg/AttributeRefer ence.html#nodi scar d-war n-unused-result

moder nize-use-noexcept
This check replaces deprecated dynamic exception specifications with the appropriate noexcept
specification (introduced in C++11). By default this check will replace thr ow() with noexcept, and
throw(<exception>[,...]) or throw(...) with noexcept(false).

Example

void foo() throw();
void bar() throw(int) {}

transforms to:

void foo() noexcept;
void bar() noexcept(false) {}

Options
ReplacementString
Users can use ReplacementString to specify amacro to use instead of noexcept. Thisis useful
when maintaining source code that uses custom exception specification marking other than
noexcept. Fix-it hintswill only be generated for non-throwing specifications.

Example

void bar() throw(int);
void foo() throw();

transforms to:

void bar() throw(int); // No fix-it generated.
void foo() NOEXCEPT;

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

if the ReplacementString option is set to NOEXCEPT.
UseNoexceptFalse

Enabled by default, disabling will generate fix-it hints that remove throwing dynamic exception
specs, e.g., throw(<something>), completely without providing a replacement text, except for
destructors and del ete operators that are noexcept(true) by default.

Example
void foo() throw(int) {}

struct bar {
void foobar() throw(int);
void operator delete(void * ptr) throw(int);
void operator delete[](void * ptr) throw(int);
~bar() throw(int);

}

transforms to:
void foo() {}
struct bar {
void foobar();
void operator delete(void * ptr) noexcept(false);
void operator delete[](void * ptr) noexcept(false);
~bar() noexcept(false);
if the UseNoexceptFalse option is set to false.
moder nize-use-nullptr
The check converts the usage of null pointer constants (e.g. NULL, 0) to use the new C++11 nullptr
keyword.

Example

void assignment() {
char *a= NULL;

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

char *b=0;
charc=0;

}

int *ret_ptr() {
return O;

}

transforms to:

void assignment() {
char *a= nullptr;
char *b = nullptr;
char c=0;

}
int *ret_ptr() {

return nullptr;

}
Options

NullM acros

EXTRACLANGTOOL (1)

Comma-separated list of macro names that will be transformed along with NUL L. By default this
check will only replace the NULL macro and will skip any similar user-defined macros.

Example

#defineMY_NULL (void*)0

void assignment() {
void*p=MY_NULL;

}

transforms to:

#defineMY _NULL NULL
void assignment() {

int *p = nullptr;
}

15 December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

if the NullMacros optionissettoMY_NULL.

moder nize-use-override
Adds override (introduced in C++11) to overridden virtual functions and removes virtual from those
functions asit is not required.

virtual on non base class implementations was used to help indicate to the user that a function was
virtual. C++ compilers did not use the presence of thisto signify an overridden function.

In C++ 11 override and final keywords were introduced to allow overridden functions to be marked
appropriately. Their presence allows compilers to verify that an overridden function correctly overrides
a base class implementation.

This can be useful as compilers can generate a compile time error when:
® The base classimplementation function signature changes.
© The user has not created the override with the correct signature.
Options

IgnoreDestructors
If set to true, this check will not diagnose destructors. Default is false.

AllowOverrideAndFinal
If set to true, this check will not diagnose override as redundant with final. Thisis useful when
code will be compiled by a compiler with warning/error checking flags requiring override
explicitly on overridden members, such as gcc -Wsuggest-override/gec -Werror =suggest-override.
Default isfalse.

OverrideSpelling
Specifies amacro to use instead of override. Thisis useful when maintaining source code that aso
needs to compile with a pre-C++11 compiler.

FinalSpelling
Specifies amacro to use instead of final. Thisis useful when maintaining source code that also

needs to compile with a pre-C++11 compiler.

NOTE:
For more information on the use of override see

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

https://en.cppr eference.com/w/cpp/language/override

moder nize-use-trailing-retur n-type
Rewrites function signatures to use atrailing return type (introduced in C++11). Thistransformation is
purely stylistic. The return type before the function nameis replaced by auto and inserted after the
function parameter list (and qualifiers).

Example
int f1();

inlineint f2(int arg) noexcept;
virtual float f3() const & & = delete;

transforms to:
auto f1() ->int;
inline auto f2(int arg) -> int noexcept;

virtual auto f3() const & & -> float = delete;

Known Limitations
The following categories of return types cannot be rewritten currently:

® function pointers
® member function pointers
® member pointers
Unqualified names in the return type might erroneously refer to different entities after the
rewrite. Preventing such errorsrequires afull lookup of all unqualified names present in the
return type in the scope of the trailing return type location. Thislocation includes e.g. function
parameter names and members of the enclosing class (including all inherited classes). Such a
lookup is currently not implemented.
Given the following piece of code
struct S{ long long value; };
Sf(unsigned S) { return{S* 2}, }

class CC{
intsS;

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

struct Sm();
1
SCC:m() { return {0}; }

a careless rewrite would produce the following outpuit:

struct S{ long long value; };
auto f(unsigned S) -> S{ return {S* 2}; } // error
class CC {
intS
auto m() -> struct S;
|
auto CC::m() -> S{ return {0} ; } // error

This code fails to compile because the Sin the context of f refers to the equally named function
parameter. Similarly, the Sin the context of m refersto the equally named class member. The
check can currently only detect and avoid a clash with a function parameter name.

moder nize-use-transpar ent-functors
Prefer transparent functors to non-transparent ones. When using transparent functors, the type does not
need to be repeated. The code is easier to read, maintain and less proneto errors. It is not possible to

introduce unwanted conversions.

// Non-transparent functor
std::map<int, std::string, std::greater<int>> s,

/[Transparent functor.
std::map<int, std::string, std:.greater<>> s;

/I Non-transparent functor
using MyFunctor = std::less<sMyType>;

It is not always a safe transformation though. The following case will be untouched to preserve
the semantics.

/I Non-transparent functor
std::map<const char *, std::string, std::greater<std::string>> s,

Options

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

SafeM ode
If the option is set to true, the check will not diagnose cases where using a transparent functor
cannot be guaranteed to produce identical results as the original code. The default value for this
option isfalse.

This check requires using C++14 or higher to run.

maoder nize-use-uncaught-exceptions
This check will warn on callsto std::uncaught_exception and replace them with callsto
std::uncaught_exceptions, since std::uncaught_exception was deprecated in C++17.

Below are afew examples of what kind of occurrences will be found and what they will be replaced
with.

#define MACRO1 std::uncaught_exception
#define MACRO2 std::uncaught_exception

int uncaught_exception() {
return O;

}

int main() {
intres

res = uncaught_exception();
/ No warning, since it is not the deprecated function from namespace std

res= MACRO2();
/I Warning, but will not be replaced

res = std::uncaught_exception();
// Warning and replaced

using std::uncaught_exception;
/ Warning and replaced

res = uncaught_exception();
// Warning and replaced

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

After applying the fixes the code will ook like the following:

#define MACROL std::uncaught_exception
#define MACRO2 std::uncaught_exception

int uncaught_exception() {

return O;
}

int main() {
int res;

res = uncaught_exception();
res= MACRO2();

res = std::uncaught_exceptions();
using std::uncaught_exceptions;

res = uncaught_exceptions();

}

moder nize-use-using

15

The check converts the usage of typedef with using keyword.
Before:

typedef int variable;

classClass(};
typedef void (Class::* MyPtrType)() const;

typedef struct { inta; } R_t, *R_p;
After:
using variable = int;

classClass(};

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

using MyPtrType = void (Class::*)() const;

usng R t=struct{ inta; };
using R_p=R_t*;

This check requires using C++11 or higher to run.
Options

IgnoreM acr os
If set to true, the check will not give warnings inside macros. Default istrue.

mpi-buffer-der ef
This check verifiesif a buffer passed to an MPI (Message Passing Interface) function is sufficiently
dereferenced. Buffers should be passed as a single pointer or array. As MPI function signatures specify
void * for their buffer types, insufficiently dereferenced buffers can be passed, like for example as
double pointers or multidimensional arrays, without a compiler warning emitted.

Examples:

/I A double pointer is passed to the MPI function.
char *buf;
MPI_Send(&buf, 1, MPI_CHAR, 0, 0, MPI_COMM_WORLD);

/I A multidimensional array is passed to the MPI function.
short buf[1][1];
MPI_Send(buf, 1, MPI_SHORT, 0, 0, MPl_COMM_WORLD);

/[A pointer to an array is passed to the MPI function.
short *buf[1];
MPI_Send(buf, 1, MPI_SHORT, 0, 0, MPI_COMM_WORLD);

mpi-type-mismatch
This check verifiesif buffer type and MPI (Message Passing Interface) datatype pairs match for used
MPI functions. All MPI datatypes defined by the MPI standard (3.1) are verified by this check. User
defined typedefs, custom MPI datatypes and null pointer constants are skipped, in the course of
verification.

Example:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

I/l Inthis case, the buffer type matches MPI datatype.
char buf;
MPI_Send(&buf, 1, MPI_CHAR, 0, 0, MPl_COMM_WORLD);

I/l In the following case, the buffer type does not match MPI datatype.
int buf;
MPI_Send(&buf, 1, MPI_CHAR, 0, 0, MPI_COMM_WORLD);

objc-assert-equals

Finds improper usages of XCTAssertEqual and XCTAssertNotEqual and replaces them with
XCTAssertEqual Objects or XCTAssertNotEqual Objects.

This makes tests less fragile, as many improperly rely on pointer equality for strings that have equal
values. Thisassumption is not guarantted by the language.

objc-avoid-nserror-init

Finds improper initialization of NSError objects.

According to Apple developer document, we should always use factory method
errorWithDomain:code: user I nfo: to create new NSError objectsinstead of [NSError alloc] init].
Otherwise it will lead to a warning message during runtime.

The corresponding information about NSError creation:
https://devel oper.apple.com/library/content/documentati on/Cocoa/Conceptual /Error HandlingCocoa/ Cr eateCustomi ze

obj c-dealloc-in-category

Finds implementations of -dealloc in Objective-C categories. The category implementation will
override any -dealloc in the class implementation, potentially causing issues.

Classes implement -dealloc to perform important actions to deallocate an object. If a category on the
classimplements -dealloc, it will override the class's implementation and unexpected deallocation
behavior may occur.

obj c-for bidden-subclassing

15

Finds Objective-C classes which are subclasses of classes which are not designed to be subclassed.

By default, includes alist of Objective-C classes which are publicly documented as not supporting
subclassing.

NOTE:

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Instead of using this check, for code under your control, you should add

__attribute_ ((objc_subclassing_restricted)) before your @interface declarations to ensure the
compiler prevents others from subclassing your Objective-C classes. See
https://clang.llvm.org/docs/AttributeRefer ence.html#obj c-subclassing-restricted

Options

ForbiddenSuper ClassNames
Semicolon-separated list of names of Objective-C classes which do not support subclassing.

Defaults to
ABNewPer sonViewController; ABPeopl ePicker NavigationController; ABPer sonViewController; ABUnknownPer so

objc-missing-hash
Finds Objective-C implementations that implement -isEqual: without also appropriately implementing
-hash.

Apple documentation highlights that objects that are equal must have the same hash value:
https://devel oper .apple.com/documentati on/obj ectivec/1418956-nsobj ect/1418795-i sequal ?l anguage=objc

Note that the check only verifies the presence of -hash in scenarios where its omission could result in
unexpected behavior. The verification of the implementation of -hash isthe responsibility of the
devel oper, e.g., through the addition of unit tests to verify the implementation.

objc-nsinvocation-ar gument-lifetime
Finds callsto NSl nvocation methods under ARC that don’t have proper argument object lifetimes.
When passing Objective-C objects as parameters to the NSl nvocation methods getArgument:atl ndex:
and getReturnValue:, the values are copied by value into the argument pointer, which leads to incorrect
releasing behavior if the object pointers are not declared __unsafe_unretained.

For code:

id arg;
[invocation getArgument:& arg atlndex:2];

__strong id returnValue;
[invocation getReturnValue: & returnValuel;

Thefix will be;

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

__unsafe_unretained id arg;
[invocation getArgument: & arg atlndex:2];

__unsafe_unretained id returnValue;
[invocation getReturnValue: & returnValue];

The check will warn on being passed instance variable references that have lifetimes other than
__unsafe_unretained, but does not propose afix:

//"id _returnVaue" is declaration of instance variable of class.
[invocation getReturnValue:& self->_returnValue;

objc-property-declaration
Finds property declarationsin Objective-C files that do not follow the pattern of property namesin
Appl€'s programming guide. The property name should be in the format of Lower Camel Case.
For code:
@property(nonatomic, assign) int LowerCamel Case;
Thefix will be:
@property(nonatomic, assign) int lowerCamel Case;
The check will only fix ' CamelCase’ to ' camelCase'. In some other cases we will only provide

warhing messages since the property name could be complicated. Users will need to come up
with a proper name by their own.

This check also accepts special acronyms as prefixes or suffixes. Such prefixes or suffixes will
suppress the Lower Camel Case check according to the guide:
https: //devel oper .apple.comylibrary/content/documentati on/Cocoa/Conceptual/CodingGuidelines/Articles/Nami

For afull list of well-known acronyms:
https: //devel oper .apple.comylibrary/content/documentati on/Cocoa/Conceptual/CodingGuidelines/Articles/ API A

The corresponding style rule:
https:.//devel oper .appl e.convlibrary/content/documentati on/Cocoa/ Conceptual /CodingGui delines/Articles/Nami

The check will aso accept property declared in category with a prefix of lowercase letters
followed by a’_’ to avoid naming conflict. For example:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

@property(nonatomic, assign) int abc_lowerCamel Case;

The corresponding style rule:
https:.//devel oper.apple.convlibrary/content/qa/qal908/_index.html

obj c-super -self

Finds invocations of -self on super instances in initializers of subclasses of NSODbject and recommends
calling asuperclassinitializer instead.

Invoking -self on super instances in initializers is a common programmer error when the programmer’s
original intent isto call asuperclassinitiaizer. Failing to call asuperclassinitializer breaks initializer
chaining and can result in invalid object initiaization.

openmp-exception-escape

Analyzes OpenMP Structured Blocks and checks that no exception escapes out of the Structured Block
it was thrown in.

As per the OpenMP specification, a structured block is an executable statement, possibly compound,
with asingle entry at the top and a single exit at the bottom. Which means, throw may not be used to
"exit’ out of the structured block. If an exception is not caught in the same structured block it was
thrown in, the behavior is undefined.

FIXME: this check does not model SEH, setjmp/longjmp.

WARNING! This check may be expensive on large source files.

Options

IgnoredExceptions
Comma-separated list containing type names which are not counted as thrown exceptionsin the
check. Default value is an empty string.

openmp-use-default-none

15

Finds OpenMP directives that are allowed to contain a default clause, but either don’t specify it or the
clause is specified but with the kind other than none, and suggests to use the default(none) clause.

Using default(none) clause forces developersto explicitly specify data sharing attributes for the

variables referenced in the construct, thus making it obvious which variables are referenced, and what
istheir data sharing attribute, thus increasing readability and possibly making errors easier to spot.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Example

/[**for* directive cannot have **default'‘ clause, no diagnostics.
void nO(const int &) {
#pragma omp for

for (intb=0; b<a b++)

}
/['parallel** directive.

/["' parallel’* directive can have ‘*default'* clause, but said clause is not
/1 specified, diagnosed.

void p0_0() {

#pragma omp parallel

/I WARNING: OpenMP directive ‘‘parallel** does not specify *‘ default’
1 clause. Consider specifying ‘‘ default(none)'* clause.

}

/[parallel* directive can have ‘*default’* clause, and said clauseis
/1 specified, with ‘*none'* kind, all good.

void p0_1() {

#pragmaomp parallel default(none)

}
/["' parallel’* directive can have *‘default'* clause, and said clauseis
/I specified, but with ‘*shared'‘ kind, which isnot *‘none'‘, diagnose.

void p0_2() {
#pragma omp parallel default(shared)

/I WARNING: OpenMP directive ‘‘parallel** specifies ' default(shared)’
1 clause. Consider using ‘‘ default(none)'‘ clause instead.

}

/] *'parallel* directive can have ‘' default'* clause, and said clauseis

/I specified, but with *“firstprivate'* kind, which isnot **none'‘, diagnose.
void p0_3() {

#pragmaomp parallel default(firstprivate)

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

/I WARNING: OpenMP directive ‘‘parallel** specifies‘‘ default(firstprivate)*
1l clause. Consider using *‘ default(none)‘* clause instead.

}

performance-faster-string-find
Optimize calsto std::string::find() and friends when the needle passed is a single character string
literal. The character literal overload is more efficient.
Examples:
str.find("A");
// becomes
str.find(’A’);
Options
StringLikeClasses
Semicolon-separated list of names of string-like classes. By default only ::std::basic_string and
::std::basic_string_view are considered. The check will only consider member functions named
find, rfind, find_first_of, find_first_not_of, find_last_of, or find_last_not_of within these classes.
perfor mance-for -range-copy
Finds C++11 for ranges where the loop variable is copied in each iteration but it would suffice to

obtain it by const reference.

The check is only applied to loop variables of types that are expensive to copy which means they are
not trivially copyable or have anon-trivial copy constructor or destructor.

To ensurethat it is safe to replace the copy with a const reference the following heuristic is employed:
1. Theloop variableis const qualified.

2. Theloop variableis not const, but only const methods or operators are invoked on it, or it is used as
const reference or value argument in constructors or function calls.

Options

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

WarnOnAllAutoCopies
When true, warns on any use of auto as the type of the range-based for loop variable. Default is
false.

AllowedTypes
A semicolon-separated list of names of types allowed to be copied in each iteration. Regular
expressions are accepted, e.g. [Rr] ef(erence)?$ matches every type with suffix Ref, ref, Reference
and reference. The default is empty. If anamein the list contains the sequence :: it is matched
against the qualified typename (i.e. namespace: : Type, otherwise it is matched against only the type
name (i.e. Type).

per formance-implicit-cast-in-loop

This check has been renamed to performance-implicit-conversion-in-loop.

performance-implicit-conver sion-in-loop

This warning appears in arange-based loop with aloop variable of const ref type where the type of the
variable does not match the one returned by the iterator. This meansthat an implicit conversion
happens, which can for example result in expensive deep copies.

Example:
map<int, vector<string>> my_map;
for (const pair<int, vector<string>>& p : my_map) {}
/I Theiterator typeisin fact pair<const int, vector<string>>, which means

/[that the compiler added a conversion, resulting in a copy of the vectors.

The easiest solution is usually to use const auto& instead of writing the type manually.

per for mance-inefficient-algorithm

15

Warns on inefficient use of STL agorithms on associative containers.

Associative containers implement some of the algorithms as methods which should be preferred to the
algorithms in the algorithm header. The methods can take advantage of the order of the elements.

std::set<int> s;
auto it = std::find(s.begin(), s.end(), 43);

/I becomes

auto it = sfind(43);

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

std::set<int> s,
auto ¢ = std::count(s.begin(), s.end(), 43);

/] becomes
auto ¢ = s.count(43);

performance-inefficient-string-concatenation

EXTRACLANGTOOL (1)

This check warns about the performance overhead arising from concatenating strings using the

oper ator +, for instance:

std::string a("Foo"), b("Bar");
a=a+b;

Instead of this structure you should use operator += or std::string’'s (std::basic_string) class

member function append(). For instance:

std::string a("Foo"), b("Baz");
for (inti =0;i < 20000; ++i) {
a=a+"Ba" +b;

}

Could be rewritten in a greatly more efficient way like:

std::string a("Foo"), b("Baz");
for (inti = 0;i < 20000; ++i) {

a.append("Bar").append(b);
}

And this can be rewritten too:

void f(const std::string&) {}
std::string a("Foo"), b("Baz");
void g() {

f(a+"Ba" + b);
}

In adlightly more efficient way like:

void f(const std::string&) {}

15 December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

std::string a("Foo"), b("Baz");

void g() {
f(std::string(a).append("Bar").append(b));

}

Options

StrictMode
When false, the check will only check the string usage in while, for and for-range statements.
Default isfalse.

per for mance-inefficient-vector-operation
Finds possible inefficient std::vector operations (e.g. push_back, emplace _back) that may cause
unnecessary memory reallocations.

It can also find calls that add element to protobuf repeated field in aloop without calling Reserve()
before the loop. Calling Reserve() first can avoid unnecessary memory reallocations.

Currently, the check only detects following kinds of loops with a single statement body:
® Counter-based for loops start with O:

std::vector<int> v;

for (inti =0; i <n; ++i) {
v.push_back(n);
/l Thiswill trigger the warning since the push_back may cause multiple
// memory reallocationsin v. This can be avoid by inserting a’reserve(n)’
I statement before the for statement.

}

SomeProto p;
for (inti =0; i <n; ++i) {
p.add_xxx(n);
/I Thiswill trigger the warning since the add_xxx may cause multiple memory
// redllocations. This can be avoid by inserting a
/I p.mutable_xxx().Reserve(n)’ statement before the for statement.

}

® For-rangeloopslikefor (range-declaration : range_expression), the type of range_expression can be
std::vector, std::array, std::deque, std::set, std::unordered_set, std::map, std::unordered_set:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

std::vector<int> data;
std::vector<int> v;

for (auto element : data) {
v.push_back(element);
/I Thiswill trigger the warning since the ' push_back’ may cause multiple
/I memory reallocationsin v. This can be avoid by inserting a

I’ reserve(data.size())’ statement before the for statement.
}

Options
VectorLikeClasses
Semicolon-separated list of names of vector-like classes. By default only ::std::vector is
considered.
EnableProto
When true, the check will also warn on inefficient operations for proto repeated fields. Otherwise,

the check only warns on inefficient vector operations. Default is false.

performance-move-const-arg
The check warns

o if std::move() is called with a constant argument,

o if std::move() is called with an argument of atrivially-copyable type,

o if theresult of std::move() is passed as a const reference argument.
In all three cases, the check will suggest afix that removes the std::move().
Here are examples of each of the three cases:

const string s,
return std::move(s); // Warning: std::move of the const variable has no effect

int x;
return std::move(x); // Warning: std::move of the variable of atrivially-copyable type has no effect

void f(const string &S);

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

string s;
f(std::move(s)); // Warning: passing result of std::move as a const reference argument; no move will actually happ

Options

CheckTriviallyCopyableMove
If true, enables detection of trivially copyable types that do not have a move constructor. Default is
true.

CheckM oveT oConstRef
If true, enables detection of std::move() passed as a const reference argument. Default istrue.

per for mance-move-constructor -init
"cert-oopll-cpp" redirects here as an alias for this check.

The check flags user-defined move constructors that have a ctor-initializer initializing a member or
base class through a copy constructor instead of a move constructor.

performance-no-automatic-move
Findslocal variables that cannot be automatically moved due to constness.

Under certain conditions, local values are automatically moved out when returning from afunction. A
common mistake isto declarelocal Ivalue variables const, which prevents the move.

Example[1]:

StatusOr<std::vector<int>> Cool () {

std::vector<int> obj = ...;

return obj; // calls StatusOr:: StatusOr(std::vector<int>& &)
}

StatusOr<std::vector<int>> NotCool () {

const std::vector<int> obj = ...;

return obj; // calls* StatusOr::StatusOr(const std::vector<int>&)'
}

The former version (Cool) should be preferred over the latter (Uncool) as it will avoid
allocations and potentially large memory copies.

Semantics

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

In the example above, StatusOr:: StatusOr (T & &) have the same semantics as long as the copy and
move constructors for T have the same semantics. Note that thereis no guaranteethat S::S(T& &) and
S::S(const T&) have the same semantics for any single S, so we're not providing automated fixes for
this check, and judgement should be exerted when making the suggested changes.

-Wreturn-std-move
Another case where the move cannot happen is the following:

StatusOr<std::vector<int>> Uncool () {

std::vector<int>& & obj = ...;

return obj; // calls‘ StatusOr::StatusOr(const std::vector<int>&)'
}

In that case the fix is more consensual: just return std::move(obj). Thisishandled by the
-Wretur n-std-move warning.

perfor mance-no-int-to-ptr
Diagnoses every integer to pointer cast.

While casting an (integral) pointer to an integer is obvious - you just get the integral value of the
pointer, casting an integer to an (integral) pointer is deceivingly different. While you will get a pointer
with that integral value, if you got that integral value via a pointer-to-integer cast originaly, the new
pointer will lack the provenance information from the original pointer.

So while (integral) pointer to integer casts are effectively no-ops, and are transparent to the optimizer,
integer to (integral) pointer casts are NOT transparent, and may conceal information from optimizer.

While that may be the intention, it is not always so. For example, let’stake alook at aroutine to align
the pointer up to the multiple of 16: The obvious, naive implementation for that is:

char* src(char* maybe_underbiased_ptr) {
uintptr_t maybe_underbiased_intptr = (uintptr_t)maybe_underbiased_ptr;
uintptr_t aligned_biased_intptr = maybe_underbiased intptr + 15;
uintptr_t aligned_intptr = aligned_biased intptr & (~15);
return (char*)aligned intptr; // warning: avoid integer to pointer casts [performance-no-int-to-ptr]

}

The check will rightfully diagnose that cast.

But when provenance concealment is not the goal of the code, but an accident, this example can

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

be rewritten as follows, without using integer to pointer cast:

char*

tgt(char* maybe _underbiased ptr) {
uintptr_t maybe_underbiased_intptr = (uintptr_t)maybe_underbiased_ptr;
uintptr_t aligned_biased_intptr = maybe_underbiased_intptr + 15;
uintptr_t aligned_intptr = aligned_biased intptr & (~15);
uintptr_t bias= aligned_intptr - maybe_underbiased intptr;
return maybe _underbiased ptr + bias;

per for mance-noexcept-move-constructor
The check flags user-defined move constructors and assignment operators not marked with noexcept or
marked with noexcept(expr) where expr evaluatesto false (but is not afalse literal itself).

Move constructors of al the types used with STL containers, for example, need to be declared
noexcept. Otherwise STL will choose copy constructors instead. The sameisvalid for move
assignment operations.

performance-trivially-destructible
Finds types that could be made trivially-destructible by removing out-of-line defaulted destructor
declarations.

struct A: Trivia Type {
~A(); // Makes A non-trivially-destructible.
Trivia Typetrivia_fields;

|

A::~A() = defaullt;

perfor mance-type-promotion-in-math-fn
Finds callsto C math library functions (from math.h or, in C++, cmath) with implicit float to double

promotions.

For example, warns on ::sin(0.f), because this function’s parameter is a double. Y ou probably meant to
call std::sin(0.f) (in C++), or sinf(0.f) (in C).

float a;
asin(a);

/I becomes

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

float &
std::asin(a);

per for mance-unnecessar y-copy-initialization

Finds local variable declarations that are initialized using the copy constructor of a
non-trivially-copyable type but it would suffice to obtain a const reference.

The check is only applied if it is safe to replace the copy by aconst reference. Thisis the case when the
variableis const qualified or when it isonly used as acongt, i.e. only const methods or operators are
invoked oniit, or it is used as const reference or value argument in constructors or function calls.

Example:

const string& constReference();

void Function() {
/I The warning will suggest making this a const reference.
const string UnnecessaryCopy = constReference();

}

struct Foo {
const string& name() const;

|

void Function(const Foo& foo) {
/I The warning will suggest making this a const reference.
string UnnecessaryCopy1 = foo.name();
UnnecessaryCopyl.find("bar");

/I The warning will suggest making this a const reference.
string UnnecessaryCopy2 = UnnecessaryCopy1;
UnnecessaryCopy2.find("bar");

Options

15

AllowedTypes
A semicolon-separated list of names of types allowed to be initialized by copying. Regular
expressions are accepted, e.g. [Rr] ef(erence) ?$ matches every type with suffix Ref, ref, Reference
and reference. The default is empty. If anamein the list contains the sequence :: it is matched
against the qualified typename (i.e. namespace: : Type, otherwise it is matched against only the type
name (i.e. Type).

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

ExcludedContainer Types
A semicolon-separated list of names of types whose methods are allowed to return the const
reference the variable is copied from. When an expensive to copy variable is copy initialized by
the return value from atype on this|list the check does not trigger. This can be used to exclude
types known to be const incorrect or where the lifetime or immutability of returned referencesis
not tied to mutations of the container. An example are view types that don’t own the underlying
data. Like for AllowedTypes above, regular expressions are accepted and the inclusion of ::
determines whether the qualified typename is matched or not.

per for mance-unnecessar y-value-param

15

Flags value parameter declarations of expensive to copy types that are copied for each invocation but it
would suffice to pass them by const reference.

The check is only applied to parameters of types that are expensive to copy which means they are not
trivially copyable or have anon-trivial copy constructor or destructor.

To ensurethat it is safe to replace the value parameter with a const reference the following heuristicis
employed:

1. the parameter is const qualified;

2. the parameter is not const, but only const methods or operators are invoked onit, or it is used as
const reference or value argument in constructors or function calls.

Example:

void f(const string Value) {
/I The warning will suggest making Value areference.

}

void g(ExpensiveToCopy Value) {
/I The warning will suggest making Value a const reference.
Vaue.ConstMethd();
ExpensiveToCopy Copy(Value);

}

If the parameter is not const, only copied or assigned once and has a non-trivia
move-constructor or move-assignment operator respectively the check will suggest to moveit.

Example:

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

void setValue(string Value) {
Field = Vaue;
}

Will become:
#include <utility>

void setValue(string Value) {
Field = std::move(Value);
}

Options

IncludeStyle
A string specifying which include-style is used, llvm or google. Default islvm.

AllowedTypes
A semicolon-separated list of names of types allowed to be passed by value. Regular expressions
are accepted, e.g. [Rr] ef(erence) ?$ matches every type with suffix Ref, ref, Reference and
reference. The default isempty. If anamein the list contains the sequence :: it is matched against
the qualified typename (i.e. namespace:: Type, otherwise it is matched against only the type name
(i.e. Type).

portability-restrict-system-includes
Checksto selectively allow or disallow a configurable list of system headers.

For example:
In order to only alow Zib.h from the system you would set the options to -*,Zlib.h.
#include <curses.h> // Bad: disallowed system header.
#include <openssl/ssl.h> // Bad: disallowed system header.
#include <zlib.h> /I Good: allowed system header.
#include "sre/myfile.n” // Good: non-system header always allowed.

In order to alow everything except Zib.h from the system you would set the optionsto *,-Zib.h.

#include <curses.h> // Good: alowed system header.
#include <openssl/ssl.h> // Good: allowed system header.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

#include <zlib.h> // Bad: disallowed system header.
#include "src/myfile.n” // Good: non-system header always allowed.

Since the options support globbing you can use wildcarding to allow groups of headers.
-* opensdl/*.h will alow all openssl headers but disallow any others.

#include <curses.h> // Bad: disallowed system header.

#include <openssl/ssl.h> // Good: allowed system header.

#include <opensdl/rsa.h> // Good: allowed system header.

#include <zlib.h> /I Bad: disallowed system header.
#include "src/myfile.h” // Good: non-system header always allowed.

Options
Includes
A string containing a comma separated glob list of alowed include filenames. Similar to the
-checks glob list for running clang-tidy itself, the two wildcard characters are * and -, to include

and exclude globs, respectively. The default is*, which alows all includes.

portability-simd-intrinsics
Finds SIMD intrinsics calls and suggests std::experimental::simd (P0214) alternatives.

If the option Suggest is set to true, for

_mm_add _epi32(a, b); // x86
vec _add(a, b); // Power

the check suggests an aternative: operator+ on std::experimental::simd objects.

Otherwise, it just complains the intrinsics are non-portable (and there are P0214 alternatives).
Many architectures provide SIMD operations (e.g. x86 SSE/AV X, Power AltiVec/VSX, ARM
NEON). It is common that SIMD code implementing the same algorithm, is written in multiple
target-dispatching pieces to optimize for different architectures or micro-architectures.

The C++ standard proposal P0214 and its extensions cover many common SIMD operations. By

migrating from target-dependent intrinsics to PO214 operations, the SIMD code can be
simplified and pieces for different targets can be unified.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Refer to P0214 for introduction and motivation for the data-parallel standard library.
Options
Suggest
If thisoption is set to true (default is false), the check will suggest P0214 alternatives, otherwise it

only points out the intrinsic function is non-portable.

Std The namespace used to suggest P0214 alternatives. If not specified, std:: for -std=c++20 and
std::experimental:: for -std=c++11.

portability-std-allocator -const

Report use of std::vector<const T> (and similar containers of const elements). These are not alowed in

standard C++, and should usually be std::vector<T> instead."

Per C++ [allocator.requirements.general]: "T is any cv-unqualified object type", std::allocator <const

T> isundefined. Many standard containers use std::allocator by default and therefore their const T

instantiations are undefined.

libc++ defines std::allocator <const T> as an extension which will be removed in the future.

libstdc++ and M SV C do not support std::allocator <const T>:
I libstdc++ has a better diagnostic since https://gcc.gnu.org/bugzilla/show_bug.cgi?d=48101
std::deque<const int> deque; // error: static assertion failed: std::deque must have a non-const, non-volatile value t
std::set<const int> set; // error: static assertion failed: std::set must have a non-const, non-volatile value_type

std::vector<int* const> vector; // error: static assertion failed: std::vector must have a non-const, non-volatile value

/I MSVC
[error C2338: static_assert failed: ' The C++ Standard forbids containers of const elements because all ocator<con:

Code bases only compiled with libc++ may accrue such undefined usage. This check finds such
code and prevents backsliding while clean-up is ongoing.

readability-avoid-const-par ams-in-decls
Checks whether a function declaration has parameters that are top level const.

const valuesin declarations do not affect the signature of afunction, so they should not be put there.

Examples:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

void f(const string); // Bad: const istop level.
void f(const string&); // Good: const is not top level.

readability-braces-ar ound-statements
google-readability-braces-around-statements redirects here as an alias for this check.

Checksthat bodies of if statements and loops (for, do while, and while) areinside braces.
Before:

if (condition)
Statement;

After:

if (condition) {
Statement;

}
Options

ShortStatementL ines
Defines the minimal number of lines that the statement should have in order to trigger this check.

The number of linesis counted from the end of condition or initial keyword (do/else) until the last
line of the inner statement. Default value O means that braces will be added to all statements (not
having them already).

readability-const-retur n-type
Checks for functions with a const-qualified return type and recommends removal of the const keyword.
Such use of const is usually superfluous, and can prevent valuable compiler optimizations. Does not
(yet) fix trailing return types.
Examples:
const int foo();
const Clazz foo();

Clazz * const foo();

Note that this applies strictly to top-level qualification, which excludes pointers or references to

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

const values. For example, these are fine:

const int* foo();
const int& foo();
const Clazz* foo();

readability-container-contains
Finds usages of container.count() and container.find() == container.end() which should be replaced by
acall to the container.contains() method introduced in C++ 20.

15

Extra Clang Tools

EXTRACLANGTOOL (1)

Whether an element is contained inside a container should be checked with contains instead of
count/find because contains conveys the intent more clearly. Furthermore, for containers which permit
multiple entries per key (multimap, multiset, ...), contains is more efficient than count because count

has to do unnecessary additional work.

Examples:

+ + +
[Initial |Result |
|expression | |

+ + +
ImyMap.find(x) == ['myM ap.contains(x) |
ImyMap.end() | I

+ + +
[myMap.find(x) != [myM ap.contains(x) |
ImyMap.end() | I

+ + +
|if [if |
|(myM ap.count(x)) |(myM ap.contains(x)) |

+ + +
|bool exists = |bool exists = |
|[myM ap.count(x) |[myM ap.contains(x) |

+ + +
|bool exists = myMap.count(x) > |bool exists = |

(6] |[myM ap.contains(x) |

+ + +

|bool exists = myM ap.count(x) >= |bool exists = |

|1

-+
T

|[myM ap.contains(x) |

|bool missing = myM ap.count(x)

December 15, 2023

+ +
[bool missing = |

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

==0 ['myM ap.contains(x) |
+ + +

This check appliesto std::set, std::unordered_set, std::map, std::unordered_map and the corresponding
multi-key variants. It isonly active for C++20 and later, as the contains method was only added in
C++20.

readability-container-data-pointer
Finds cases where code could use data() rather than the address of the element at index 0 in a container.
This pattern is commonly used to materialize a pointer to the backing data of a container. std::vector
and std::string provide a data() accessor to retrieve the data pointer which should be preferred.

This also ensures that in the case that the container is empty, the data pointer access does not perform
an errant memory access.

readability-container-size-empty
Checks whether a call to the size() method can be replaced with a call to empty().

The emptiness of a container should be checked using the empty() method instead of the size() method.
It is not guaranteed that size() is a constant-time function, and it is generally more efficient and also
shows clearer intent to use empty(). Furthermore some containers may implement the empty() method
but not implement the size() method. Using empty() whenever possible makes it easier to switch to
another container in the future.

The check issues warning if a container has size() and empty() methods matching following signatures:

size type size() const;
bool empty() const;

Size _type can be any kind of integer type.

readability-convert-member-functions-to-static
Finds non-static member functions that can be made static because the functions don’'t use this.

After applying modifications as suggested by the check, running the check again might find more
opportunities to mark member functions static.

After making a member function static, you might want to run the check
readability-stati c-accessed-through-instance to replace calls like | nstance.method() by Class::method().

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

readability-delete-null-pointer

Checksthe if statements where a pointer’s existence is checked and then deletes the pointer. The check
is unnecessary as deleting anull pointer has no effect.

int *p;
if (p)
delete p;

readability-duplicate-include

Looks for duplicate includes and removes them. The check maintains alist of included files and looks
for duplicates. If amacro is defined or undefined then the list of included filesis cleared.

Examples:

#include <memory>
#include <vector>
#include <memory>

becomes

#include <memory>
#include <vector>

Because of the intervening macro definitions, this code remains unchanged:

#undef NDEBUG
#include "assertion.h"
/I ...code with assertions enabled

#define NDEBUG
#include "assertion.h"
/I ...code with assertions disabled

readability-else-after-return

15

LLVM Coding Standards advises to reduce indentation where possible and where it makes
understanding code easier. Early exit is one of the suggested enforcements of that. Please do not use
elseor elseif after something that interrupts control flow - like return, break, continue, throw.

The following piece of code illustrates how the check works. This piece of code:

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

void foo(int Vaue) {
int Local =0;
for (inti =0;i<42; i++) {
if (Value==1){
return;
} else{
Local++;

}

if (Value==2)
continue;

else
Local++;

if (Value==3){
throw 42;
} else{
Local++;
}
}
}

Would be transformed into:

void foo(int Vaue) {
int Local = 0;
for (inti=0;i<42;i++){
if (Value==1) {
return;

}

Local++;

if (Vaue==2)
continue;
Local++;

if (Value==23){
throw 42;
}

Local++;

15 December 15, 2023

EXTRACLANGTOOL S(1)

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Options

WarnOnUnfixable
When true, emit awarning for cases where the check can’t output a Fix-It. These can occur with
declarations inside the else branch that would have an extended lifetime if the else branch was
removed. Default valueistrue.

WarnOnConditionVariables
When true, the check will attempt to refactor a variable defined inside the condition of the if
statement that is used in the el se branch defining them just before the if statement. This can only be
doneif theif statement isthe last statement in its parent’ s scope. Default valueistrue.

LLVM alias
Thereisan alias of this check called llvm-else-after-return. In that version the options
WarnOnUnfixable and WarnOnConditionVariables are both set to false by default.

This check helpsto enforce this LLVM Coding Standards recommendation.

readability-function-cognitive-complexity
Checks function Cognitive Complexity metric.

The metric isimplemented as per the COGNITIVE COMPLEXITY by Sonar Source specification
version 1.2 (19 April 2017).

Options

Threshold
Flag functions with Cognitive Complexity exceeding this number. The default is 25.

DescribeBasicl ncrements
If set to true, then for each function exceeding the complexity threshold the check will issue
additional diagnostics on every piece of code (loop, if statement, etc.) which contributes to that
complexity. See aso the examples below. Default istrue.

IgnoreM acr os

If set to true, the check will ignore code inside macros. Note, that also any macro arguments are
ignored, even if they should count to the complexity. Asthis might changein the future, this

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

option isn't guaranteed to be forward-compatible. Default is false.

Building blocks

There are three basic building blocks of a Cognitive Complexity metric:

I ncrement

EXTRACLANGTOOL (1)

The following structures increase the function’s Cognitive Complexity metric (by 1):

® Conditional operators:
o if()
o dseif()
® else
® cond ?true: false
® switch()
® Loops:
o for()
® C++11 range-based for ()
® while()
® do while()
® catch ()
® goto LABEL, goto *(& & LABEL)),
® sequences of binary logical operators:
® booleanl || boolean2

® booleanl & & boolean2

15 December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Nesting level
While by itself the nesting level does not change the function’s Cognitive Complexity metric, itis

tracked, and is used by the next, third building block. The following structures increase the nesting
level (by 1):

® Conditional operators:
® if()
o dseif()
® else
® cond ?true: false
® switch()
® Loops.
o for()
® C++11 range-based for ()
® while()
® dowhile()
o catch ()
® Nested functions:
® C++11 Lambda
® Nested class
® Nested struct
® GNU statement expression

® AppleBlock Declaration

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Nesting increment
This is where the previous basic building block, Nesting level, matters. The following structures
increase the function’s Cognitive Complexity metric by the current Nesting level:
® Conditional operators:
o if()
® cond ?true: false
® switch()
® Loops:
o for()
® C++11 range-based for ()
® while()
® dowhile()

® catch ()

Examples
The simplest case. This function has Cognitive Complexity of 0.

void function0() {}
Slightly better example. This function has Cognitive Complexity of 1.
int functionl(bool var) {
if(var) // +1, nesting level +1

return 42;
return O;

}

Full example. This function has Cognitive Complexity of 3.

int function3(bool varl, bool var2) {

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

if(varl) { // +1, nesting level +1
if(var2) // +2 (1 + current nesting level of 1), nesting level +1

return 42;

return O;

In the last example, the check will flag function3 if the option Threshold is set to 2 or smaller. If
the option DescribeBasiclncrementsis set to true, it will additionally flag the two if statements
with the amounts by which they increase to the complexity of the function and the current

nesting level.

Limitations
Themetricisimplemented with two notable exceptions:

© preprocessor conditionals (#fdef, #if, #elif, #else, #endif) are not accounted for.

©® each method in a recursion cycle is not accounted for. It can’t be fully implemented,
because cross-trandlational-unit analysis would be needed, which is currently not possiblein

clang-tidy.

readability-function-size
google-readability-function-size redirects here as an dias for this check.

Checksfor large functions based on various metrics.
Options

LineThreshold
Flag functions exceeding this number of lines. The default is -1 (ignore the number of lines).

StatementThreshold
Flag functions exceeding this number of statements. This may differ significantly from the number

of lines for macro-heavy code. The default is 800.

BranchThreshold
Flag functions exceeding this number of control statements. The default is -1 (ignore the number of

branches).

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Parameter Threshold
Flag functions that exceed a specified number of parameters. The default is-1 (ignore the number
of parameters).

NestingT hreshold
Flag compound statements which create next nesting level after NestingThreshold. This may differ
significantly from the expected value for macro-heavy code. The default is-1 (ignore the nesting
level).

VariableThreshold
Flag functions exceeding this number of variables declared in the body. The default is-1 (ignore
the number of variables). Please note that function parameters and variables declared in lambdas,
GNU Statement Expressions, and nested class inline functions are not counted.

readability-identifier-length
This check finds variables and function parameters whose length are too short. The desired name
length is configurable.

Special cases are supported for loop counters and for exception variable names.

Options
The following options are described below:

® MinimumVariableNameLength, IgnoredVariableNames

® MinimumParameter NameLength, |gnoredParameter Names

® MinimumLoopCounter NamelLength, IgnoredLoopCounter Names

® MinimumExceptionNamelLength, IgnoredExceptionVariableNames
MinimumVariableNamel ength

All variables (other than loop counter, exception names and function parameters) are expected to

have at least alength of MinimumVariableNameLength (default is 3). Setting it to 0 or 1 disables

the check entirely.

int doubler(int x) // warnsthat x istoo short

{

return 2 * x;

}

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

This check does not have any fix suggestions in the general case since variable
names have semantic value.

IgnoredVariableNames
Specifies aregular expression for variable names that are to be ignored. The default valueis
empty, thus no names are ignored.

MinimumPar ameter Namel ength
All function parameter names are expected to have alength of at least
MinimumParameter NameLength (default is 3). Setting it to 0 or 1 disables the check entirely.

inti =42; //warnsthat'i’ istoo short

This check does not have any fix suggestions in the general case since variable
names have semantic value.

I gnor edParameter Names
Specifies aregular expression for parameters that are to be ignored. The default valueis”[n]$ for
historical reasons.

MinimumL oopCounter Namel ength
Loop counter variables are expected to have alength of at least
MinimumLoopCounter NameLength characters (default is 2). Setting it to 0 or 1 disables the check
entirely.

/l Thiswarnsthat 'q’ istoo short.

for (intq=0; q<size, ++ Q) {
...

}

I gnor edL oopCounter Names
Specifies aregular expression for counter names that are to beignored. The default valueis
Nijk_]%; thefirst three symbolsfor historical reasons and the last one since it is frequently used as
a"don't care" value, specifically in tools such as Google Benchmark.

/I This does not warn by default, for historical reasons.

for (inti =0;i <size; ++i) {
...

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

MinimumExceptionNamelL ength
Exception clause variables are expected to have alength of at |east
MinimumExceptionNamelLength (default is 2). Setting it to 0 or 1 disables the check entirely.

try {
...

}

/I Thiswarnsthat '€ istoo short.
catch (const std::exception& x) {
...

Ignor edExceptionVariableNames
Specifies aregular expression for exception variable names that are to be ignored. The default
valueis”’[e]$ mainly for historical reasons.

try {
...

}

/I This does not warn by default, for historical reasons.
catch (const std::exception& €) {
...

readability-identifier-naming
Checks for identifiers naming style mismatch.

This check will try to enforce coding guidelines on the identifiers naming. It supports one of the
following casing types and tries to convert from one to another if a mismatch is detected

Casing typesinclude:
© lower_case,
® UPPER_CASE,
® camelBack,

® CamelCase,

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

© camel_Snake Back,
® Camel_Snake Case,
® aNy_CasE.

It also supports afixed prefix and suffix that will be prepended or appended to the identifiers,
regardless of the casing.

Many configuration options are available, in order to be able to create different rules for
different kinds of identifiers. In general, the rules are falling back to a more generic rule if the
specific case is not configured.

The naming of virtual methods is reported where they occur in the base class, but not where
they are overridden, asit can’'t be fixed locally there. This aso appliesfor pseudo-override
patterns like CRTP.

Options

15

The following options are described below:

© AbstractClassCase, AbstractClassPrefix, AbstractClassSuffix, AbstractClasslgnoredRegexp,
AbstractClassHungarianPrefix

® AggressiveDependentMember Lookup
® ClassCase, ClassPrefix, Classuffix, ClasslgnoredRegexp, ClassHungarianPrefix

® ClassConstantCase, ClassConstantPrefix, ClassConstantSuffix, ClassConstantlgnoredRegexp,
ClassConstantHungarianPrefix

® ClassMemberCase, ClassMemberPrefix, ClassMember Suffix, ClassMember IgnoredRegexp,
ClassMemberHungarianPrefix

® ClassMethodCase, ClassMethodPrefix, ClassMethodSuffix, ClassMethodl gnoredRegexp

® ConstantCase, ConstantPrefix, ConstantSuffix, ConstantlgnoredRegexp,
ConstantHungarianPr efix

® ConstantMember Case, ConstantMember Prefix, ConstantMember Suffix,
ConstantMember IgnoredRegexp, ConstantMember HungarianPr efix

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

®

15

ConstantParameter Case, ConstantParameter Prefix, ConstantPar ameter Suffix,
ConstantParameter | gnoredRegexp, ConstantParameter HungarianPrefix

ConstantPointer Parameter Case, ConstantPointer Parameter Prefix,
ConstantPointer Parameter Suffix, ConstantPointer Parameter | gnor edRegexp,

ConstantPointer Parameter HungarianPrefix

Constexpr FunctionCase, Constexpr FunctionPrefix, Constexpr FunctionSuffix,
Constexpr Functionl gnoredRegexp

ConstexprMethodCase, Constexpr MethodPr efix, Constexpr MethodSuffix,
ConstexprMethodl gnoredRegexp

ConstexprVariableCase, ConstexprVariablePrefix, ConstexprVariableSuffix,
ConstexprVariablelgnoredRegexp, ConstexprVariableHungarianPrefix

EnumCase, EnumPrefix, EnumSuffix, EnumlgnoredRegexp

EnumConstantCase, EnumConstantPrefix, EnumConstantSuffix, EnumConstantl gnoredRegexp,
EnumConstantHungarianPrefix

FunctionCase, FunctionPrefix, FunctionSuffix, Functionl gnoredRegexp
GetConfigPerFile

Glaobal ConstantCase, Global ConstantPrefix, Global ConstantSuffix,
Glaobal ConstantlgnoredRegexp, Global ConstantHungarianPr efix

Global ConstantPointer Case, Global ConstantPointer Prefix, Global ConstantPoi nter Suffix,
Global ConstantPointer gnoredRegexp, Global ConstantPointer HungarianPr efix

Global FunctionCase, Global FunctionPrefix, Global FunctionSuffix,
Glaobal FunctionlgnoredRegexp

Glaobal Pointer Case, Global Pointer Prefix, Global Pointer Suffix, Global Pointer IgnoredRegexp,
Global PointerHungarianPr efix

GlobalVariableCase, Global VariablePrefix, Global VariableSuffix,
Global Variablel gnoredRegexp, Global VariableHungarianPrefix

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

®

1}

IgnoreMainLikeFunctions

InlineNamespaceCase, InlineNamespacePrefix, InlineNamespaceSuffix,
I nlineNamespacel gnoredRegexp

Local ConstantCase, Local ConstantPrefix, Local ConstantSuffix, Local ConstantlgnoredRegexp,
Local ConstantHungarianPr efix

Local ConstantPointer Case, Local ConstantPointer Prefix, Local ConstantPointer Quffix,
Local ConstantPointer | gnoredRegexp, Local ConstantPointer HungarianPr efix

Local Pointer Case, Local PointerPrefix, Local Pointer Quffix, Local Pointer I gnoredRegexp,
Local Pointer HungarianPrefix

Local VariableCase, Local VariablePrefix, Local VariableSuffix, Local Variablel gnoredRegexp,
Local VariableHungarianPrefix

MacroDefinitionCase, MacroDefinitionPrefix, MacroDefinitionSuffix,
MacroDefinitionl gnoredRegexp

Member Case, Member Prefix, Member Suffix, Member IgnoredRegexp, MemberHungarianPr efix
MethodCase, MethodPr efix, MethodSuffix, Methodl gnoredRegexp
NamespaceCase, NamespacePr efix, NamespaceSuffix, Namespacel gnoredRegexp

Parameter Case, Parameter Prefix, Parameter Quffix, Parameter IgnoredRegexp,
Parameter HungarianPrefix

Parameter PackCase, Parameter PackPrefix, Parameter PackSuffix, Parameter Packl gnoredRegexp

Pointer Parameter Case, Pointer Parameter Prefix, Pointer Parameter Suffix,
Pointer Parameter | gnoredRegexp, Pointer Parameter HungarianPr efix

PrivateMember Case, PrivateMember Prefix, PrivateMember Suffix,
PrivateMemberIgnoredRegexp, PrivateMember HungarianPr efix

PrivateMethodCase, PrivateMethodPrefix, PrivateMethodSuffix, PrivateMethodl gnoredRegexp

ProtectedMember Case, ProtectedMember Prefix, ProtectedMember Suffix,

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

®

®

®

®

ProtectedMember | gnoredRegexp, ProtectedMember HungarianPr efix

ProtectedMethodCase, ProtectedMethodPr efix, ProtectedMethodSuffix,
ProtectedMethodl gnoredRegexp

PublicMember Case, PublicMember Prefix, PublicMember Suffix, PublicMember I gnoredRegexp,
PublicMemberHungarianPrefix

PublicMethodCase, PublicMethodPrefix, PublicMethodSuffix, PublicMethodl gnoredRegexp

ScopedEnumConstantCase, ScopedEnumConstantPrefix, ScopedEnumConstantSuffix,
ScopedEnumConstantl gnoredRegexp

SaticConstantCase, StaticConstantPrefix, StaticConstantSuffix, SaticConstantl gnoredRegexp,
SaticConstantHungarianPrefix

SaticVariableCase, SaticVariablePrefix, SaticVariableSuffix, StaticVariablel gnoredRegexp,
SaticVariableHungarianPrefix

SructCase, SructPrefix, SructSuffix, Structl gnoredRegexp

TemplateParameter Case, TemplateParameter Prefix, TemplatePar ameter Quffix,
TemplateParameter | gnoredRegexp

TemplateTempl ateParameter Case, TemplateTemplatePar ameter Prefix,
TemplateTempl atePar ameter Suffix, TemplateTemplatePar ameter | gnoredRegexp

TypeAliasCase, TypeAliasPrefix, TypeAliasuffix, TypeAliasl gnoredRegexp
TypedefCase, TypedefPrefix, TypedefSuffix, TypedeflgnoredRegexp

TypeTemplateParameter Case, TypeTemplateParameter Prefix, TypeTemplateParameter SUffix,
TypeTemplateParameter | gnoredRegexp

UnionCase, UnionPrefix, UnionSuffix, UnionlgnoredRegexp

ValueTemplateParameter Case, ValueTemplateParameter Prefix,
ValueTemplateParameter Quffix, ValueTemplateParameter | gnoredRegexp

VariableCase, VariablePrefix, VariableSuffix, Variablel gnoredRegexp,

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

VariableHungarianPrefix
o VirtualMethodCase, VirtualMethodPrefix, VirtualMethodSuffix, Virtual Methodl gnoredRegexp

AbstractClassCase
When defined, the check will ensure abstract class names conform to the selected casing.

AbstractClassPr efix
When defined, the check will ensure abstract class names will add the prefixed with the given
value (regardless of casing).
AbstractClassl gnoredRegexp
Identifier naming checks won't be enforced for abstract class names matching this regular
expression.
AbstractClassSuffix
When defined, the check will ensure abstract class names will add the suffix with the given value
(regardless of casing).
AbstractClassHungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® AbstractClassCase of lower _case
® AbstractClassPrefix of pre
© AbstractClassSuffix of _post
® AbstractClassHungarianPrefix of On
Identifies and/or transforms abstract class names as follows:
Before:
classABSTRACT_CLASS{

public:
ABSTRACT_CLASS();

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

}
After:

class pre_abstract_class post {
public:

pre_abstract _class post();

|3

AggressiveDependentM ember L ookup

EXTRACLANGTOOL (1)

When set to true the check will look in dependent base classes for dependent member references
that need changing. This can lead to errors with template specializations so the default value is

false.
For example using values of:

® ClassMemberCase of lower_case
Before:

template <typename T>
struct Base {
T BadNamedMember;

b

template <typename T>
struct Derived : Base<T> {
void reset() {
this->BadNamedMember = O;

}
|

After if AggressiveDependentMemberLookup is false:

template <typename T>
struct Base {
T bad_named_member;

H

template <typename T>

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

struct Derived : Base<T> {
void reset() {
this->BadNamedMember = O;

}
s

After if AggressiveDependentMemberLookup istrue:

template <typename T>
struct Base {
T bad_named _member;

b

template <typename T>
struct Derived : Base<T> {
void reset() {
this->bad _named_member = 0;
}
|

ClassCase

EXTRACLANGTOOL (1)

When defined, the check will ensure class names conform to the selected casing.

ClassPr efix

When defined, the check will ensure class names will add the prefixed with the given value

(regardless of casing).

Classl gnor edRegexp

Identifier naming checks won't be enforced for class names matching this regular expression.

ClassSuffix

When defined, the check will ensure class names will add the suffix with the given value

(regardless of casing).

ClassHungarianPr efix

When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix

based on the declared type.

For example using values of:

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

®© ClassCase of lower_case

© ClassPrefix of pre_

® ClassSuffix of _post

® ClassHungarianPrefix of On
Identifies and/or transforms class names as follows:
Before:

class FOO {
public:
FOO();
~FOO();
|3

After:

class pre_foo_post {
public:
pre_foo_post();
~pre_foo_post();
|

ClassConstantCase

EXTRACLANGTOOL (1)

When defined, the check will ensure class constant names conform to the selected casing.

ClassConstantPr efix

When defined, the check will ensure class constant names will add the prefixed with the given

value (regardless of casing).

ClassConstantl gnoredRegexp

Identifier naming checks won't be enforced for class constant names matching this regular

expression.

ClassConstant Suffix

When defined, the check will ensure class constant names will add the suffix with the given value

(regardless of casing).

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

ClassConstantHungar ianPr efix

EXTRACLANGTOOL (1)

When enabl ed, the check ensures that the declared identifier will have a Hungarian notation prefix

based on the declared type.
For example using values of:
® ClassConstantCase of lower _case
® ClassConstantPrefix of pre_
® ClassConstantSuffix of _post

o ClassConstantHungarianPrefix of On

| dentifies and/or transforms class constant names as follows;

Before:

class FOO {
public:
static const int CLASS CONSTANT;

H

After:

class FOO {
public:
static const int pre_class_constant_post;

s

ClassM ember Case

When defined, the check will ensure class member names conform to the selected casing.

ClassM ember Pr efix

When defined, the check will ensure class member names will add the prefixed with the given

value (regardless of casing).

ClassM ember 1 gnoredRegexp

Identifier naming checks won’t be enforced for class member names matching this regular

expression.

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

ClassM ember Suffix

EXTRACLANGTOOL (1)

When defined, the check will ensure class member names will add the suffix with the given value

(regardless of casing).

ClassM ember HungarianPr efix

When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix

based on the declared type.
For example using values of:
® ClassMemberCase of lower _case
o® ClassMemberPrefix of pre_
® ClassMemberSuffix of _post

® ClassMemberHungarianPrefix of On

| dentifies and/or transforms class member names as follows:

Before:

class FOO {
public:
staticint CLASS_CONSTANT;

b

After:

class FOO {
public:
dtatic int pre_class_constant_post;

s

ClassM ethodCase

When defined, the check will ensure class method names conform to the selected casing.

ClassM ethodPr efix

When defined, the check will ensure class method names will add the prefixed with the given

value (regardless of casing).

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

ClassM ethodl gnor edRegexp

EXTRACLANGTOOL (1)

Identifier naming checks won't be enforced for class method names matching this regular

expression.

ClassM ethodSuffix

When defined, the check will ensure class method names will add the suffix with the given value

(regardless of casing).
For example using values of:

® ClassMethodCase of lower _case

® ClassMethodPrefix of pre_

® ClassMethodSuffix of _post
Identifies and/or transforms class method names as follows:
Before:

class FOO {

public:

int CLASS MEMBER();

b

After:

class FOO {
public:
int pre_class member_post();

H

CongtantCase

When defined, the check will ensure constant names conform to the selected casing.

ConstantPrefix

When defined, the check will ensure constant names will add the prefixed with the given value

(regardless of casing).

Constantl gnor edRegexp

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Identifier naming checks won't be enforced for constant names matching this regular expression.
ConstantSuffix
When defined, the check will ensure constant names will add the suffix with the given value
(regardless of casing).
ConstantHungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® ConstantCase of lower _case
® ConstantPrefix of pre_
® ConstantSuffix of _post
® ConstantHungarianPrefix of On
Identifies and/or transforms constant names as follows:
Before:
void function() { unsigned const MyConst_array[] ={1, 2, 3}; }
After:

void function() { unsigned const pre_myconst_array_post[] ={1, 2, 3}; }

ConstantM ember Case
When defined, the check will ensure constant member names conform to the selected casing.

ConstantM ember Pr efix
When defined, the check will ensure constant member names will add the prefixed with the given
value (regardless of casing).

ConstantM ember I gnor edRegexp

Identifier naming checks won’t be enforced for constant member names matching this regular
expression.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

ConstantM ember Suffix
When defined, the check will ensure constant member names will add the suffix with the given
value (regardless of casing).
ConstantM ember HungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® ConstantMemberCase of lower _case
® ConstantMemberPrefix of pre_
® ConstantMemberSuffix of _post
® ConstantMemberHungarianPrefix of On
Identifies and/or transforms constant member names as follows:

Before:

class Foo {
char const MY _ConstMember_string[4] = "123";

}

After:

class Foo {
char const pre_my_constmember_string_post[4] = "123";

}

ConstantParameter Case
When defined, the check will ensure constant parameter names conform to the selected casing.

ConstantPar ameter Pr efix
When defined, the check will ensure constant parameter names will add the prefixed with the given

value (regardless of casing).

ConstantPar ameter | gnoredRegexp

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Identifier naming checks won't be enforced for constant parameter names matching this regular
expression.

ConstantPar ameter Suffix
When defined, the check will ensure constant parameter names will add the suffix with the given
value (regardless of casing).
ConstantParameter HungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® ConstantParameterCase of lower _case
® ConstantParameterPrefix of pre_
© ConstantParameterSuffix of _post
® ConstantParameterHungarianPrefix of On
Identifies and/or transforms constant parameter names as follows:
Before:
void GLOBAL_FUNCTION(int PARAMETER 1, int const CONST _parameter);
After:
void GLOBAL_FUNCTION(int PARAMETER_1, int const pre_const_parameter_post);
ConstantPointer Parameter Case
When defined, the check will ensure constant pointer parameter names conform to the selected
casing.
ConstantPointer Parameter Pr efix
When defined, the check will ensure constant pointer parameter names will add the prefixed with

the given value (regardless of casing).

ConstantPointer Parameter | gnoredRegexp

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Identifier naming checks won't be enforced for constant pointer parameter names matching this
regular expression.

ConstantPointer Par ameter Suffix
When defined, the check will ensure constant pointer parameter names will add the suffix with the
given value (regardiess of casing).
ConstantPointer Parameter HungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® ConstantPointerParameterCase of lower case
® ConstantPointerParameterPrefix of pre_
© ConstantPointerParameterSuffix of _post
® ConstantPointerParameterHungarianPrefix of On
Identifies and/or transforms constant pointer parameter names as follows:
Before:
void GLOBAL_FUNCTION(int const * CONST _parameter);
After:

void GLOBAL_FUNCTION(int const *pre_const_parameter_post);

Constexpr FunctionCase
When defined, the check will ensure constexpr function names conform to the selected casing.

Constexpr FunctionPr efix
When defined, the check will ensure constexpr function names will add the prefixed with the given

value (regardless of casing).

Constexpr Functionl gnor edRegexp
Identifier naming checks won’t be enforced for constexpr function names matching this regular

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

expression.
Constexpr FunctionSuffix
When defined, the check will ensure constexpr function names will add the suffix with the given
value (regardless of casing).
For example using values of:
® ConstexprFunctionCase of lower_case
® ConstexprFunctionPrefix of pre_
® ConstexprFunctionSuffix of _post
Identifies and/or transforms constexpr function names as follows:
Before:
constexpr int CE_function() { return 3; }
After:

constexpr int pre_ce function_post() { return 3; }

ConstexprMethodCase
When defined, the check will ensure constexpr method names conform to the selected casing.

ConstexprM ethodPr efix
When defined, the check will ensure constexpr method names will add the prefixed with the given
value (regardless of casing).

Constexpr M ethodl gnor edRegexp
Identifier naming checks won't be enforced for constexpr method names matching this regular
expression.

Constexpr M ethodSuffix
When defined, the check will ensure constexpr method names will add the suffix with the given

value (regardless of casing).

For example using values of:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

® ConstexprMethodCase of lower _case

® ConstexprMethodPrefix of pre_

® ConstexprMethodSuffix of _post
Identifies and/or transforms constexpr method names as follows:
Before:

class Foo {
public:

constexpr int CST_expr_Method() { return 2; }
}

After:

class Foo {
public:

constexpr int pre_cst_expr_method post() { return 2; }
}

ConstexprVariableCase
When defined, the check will ensure constexpr variable names conform to the selected casing.

ConstexprVariablePr efix
When defined, the check will ensure constexpr variable names will add the prefixed with the given
value (regardless of casing).

ConstexprVariablel gnoredRegexp
Identifier naming checks won’t be enforced for constexpr variable names matching this regular
expression.

ConstexprVariableSuffix
When defined, the check will ensure constexpr variable names will add the suffix with the given
value (regardless of casing).

ConstexprVariableHungarianPr efix

When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

For example using values of:
© ConstexprVariableCase of lower_case
o® ConstexprVariablePrefix of pre_
® ConstexprVariableSuffix of _post
® ConstexprVariableHungarianPrefix of On
Identifies and/or transforms constexpr variable names as follows:
Before:
constexpr int ConstExpr_variable = MyConstant;
After:
constexpr int pre_constexpr_variable post = MyConstant;

EnumCase
When defined, the check will ensure enumeration names conform to the selected casing.

EnumPr efix
When defined, the check will ensure enumeration names will add the prefixed with the given value
(regardless of casing).

EnumlignoredRegexp
Identifier naming checks won’t be enforced for enumeration names matching this regular
expression.

EnumSuffix
When defined, the check will ensure enumeration names will add the suffix with the given value
(regardless of casing).

For example using values of:

® EnumCase of lower_case

® EnumPrefix of pre_

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

© EnumSuffix of _post
Identifies and/or transforms enumeration names as follows:
Before:

enum FOO { One, Two, Three};
After:

enum pre_foo post { One, Two, Three};

EnumConstantCase
When defined, the check will ensure enumeration constant names conform to the selected casing.

EnumConstantPr efix
When defined, the check will ensure enumeration constant names will add the prefixed with the
given value (regardless of casing).
EnumConstantlgnoredRegexp
Identifier naming checks won't be enforced for enumeration constant names matching this regular
expression.
EnumConstant Suffix
When defined, the check will ensure enumeration constant names will add the suffix with the given
value (regardless of casing).
EnumConstantHungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® EnumConstantCase of lower _case
® EnumConstantPrefix of pre_

® EnumConstantSuffix of _post

® EnumConstantHungarianPrefix of On

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Identifies and/or transforms enumeration constant names as follows:
Before:

enum FOO { One, Two, Three};
After:

enum FOO { pre_One post, pre_Two_post, pre_Three post };

FunctionCase
When defined, the check will ensure function names conform to the selected casing.

FunctionPr efix
When defined, the check will ensure function names will add the prefixed with the given value

(regardless of casing).

Functionl gnoredRegexp
Identifier naming checks won't be enforced for function names matching this regular expression.

FunctionSuffix
When defined, the check will ensure function names will add the suffix with the given value
(regardless of casing).
For example using values of:
® FunctionCase of lower _case
© FunctionPrefix of pre_
® FunctionSuffix of _post
Identifies and/or transforms function names as follows:
Before:

char MY_Function_string();

After:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

char pre_my_function_string_post();
GetConfigPerFile
When true the check will look for the configuration for where an identifier is declared. Useful for

when included header files use a different style. Default valueistrue.

GlobalConstantCase
When defined, the check will ensure global constant names conform to the selected casing.

GlobalConstantPr efix
When defined, the check will ensure global constant names will add the prefixed with the given
value (regardless of casing).
GlobalConstantl gnoredRegexp
Identifier naming checks won’t be enforced for global constant names matching this regular
expression.
Global ConstantSuffix
When defined, the check will ensure global constant names will add the suffix with the given value
(regardless of casing).
GlobalConstantHungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® GlobalConstantCase of lower _case
® Global ConstantPrefix of pre_
® Global ConstantSuffix of _post
® Global ConstantHungarianPrefix of On
Identifies and/or transforms global constant names as follows:

Before:

unsigned const MyConstGlobal_array[] = {1, 2, 3};

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

After:
unsigned const pre_myconstglobal_array post[] ={1, 2, 3};

GlobalConstantPointer Case
When defined, the check will ensure global constant pointer names conform to the selected casing.

Global ConstantPointer Prefix
When defined, the check will ensure global constant pointer names will add the prefixed with the
given value (regardless of casing).
GlobalConstantPointer | gnoredRegexp
Identifier naming checks won't be enforced for global constant pointer names matching this
regular expression.
Global ConstantPointer Suffix
When defined, the check will ensure global constant pointer names will add the suffix with the
given value (regardless of casing).
GlobalConstantPointer Hungar ianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® Global ConstantPointerCase of lower _case
® Global ConstantPointerPrefix of pre_
® Global ConstantPointerSuffix of _post
® Global ConstantPointerHungarianPrefix of On
Identifies and/or transforms global constant pointer names as follows:
Before:

int *const MyConstantGlobal Pointer = nullptr;

After:

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

int *const pre_myconstantglobal pointer_post = nullptr;

GlobalFunctionCase
When defined, the check will ensure global function names conform to the selected casing.

Global FunctionPr efix
When defined, the check will ensure global function names will add the prefixed with the given
value (regardless of casing).
GlobalFunctionl gnor edRegexp
Identifier naming checks won't be enforced for global function names matching this regular
expression.
Global FunctionSuffix
When defined, the check will ensure global function names will add the suffix with the given value
(regardless of casing).
For example using values of:
® GlobalFunctionCase of lower _case
® Global FunctionPrefix of pre_
® Global FunctionSuffix of _post
Identifies and/or transforms global function names as follows:
Before:
void GLOBAL_FUNCTION(int PARAMETER_1, int const CONST_parameter);
After:

void pre_global_function_post(int PARAMETER 1, int const CONST _parameter);

GlobalPointer Case
When defined, the check will ensure global pointer names conform to the selected casing.

GlobalPointer Prefix
When defined, the check will ensure global pointer names will add the prefixed with the given

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

value (regardless of casing).
GlobalPointer I gnoredRegexp
Identifier naming checks won’t be enforced for global pointer names matching this regular
expression.
GlobalPointer Suffix
When defined, the check will ensure global pointer names will add the suffix with the given value
(regardless of casing).
GlobalPointer HungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
©® GlobalPointerCase of lower _case
© GlobalPointerPrefix of pre
©® Global PointerSuffix of _post
® Global PointerHungarianPrefix of On
Identifies and/or transforms global pointer names as follows:
Before:
int *GLOBALS;
After:

int *pre_global3_post;

GlobalVariableCase
When defined, the check will ensure global variable names conform to the selected casing.

GlobalVariablePr efix

When defined, the check will ensure global variable names will add the prefixed with the given
value (regardless of casing).

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

GlobalVariablel gnoredRegexp
Identifier naming checks won't be enforced for global variable names matching this regular
expression.
GlobalVariableSuffix
When defined, the check will ensure global variable names will add the suffix with the given value
(regardless of casing).
GlobalVariableHungarianPr efix
When enabl ed, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® GlobalVariableCase of lower case
© GlobalVariablePrefix of pre
© GlobalVariableSuffix of _post
© GlobalVariableHungarianPrefix of On
Identifies and/or transforms global variable names as follows:
Before:
int GLOBAL3;
After:
int pre_globa3_post;
IgnoreMainLikeFunctions
When set to true functions that have a similar signature to main or wmain won't enforce checks on

the names of their parameters. Default value isfalse.

I nlineNamespaceCase
When defined, the check will ensure inline namespaces names conform to the selected casing.

I nlineNamespacePr efix

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

When defined, the check will ensure inline namespaces names will add the prefixed with the given
value (regardless of casing).

I nlineNamespacel gnor edRegexp
Identifier naming checks won't be enforced for inline namespaces names matching this regular
expression.
I nlineNamespaceSuffix
When defined, the check will ensure inline namespaces names will add the suffix with the given
value (regardless of casing).
For example using values of:
® InlineNamespaceCase of lower_case
® InlineNamespacePrefix of pre_
o InlineNamespaceSuffix of _post
Identifies and/or transforms inline namespaces names as follows:

Before:

namespace FOO_NS{
inline namespace InlineNamespace {

}
} // namespace FOO_NS

After:

namespace FOO_NS{
inline namespace pre_inlinenamespace_post {

}
} // namespace FOO_NS

L ocalConstantCase
When defined, the check will ensure local constant names conform to the selected casing.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

L ocalConstantPr efix
When defined, the check will ensure local constant names will add the prefixed with the given
value (regardless of casing).
L ocal Constantl gnor edRegexp
Identifier naming checks won’t be enforced for local constant names matching this regular
expression.
L ocal Constant Suffix
When defined, the check will ensure local constant names will add the suffix with the given value
(regardless of casing).
L ocal ConstantHungar ianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® LocaConstantCase of lower _case
© Loca ConstantPrefix of pre_
® Loca ConstantSuffix of _post
® Loca ConstantHungarianPrefix of On
Identifies and/or transforms local constant names as follows:
Before:
void foo() { int const local_Constant = 3; }
After:

void foo() { int const pre_local_constant_post = 3; }

L ocalConstantPointer Case
When defined, the check will ensure local constant pointer names conform to the selected casing.

L ocalConstantPointer Pr efix

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

When defined, the check will ensure local constant pointer names will add the prefixed with the
given value (regardless of casing).

L ocalConstantPointer | gnoredRegexp
Identifier naming checks won't be enforced for local constant pointer names matching this regular
expression.
L ocal ConstantPointer Suffix
When defined, the check will ensure local constant pointer names will add the suffix with the
given value (regardless of casing).
L ocalConstantPointer HungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® Loca ConstantPointerCase of lower _case
® Local ConstantPointerPrefix of pre_
© Loca ConstantPointerSuffix of _post
® Loca ConstantPointerHungarianPrefix of On
Identifies and/or transforms local constant pointer names as follows:
Before:
void foo() { int const *local_Constant = 3; }
After:

void foo() { int const *pre_local_constant_post = 3; }

L ocal Pointer Case
When defined, the check will ensure local pointer names conform to the selected casing.

L ocal Pointer Prefix
When defined, the check will ensure local pointer names will add the prefixed with the given value

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

(regardless of casing).
L ocalPointer | gnor edRegexp
Identifier naming checks won't be enforced for local pointer names matching this regular
expression.
L ocal Pointer Suffix
When defined, the check will ensure local pointer names will add the suffix with the given value
(regardless of casing).
L ocal Pointer HungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
© LocalPointerCase of lower_case
© LocalPointerPrefix of pre
© LocalPointerSuffix of _post
® Local PointerHungarianPrefix of On
Identifies and/or transforms local pointer names as follows:
Before:
void foo() { int *local_Constant; }
After:

void foo() { int *pre_local_constant_post; }

LocalVariableCase
When defined, the check will ensure local variable names conform to the selected casing.

L ocalVariablePrefix

When defined, the check will ensure local variable names will add the prefixed with the given
value (regardless of casing).

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

LocalVariablel gnoredRegexp
Identifier naming checks won't be enforced for local variable names matching this regular
expression.
For example using values of:
® LocaVariableCase of CamelCase

© LocaVariablelgnoredRegexp of \w{1,2}

Will exclude variables with alength less than or equal to 2 from the camel case check applied to
other variables.

L ocalVariableSuffix
When defined, the check will ensure local variable names will add the suffix with the given value
(regardless of casing).
LocalVariableHungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® LocalVariableCase of lower case
© LocaVariablePrefix of pre_
© LocalVariableSuffix of _post
© LocaVariableHungarianPrefix of On
Identifies and/or transforms local variable names as follows:
Before:
void foo() { int local_Constant; }

After:

void foo() { int pre_local_constant_post; }

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

M acr oDefinitionCase
When defined, the check will ensure macro definitions conform to the selected casing.

M acr oDefinitionPr efix
When defined, the check will ensure macro definitions will add the prefixed with the given value

(regardless of casing).

M acr oDefinitionl gnor edRegexp
Identifier naming checks won't be enforced for macro definitions matching this regular expression.

M acr oDefinitionSuffix
When defined, the check will ensure macro definitions will add the suffix with the given value
(regardless of casing).
For example using values of:
® MacroDefinitionCase of lower _case
® MacroDefinitionPrefix of pre
© MacroDefinitionSuffix of _post
Identifies and/or transforms macro definitions as follows:
Before:
#define MY _MacroDefinition
After:
#define pre_my_macro_definition_post

Note: Thiswill not warn on builtin macros or macros defined on the command line using the -D
flag.

Member Case
When defined, the check will ensure member names conform to the selected casing.

M ember Prefix
When defined, the check will ensure member names will add the prefixed with the given value

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

(regardless of casing).

Member | gnor edRegexp
Identifier naming checks won’t be enforced for member names matching this regular expression.

M ember Suffix
When defined, the check will ensure member names will add the suffix with the given value
(regardless of casing).
Member HungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® MemberCase of lower_case
® MemberPrefix of pre_
® MemberSuffix of _post
® MemberHungarianPrefix of On
Identifies and/or transforms member names as follows:

Before:

class Foo {
char MY _ConstMember_string[4];

}

After:

class Foo {
char pre_my_constmember_string_post[4];
}

MethodCase
When defined, the check will ensure method names conform to the selected casing.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

M ethodPr efix
When defined, the check will ensure method names will add the prefixed with the given value
(regardless of casing).

M ethodl gnor edRegexp
Identifier naming checks won't be enforced for method names matching this regular expression.

M ethod Suffix
When defined, the check will ensure method names will add the suffix with the given value
(regardless of casing).
For example using values of:
® MethodCase of lower case
® MethodPrefix of pre_
© MethodSuffix of _post
Identifies and/or transforms method names as follows:

Before:

class Foo {
char MY_Method_string();

}

After:

class Foo {
char pre_my_method_string_post();
}

NamespaceCase
When defined, the check will ensure namespace names conform to the selected casing.

NamespacePr efix

When defined, the check will ensure namespace names will add the prefixed with the given value
(regardless of casing).

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Namespacel gnor edRegexp
Identifier naming checks won't be enforced for namespace names matching this regular
expression.
NamespaceSuffix
When defined, the check will ensure namespace names will add the suffix with the given value
(regardless of casing).
For example using values of:
® NamespaceCase of lower _case
© NamespacePrefix of pre_
® NamespaceSuffix of _post
Identifies and/or transforms namespace names as follows:

Before:

namespace FOO_NS{

After:

namespace pre_foo ns post {

Parameter Case
When defined, the check will ensure parameter names conform to the selected casing.

Parameter Prefix
When defined, the check will ensure parameter names will add the prefixed with the given value

(regardless of casing).

Parameter | gnor edRegexp
Identifier naming checks won't be enforced for parameter names matching this regular expression.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Par ameter Suffix
When defined, the check will ensure parameter names will add the suffix with the given value
(regardless of casing).
Par ameter HungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
© ParameterCase of lower _case
© ParameterPrefix of pre_
© ParameterSuffix of _post
© ParameterHungarianPrefix of On
Identifies and/or transforms parameter names as follows:
Before:
void GLOBAL_FUNCTION(int PARAMETER _1, int const CONST _parameter);
After:

void GLOBAL_FUNCTION(int pre_parameter_post, int const CONST _parameter);

Parameter PackCase
When defined, the check will ensure parameter pack names conform to the selected casing.

Par ameter Pack Pr efix
When defined, the check will ensure parameter pack names will add the prefixed with the given
value (regardless of casing).

Parameter Packl gnor edRegexp
Identifier naming checks won’t be enforced for parameter pack names matching this regular

expression.

Par ameter Pack Suffix

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

When defined, the check will ensure parameter pack names will add the suffix with the given value
(regardless of casing).

For example using values of:

® ParameterPackCase of lower case

® ParameterPackPrefix of pre_

© ParameterPackSuffix of _post
Identifies and/or transforms parameter pack names as follows:
Before:

template <typename... TY PE_parameters> {
void FUNCTION(int... TYPE_parameters);

}

After:

template <typename... TY PE_parameters> {
void FUNCTION(int... pre_type_parameters post);

}

Pointer Par ameter Case

When defined, the check will ensure pointer parameter names conform to the selected casing.

Pointer Par ameter Pr efix

When defined, the check will ensure pointer parameter names will add the prefixed with the given
value (regardless of casing).

Pointer Par ameter | gnoredRegexp

Identifier naming checks won't be enforced for pointer parameter names matching this regular
expression.

Pointer Par ameter Suffix

When defined, the check will ensure pointer parameter names will add the suffix with the given
value (regardless of casing).

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Pointer Parameter HungarianPr efix
When enabl ed, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® PointerParameterCase of lower case
© PointerParameterPrefix of pre_
© PointerParameterSuffix of _post
o PointerParameterHungarianPrefix of On
Identifies and/or transforms pointer parameter names as follows:
Before:
void FUNCTION(int * PARAMETER);
After:

void FUNCTION(int *pre_parameter_post);

PrivateM ember Case
When defined, the check will ensure private member names conform to the selected casing.

PrivateM ember Prefix
When defined, the check will ensure private member names will add the prefixed with the given
value (regardless of casing).

PrivateM ember | gnor edRegexp
Identifier naming checks won't be enforced for private member names matching this regular
expression.

PrivateM ember Suffix
When defined, the check will ensure private member names will add the suffix with the given

value (regardless of casing).

PrivateM ember HungarianPr efix

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

When enabl ed, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.

For example using values of:

® PrivateMemberCase of lower case

® PrivateMemberPrefix of pre_

© PrivateMemberSuffix of _post

o© PrivateMemberHungarianPrefix of On
Identifies and/or transforms private member names as follows:
Before:

class Foo {

private:
int Member_Variable;

}

After:

class Foo {
private:
int pre_member_variable post;

}

PrivateM ethodCase
When defined, the check will ensure private method names conform to the selected casing.

PrivateM ethodPr efix
When defined, the check will ensure private method names will add the prefixed with the given
value (regardless of casing).

PrivateM ethodl gnoredRegexp

Identifier naming checks won't be enforced for private method names matching this regular
expression.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

PrivateM ethodSuffix

EXTRACLANGTOOL (1)

When defined, the check will ensure private method names will add the suffix with the given value

(regardless of casing).

For example using values of:
® PrivateMethodCase of lower case
® PrivateMethodPrefix of pre_

®© PrivateMethodSuffix of _post

Identifies and/or transforms private method names as follows:

Before:

class Foo {
private:

int Member_Method();
}

After:

class Foo {
private:

int pre_member_method_post();
}

ProtectedM ember Case

When defined, the check will ensure protected member names conform to the selected casing.

ProtectedM ember Pr efix

When defined, the check will ensure protected member names will add the prefixed with the given

value (regardless of casing).

ProtectedM ember | gnor edRegexp

Identifier naming checks won’t be enforced for protected member names matching this regular

expression.

ProtectedM ember Suffix

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

When defined, the check will ensure protected member names will add the suffix with the given
value (regardless of casing).

ProtectedM ember HungarianPr efix

When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix

based on the declared type.
For example using values of:

® ProtectedMemberCase of lower _case

© ProtectedMemberPrefix of pre

© ProtectedMemberSuffix of _post

® ProtectedMemberHungarianPrefix of On
Identifies and/or transforms protected member names as follows:
Before:

class Foo {

protected:
int Member Variable;

}

After:

class Foo {
protected:
int pre_member_variable_post;

}

ProtectedM ethodCase
When defined, the check will ensure protected method names conform to the selected casing.

ProtectedM ethodPr efix

When defined, the check will ensure protected method names will add the prefixed with the given
value (regardless of casing).

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

ProtectedM ethodl gnoredRegexp
Identifier naming checks won't be enforced for protected method names matching this regular
expression.

ProtectedM ethodSuffix
When defined, the check will ensure protected method names will add the suffix with the given
value (regardless of casing).

For example using values of:

® ProtectedMethodCase of lower _case

o© ProtectedMethodPrefix of pre_

® ProtectedMethodSuffix of _post
Identifies and/or transforms protect method names as follows:
Before:

class Foo {

protected:
int Member_Method();

}

After:

class Foo {
protected:

int pre_member_method_post();
}

PublicM ember Case
When defined, the check will ensure public member names conform to the selected casing.

PublicM ember Pr efix
When defined, the check will ensure public member names will add the prefixed with the given

value (regardless of casing).

PublicM ember | gnor edRegexp

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Identifier naming checks won't be enforced for public member names matching this regular
expression.

PublicM ember Suffix
When defined, the check will ensure public member names will add the suffix with the given value
(regardless of casing).

PublicM ember HungarianPr efix

When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix

based on the declared type.
For example using values of:

® PublicMemberCase of lower case

® PublicMemberPrefix of pre_

© PublicMemberSuffix of _post

® PublicMemberHungarianPrefix of On
Identifies and/or transforms public member names as follows:
Before:

class Foo {

public:

int Member_Variable;
}

After:

class Foo {
public:
int pre_member_variable post;

}

PublicM ethodCase
When defined, the check will ensure public method names conform to the selected casing.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

PublicM ethodPr efix
When defined, the check will ensure public method names will add the prefixed with the given
value (regardless of casing).

PublicM ethod| gnor edRegexp
Identifier naming checks won'’t be enforced for public method names matching this regular
expression.
PublicM ethod Suffix
When defined, the check will ensure public method names will add the suffix with the given value
(regardless of casing).
For example using values of:
® PublicMethodCase of lower case
® PublicMethodPrefix of pre_
© PublicMethodSuffix of _post
Identifies and/or transforms public method names as follows:
Before:
class Foo {
public:

int Member_Method();
}

After:
class Foo {
public:

int pre_member_method post();
}

ScopedEnumConstantCase
When defined, the check will ensure scoped enum constant names conform to the selected casing.

ScopedEnumConstantPr efix

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

When defined, the check will ensure scoped enum constant names will add the prefixed with the
given value (regardless of casing).

ScopedEnumConstantl gnor edRegexp
Identifier naming checks won’t be enforced for scoped enum constant names matching this regular
expression.
ScopedEnumConstant Suffix
When defined, the check will ensure scoped enum constant names will add the suffix with the
given value (regardless of casing).
ScopedEnumConstantHungar ianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® ScopedEnumConstantCase of lower_case
® ScopedEnumConstantPrefix of pre_
® ScopedEnumConstantSuffix of _post
® ScopedEnumConstantHungarianPrefix of On
Identifies and/or transforms enumeration constant names as follows:
Before:
enum class FOO { One, Two, Three};
After:

enum class FOO { pre_One_post, pre Two_post, pre_Three post };

StaticConstantCase
When defined, the check will ensure static constant names conform to the selected casing.

StaticConstantPr efix
When defined, the check will ensure static constant names will add the prefixed with the given

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

value (regardless of casing).
StaticConstantl gnoredRegexp
Identifier naming checks won’t be enforced for static constant names matching this regular
expression.
StaticConstant Suffix
When defined, the check will ensure static constant names will add the suffix with the given value
(regardless of casing).
StaticConstantHungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
© StaticConstantCase of lower_case
© StaticConstantPrefix of pre_
o StaticConstantSuffix of _post
o StaticConstantHungarianPrefix of On
Identifies and/or transforms static constant names as follows:
Before:
static unsigned const MyConstStatic_array[] = {1, 2, 3};
After:

static unsigned const pre_myconststatic_array_post[] ={1, 2, 3};

StaticVariableCase
When defined, the check will ensure static variable names conform to the selected casing.

StaticVariablePrefix

When defined, the check will ensure static variable names will add the prefixed with the given
value (regardless of casing).

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

StaticVariablel gnoredRegexp
Identifier naming checks won't be enforced for static variable names matching this regular
expression.
StaticVariableSuffix
When defined, the check will ensure static variable names will add the suffix with the given value
(regardless of casing).
StaticVariableHungarianPr efix
When enabl ed, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® StaticVariableCase of lower case
© StaticVariablePrefix of pre_
© StaticVariableSuffix of _post
o StaticVariableHungarianPrefix of On
Identifies and/or transforms static variable names as follows:
Before:
static unsigned MyStatic_array[] ={1, 2, 3};
After:

static unsigned pre_mystatic_array_post[] ={1, 2, 3};

StructCase
When defined, the check will ensure struct names conform to the selected casing.

StructPrefix
When defined, the check will ensure struct names will add the prefixed with the given value

(regardless of casing).

Structl gnoredRegexp

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Identifier naming checks won't be enforced for struct names matching this regular expression.

StructSuffix
When defined, the check will ensure struct names will add the suffix with the given value
(regardless of casing).

For example using values of:

® StructCase of lower_case

®© StructPrefix of pre_

® StructSuffix of _post
Identifies and/or transforms struct names as follows:
Before:

struct FOO {

FOO();

~FOO();
s

After:

struct pre_foo_post {
pre_foo post();
~pre_foo_post();
|

TemplateParameter Case
When defined, the check will ensure template parameter names conform to the selected casing.

TemplatePar ameter Prefix
When defined, the check will ensure template parameter names will add the prefixed with the
given value (regardless of casing).

TemplatePar ameter | gnor edRegexp

Identifier naming checks won't be enforced for template parameter names matching this regular
expression.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

TemplatePar ameter Suffix
When defined, the check will ensure template parameter names will add the suffix with the given
value (regardless of casing).
For example using values of:
® TemplateParameterCase of lower _case
© TemplateParameterPrefix of pre
© TemplateParameterSuffix of _post
Identifies and/or transforms template parameter names as follows:
Before:
template <typename T> class Foo {};
After:
template <typename pre_t_post> class Foo{};
TemplateT emplatePar ameter Case
When defined, the check will ensure template template parameter names conform to the selected
casing.
TemplateT emplatePar ameter Prefix
When defined, the check will ensure template template parameter names will add the prefixed with
the given value (regardless of casing).
TemplateT emplatePar ameter | gnor edRegexp
Identifier naming checks won't be enforced for template template parameter names matching this
regular expression.
TemplateT emplatePar ameter Suffix
When defined, the check will ensure template template parameter names will add the suffix with

the given value (regardless of casing).

For example using values of:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

© TemplateTemplateParameterCase of lower _case
® TemplateTemplateParameterPrefix of pre_

® TemplateTemplateParameterSuffix of _post

EXTRACLANGTOOL (1)

Identifies and/or transforms template template parameter names as follows:

Before:

template <template <typename> class TPL_parameter, int COUNT _params,

typename... TY PE_parameters>

After:

template <template <typename> class pre_tpl_parameter_post, int COUNT_params,

typename... TY PE_parameters>

TypeAliasCase

When defined, the check will ensure type alias names conform to the selected casing.

TypeAliasPr efix

When defined, the check will ensure type alias names will add the prefixed with the given value

(regardless of casing).

TypeAliasl gnoredRegexp

Identifier naming checks won't be enforced for type alias names matching this regular expression.

TypeAliasSuffix

When defined, the check will ensure type alias names will add the suffix with the given value

(regardless of casing).

For example using values of:
© TypeAliasCase of lower case
© TypeAliasPrefix of pre_

® TypeAliasSuffix of _post

15 December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Identifies and/or transforms type alias names as follows:
Before:

using MY_STRUCT_TYPE =my_structure;
After:

using pre_my_struct_type _post = my_structure;

TypedefCase
When defined, the check will ensure typedef names conform to the selected casing.

TypedefPr efix
When defined, the check will ensure typedef names will add the prefixed with the given value

(regardless of casing).

Typedefl gnoredRegexp
Identifier naming checks won't be enforced for typedef names matching this regular expression.

TypedefSuffix
When defined, the check will ensure typedef names will add the suffix with the given value
(regardless of casing).
For example using values of:
© TypedefCase of lower _case
o© TypedefPrefix of pre_
o© TypedefSuffix of _post
Identifies and/or transforms typedef names as follows:
Before:

typedef int MY INT;

After:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

typedef int pre_myint_post;
TypeT emplateParameter Case
When defined, the check will ensure type template parameter names conform to the selected
casing.
TypeTemplatePar ameter Prefix
When defined, the check will ensure type template parameter names will add the prefixed with the
given value (regardless of casing).
TypeT emplatePar ameter | gnor edRegexp
Identifier naming checks won’'t be enforced for type template names matching this regular
expression.
TypeTemplatePar ameter Suffix
When defined, the check will ensure type template parameter names will add the suffix with the
given value (regardless of casing).
For example using values of:
o© TypeTemplateParameterCase of lower_case
o© TypeTemplateParameterPrefix of pre_
© TypeTemplateParameterSuffix of _post
Identifies and/or transforms type template parameter names as follows:

Before:

template <template <typename> class TPL_parameter, int COUNT _params,
typename... TY PE_parameters>

After:

template <template <typename> class TPL_parameter, int COUNT _params,
typename... pre_type_parameters_post>

UnionCase
When defined, the check will ensure union names conform to the selected casing.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

UnionPr efix
When defined, the check will ensure union names will add the prefixed with the given value
(regardless of casing).

UnionlgnoredRegexp
Identifier naming checks won'’t be enforced for union names matching this regular expression.

UnionSuffix
When defined, the check will ensure union names will add the suffix with the given value
(regardless of casing).
For example using values of:
® UnionCase of lower _case
® UnionPrefix of pre_
© UnionSuffix of _post
Identifies and/or transforms union names as follows:
Before:
union FOO {
int &
char b;

};

After:

union pre_foo_post {
inta;
char b;

b

ValueT emplateParameter Case
When defined, the check will ensure value template parameter names conform to the selected
casing.

ValueT emplatePar ameter Prefix

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

When defined, the check will ensure value template parameter names will add the prefixed with
the given value (regardless of casing).

ValueT emplatePar ameter | gnoredRegexp
Identifier naming checks won’t be enforced for value template parameter names matching this
regular expression.
ValueT emplatePar ameter Suffix
When defined, the check will ensure value template parameter names will add the suffix with the
given value (regardless of casing).
For example using values of:
o© VaueTemplateParameterCase of lower _case
o® VaueTemplateParameterPrefix of pre_
© VaueTemplateParameterSuffix of _post
Identifies and/or transforms value templ ate parameter names as follows:

Before:

template <template <typename> class TPL_parameter, int COUNT _params,
typename... TY PE_parameters>

After:

template <template <typename> class TPL_parameter, int pre_count_params_post,
typename... TY PE_parameters>

VariableCase
When defined, the check will ensure variable names conform to the selected casing.

VariablePrefix
When defined, the check will ensure variable names will add the prefixed with the given value

(regardless of casing).

Variablel gnoredRegexp
Identifier naming checks won’t be enforced for variable names matching this regular expression.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

VariableSuffix
When defined, the check will ensure variable names will add the suffix with the given value
(regardless of casing).
VariableHungarianPr efix
When enabled, the check ensures that the declared identifier will have a Hungarian notation prefix
based on the declared type.
For example using values of:
® VariableCase of lower _case
o VariablePrefix of pre_
o© VariableSuffix of _post
® VariableHungarianPrefix of On
Identifies and/or transforms variable names as follows:
Before:
unsigned MyVariable;
After:

unsigned pre_myvariable post;

VirtualM ethodCase
When defined, the check will ensure virtual method names conform to the selected casing.

VirtualM ethodPr efix
When defined, the check will ensure virtual method names will add the prefixed with the given
value (regardless of casing).

VirtualM ethodl gnor edRegexp
Identifier naming checks won’t be enforced for virtual method names matching this regular

expression.

VirtualM ethodSuffix

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

When defined, the check will ensure virtual method names will add the suffix with the given value
(regardless of casing).

For example using values of:

o® VirtualMethodCase of lower case

o VirtuaMethodPrefix of pre_

o VirtuaMethodSuffix of _post
Identifies and/or transforms virtual method names as follows:
Before:

class Foo {
public:
virtual int MemberFunction();

}

After:

class Foo {
public:
virtual int pre_member_function_post();

}

The default mapping table of Hungarian Notation
In Hungarian notation, a variable name starts with a group of lower-case letters which are mnemonics
for the type or purpose of that variable, followed by whatever name the programmer has chosen; this
last part is sometimes distinguished as the given name. The first character of the given name can be
capitalized to separate it from the type indicators (see also CamelCase). Otherwise the case of this
character denotes scope.

The following table is the default mapping table of Hungarian Notation which maps Decl to its prefix
string. Y ou can aso have your own style in config file.

+ + + + + + +
|Primitive [Microsoft | | | |
[Types datatypes | | I |

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools EXTRACLANGTOOLS(1)
+ + + + + + +
[Type |Prefix [Type |Prefix|Type |Prefix |
+ + + + + + +
[int8 _t [i8 |signed s |BOOL b |
I | lint | |
+ + + + + + +
[int16 t [i16 |signed |ss |BOOLEAN |b |
| | jshort | |
+ + + + + + +
[int32_t [i32 |[signed short |ss [BYTE by |
| | lint | |
+ + + + + + +
[int64_t [i64 |sgnedlong |dli |[CHAR c |
I I llong int | |
+ + + + + + +
[uint8_t [u8 |[signedlong |dl |[UCHAR luc |
I I llong | |
+ + + + + + +
[uintl6 t [ul6 |[signedlong |di |[SHORT s |
| | lint | |
+ + + + + + +
[uint32_t [u32 |signed |ss |JUSHORT lus |
I I llong | |
+ + + + + + +
[uint64 t [ue4 |signed s |WORD w |
+ + + + + + +
|char8 t [c8 lunsigned long |ulli [DWORD |dw |
| | llong int | |
+ + + + +
[char16_t |c16 lunsigned long ull [DWORD32 |dw32 |
I I llong | |
+ + + + +
|char32_t [c32 lunsigned long [uli |[DWORD64 |dw64 |
I I lint | |
+ + + + +
[float |f lunsigned ul |LONG Il |
I | llong | |
+ + + + +
|double d lunsigned luss |ULONG jul |
| | |short int | | | |

15

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

+ + + + + + +
|char lc |unsigned us JULONG32 |ul32|
| | |short . |
+ + + + + + +
|bool (o] lunsigned lui |[ULONG64 |ul64 |
I I lint I |
+ + + + + + +
| Bool b lunsigned [u JULONGLONG|uIl |
+ + + + + + +
int li [long long [lli |[HANDLE h
| | lint | |
+ + + + + + +
|size t [n [long ld |INT [|
I I |double . |
+ + + + + + +
|short Is llong Il |INT8 i8 |
I I llong | |
+ + + + + + +
|signed li [long li |INT16 i16 |
| | lint . |
+ + + + + + +
lunsigned lu llong I [INT32 i32 |
+ + + + + + +
[long Il |ptrdiff_t P |INT64 ied |
+ + + + + + +
[long M | | [UINT lui |
llong I | | |
+ + + + + + +
lunsigned ul | | [UINT8 ug |
llong | | . |
+ + + + + + +
[long Id | | |[UINT16 lul6 |
double I | | |
+ + + + + + +
[ptrdiff_t Ip | | |[UINT32 u32 |
+ + + + + + +
|wchar_t [we | | |[UINT64 lue4 |
+ + + + + + +
[short Isi | | |PvOID P |

lint I | | | |

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

+ + +
[short Is
+ + +

EXTRACLANGTOOL (1)

+ + +
|

+ + +

Therearemoretrivial optionsfor Hungarian Notation:

HungarianNotation.General.*

Options are not belonging to any specific Decl.

HungarianNotation.CString.*

Options for NULL-terminated string.

HungarianNotation.DerivedType.*

Options for derived types.

HungarianNotation.PrimitiveT ype.*

Options for primitive types.

HungarianNotation.User DefinedType.*

Options for user-defined types.

Optionsfor Hungarian Notation

15

®

HungarianNotation.General . TreatStructAsClass
HungarianNotation.DerivedType.Array
HungarianNotation.DerivedType.Pointer
HungarianNotation.DerivedType.FunctionPointer
HungarianNotation.CString.Char Printer
HungarianNotation.CString.CharArray
HungarianNotation.CSring.WideChar Printer
HungarianNotation.CSring.WideCharArray

HungarianNotation.PrimitiveType.*

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

® HungarianNotation.UserDefinedType.*

HungarianNotation.General . TreatStructAsClass

EXTRACLANGTOOL (1)

When defined, the check will treat naming of struct asaclass. The default valueis false.

HungarianNotation.DerivedType.Array

When defined, the check will ensure variable name will add the prefix with the given string. The

default prefix isa.

HungarianNotation.DerivedType.Pointer

When defined, the check will ensure variable name will add the prefix with the given string. The

default prefix isp.

HungarianNotation.DerivedType.FunctionPointer

When defined, the check will ensure variable name will add the prefix with the given string. The

default prefix isfn.
Before:

/I Array
int DataArray[2] = {0};

/Il Pointer
void *DataBuffer = NULL;

/I FunctionPointer
typedef void (*FUNC_PTR)();
FUNC_PTR FuncPtr = NULL;

After:

Il Array
int aDataArray[2] = {0} ;

{/ Pointer
void *pDataBuffer = NULL;

/! FunctionPointer

typedef void (* FUNC_PTR)();
FUNC_PTR fnFuncPtr = NULL;

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

HungarianNotation.CString.Char Printer
When defined, the check will ensure variable name will add the prefix with the given string. The
default prefix is sz

HungarianNotation.CString.Char Array
When defined, the check will ensure variable name will add the prefix with the given string. The
default prefix is sz

HungarianNotation.CString.WideChar Printer
When defined, the check will ensure variable name will add the prefix with the given string. The
default prefix iswsz.

HungarianNotation.CString.WideChar Array
When defined, the check will ensure variable name will add the prefix with the given string. The
default prefix iswsz.

Before:

/I CharPrinter
const char *NamePtr = "Name";

I/l CharArray
const char NameArray[] = "Name";

I/l WideCharPrinter
const wchar_t *WideNamePtr = L"Name";

/I WideCharArray
const wchar_t WideNameArray[] = L"Name";

After:

/I CharPrinter
const char *szNamePtr = "Name";

/I CharArray
const char szNameArray[] = "Name";

/I WideCharPrinter
const wchar_t *wszWideNamePtr = L"Name";

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

[WideCharArray
const wchar_t wszWideNameArray[] = L"Name";

HungarianNotation.PrimitiveT ype.*

EXTRACLANGTOOL (1)

When defined, the check will ensure variable name of involved primitive types will add the prefix
with the given string. The default prefixes are defined in the default mapping table.

HungarianNotation.User DefinedType.*

When defined, the check will ensure variable name of involved primitive types will add the prefix
with the given string. The default prefixes are defined in the default mapping table.

Before:

int8 t Vauel8 =0;
intl6 t Vauell6 =0;
int32_t Vauel32 =0;
inté4 t Valuel64 =0;
uint8 t ValueUg8 =0;
uintlé tVauelle =0;
uint32_tvaueu32 =0;
uinté4 tvVaueued =0;
float VaueHoat =0.0;
double VaueDouble =0.0;
ULONG VaueUlong =0;
DWORD VaueDword =0;

After:

int8 t i8Vauel8 =0;
int16 t i16Valuel16 =0;
int32_t i32Vauel32 =0;
inté4 t i64Vauel6d =0;
uint8 t ugvauel8 =0;
uintl6 tuléVaueUlé =0;
uint32_t u32vaueu32 =0;
uint64 t ue4vaueles4 =0;
float fVaueFloat =0.0;
double dVaueDouble=0.0;
ULONG ulVaueUlong = 0;
DWORD dwVaueDword = 0;

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

readability-implicit-bool-cast
This check has been renamed to readability-implicit-bool-conversion.

readability-implicit-bool-conver sion
This check can be used to find implicit conversions between built-in types and booleans. Depending on
use case, it may simply help with readability of the code, or in some cases, point to potential bugs
which remain unnoticed due to implicit conversions.

The following is areal-world example of bug which was hiding behind implicit bool conversion:

class Foo {
int m_foo;

public:
void setFoo(bool foo) { m_foo =foo; } // warning: implicit conversion bool -> int
int getFoo() { return m_foo; }

b

void use(Foo& fao) {
bool value = foo.getFoo(); // warning: implicit conversion int -> bool

}

This code is the result of unsuccessful refactoring, where type of m_foo changed from bool to
int. The programmer forgot to change all occurrences of bool, and the remaining code is no
longer correct, yet it still compiles without any visible warnings.

In addition to issuing warnings, fix-it hints are provided to help solve the reported issues. This
can be used for improving readability of code, for example:

void conversionsToBool() {
float floating;
bool boolean = floating;
/I ™ propose replacement: bool boolean = floating != 0.0f;

int integer;
if (integer) {}
/I ™ propose replacement: if (integer '=0) {}

int* pointer;
if (!pointer) {}

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

/I ™ propose replacement: if (pointer == nullptr) {}

while (1) {}
/I ™ propose replacement: while (true) {}

}

void functionTakinglnt(int param);
void conversionsFromBool() {
bool boolean;
functionT akingl nt(boolean);
/I ™ propose replacement: functionTakingInt(static_cast<int>(boolean));
functionTakinglnt(true);
/I ™ propose replacement: functionTakinglnt(1);

In general, the following conversion types are checked:

o integer expression/literal to boolean (conversion from a single bit bitfield to boolean is explicitly
allowed, since there’'s no ambiguity / information loss in this case),

® floating expression/literal to boolean,
® pointer/pointer to member/nullptr/NULL to boolean,

® boolean expression/literal to integer (conversion from boolean to asingle bit bitfield is explicitly
allowed),

® boolean expression/literal to floating.
The rulesfor generating fix-it hints are:

® in case of conversions from other built-in type to bool, an explicit comparison is proposed to make it
clear what exactly is being compared:

® bool boolean = floating; is changed to bool boolean = floating == 0.0f;,

® for other types, appropriate literals are used (0, Ou, 0.0f, 0.0, nullptr),

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® in case of negated expressions conversion to bool, the proposed replacement with comparison is
simplified:

o if ('pointer) ischanged toif (pointer == nullptr),

® in case of conversions from bool to other built-in types, an explicit static_cast is proposed to make it
clear that a conversion istaking place:

® int integer = boolean; ischanged toint integer = static_cast<int>(boolean);,

o if the conversion is performed on type literals, an equivalent literal is proposed, according to what
type is actually expected, for example:

® functionTakingBool(0); is changed to functionTakingBool (false);,
® functionTakinglnt(true); is changed to functionTakingl nt(1);,
® for other types, appropriate literals are used (false, true, 0, 1, Ou, 1u, 0.0f, 1.0f, 0.0, 1.0f).
Some additional accommodations are made for pre-C++11 dialects:
o falseliteral conversion to pointer is detected,
® instead of nullptr literal, O is proposed as replacement.

Occurrences of implicit conversions inside macros and template instantiations are deliberately
ignored, asit isnot clear how to deal with such cases.

Options

Allowlnteger Conditions
When true, the check will alow conditional integer conversions. Default is false.

AllowPointer Conditions
When true, the check will allow conditional pointer conversions. Default is false.

readability-inconsistent-declar ation-par ameter -name
Find function declarations which differ in parameter names.

Example:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

// in foo.hpp:
void foo(int a, int b, int c);

{/l in foo.cpp:
void foo(int d, int e, int f); // warning

This check should help to enforce consistency in large projects, where it often happensthat a
definition of function is refactored, changing the parameter names, but its declaration in header
fileis not updated. With this check, we can easily find and correct such inconsistencies, keeping
declaration and definition always in sync.

Unnamed parameters are allowed and are not taken into account when comparing function
declarations, for example:

void foo(int a);
void foo(int); // no warning

One nameis aso alowed to be a case-insensitive prefix/suffix of the other:

void foo(int count);
void foo(int count_input) { // no warning
int count = adjustCount(count_input);

}

To help with refactoring, in some cases fix-it hints are generated to align parameter namesto a
single naming convention. This works with the assumption that the function definition is the
most up-to-date version, asit directly references parameter namesin its body. Example:

void foo(int a); // warning and fix-it hint (replace "a" to "b")
int foo(int b) { return b + 2; } // definition with use of "b"

In the case of multiple redeclarations or function template specializations, awarning is issued
for every redeclaration or specialization inconsistent with the definition or the first declaration
seen in atranglation unit.
I gnoreM acr os
If this option is set to true (default is true), the check will not warn about names declared inside

macros.

Strict

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

If thisoption is set to true (default is false), then names must match exactly (or be absent).

readability-isolate-declaration
Detects local variable declarations declaring more than one variable and tries to refactor the code to one
statement per declaration.

The automatic code-transformation will use the same indentation as the original for every created
statement and add a line break after each statement. It keeps the order of the variable declarations
consistent, too.

void f() {
int * pointer = nullptr, value = 42, * const const_ptr = &value;
/l This declaration will be diagnosed and transformed into:
/l'int * pointer = nullptr;
I/l int value = 42;
/l int* const const_ptr = &value;

}

The check excludes places where it is necessary or common to declare multiple variablesin one
statement and there is no other way supported in the language. Please note that structured
bindings are not considered.

/I 1t is not possible to transform this declaration and doing the declaration
/I before the loop will increase the scope of the variable ’Begin’ and ' End’
/l which is undesirable.
for (int Begin = 0, End = 100; Begin < End; ++Begin);
if (int Begin =42, Result = some_function(Begin); Begin == Result);
/' It is not possible to transform this declaration because the result is
{/ not functionality preserving as’j’ and 'k’ would not be part of the
/[if" statement anymore.
if (SomeCondition())
inti=42,j=43, k=function(i,j);

Limitations
Global variables and member variables are excluded.

The check currently does not support the automatic transformation of member-pointer-types.

struct S{

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

inta

const int b;
void f() {}
s

void f() {
// Only adiagnostic message is emitted
int S:*p=&S:a S:*const g =&S::&
}

EXTRACLANGTOOL (1)

Furthermore, the transformation is very cautious when it detects various kinds of macros or

preprocessor directives in the range of the statement. In this case the
happen to avoid unexpected side-effects due to macros.

#define NULL O

#defineMY_NICE_TYPE int **

#define VAR_NAME(name) namet##_ LINE

#define A_BUNCH_OF _VARIABLESIint m1 =42, m2 =43, m3 = 44;

void macros() {

int *pl=NULL, *p2=NULL;
/I Will be transformed to

/lint *pl=NULL,;
/lint*p2 =NULL;

MY _NICE_TYPE p3, v1, v2;
// Won't be transformed, but a diagnostic is emitted.

int VAR_NAME(v3),
VAR_NAME(v4),
VAR _NAME(V5);
/I Won't be transformed, but a diagnostic is emitted.

A _BUNCH_OF VARIABLES
// Won't be transformed, but a diagnostic is emitted.

int Unconditional,
#if CONFIGURATION
IfConfigured = 42,
#else

15 December 15, 2023

transformation will not

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

IfConfigured = O;
#endif
/I Won't be transformed, but a diagnostic is emitted.

}

readability-magic-numbers
Detects magic numbers, integer or floating point literals that are embedded in code and not introduced
via constants or symbols.

Many coding guidelines advise replacing the magic values with symbolic constants to improve
readability. Here are afew references:

® Rule ES45: Avoid "magic constants’; use symbolic constantsin C++ Core Guidelines
® Rule5.1.1 Use symbolic names instead of literal valuesin codein High Integrity C++

o Item 17 in "C++ Coding Standards: 101 Rules, Guidelines and Best Practices' by Herb Sutter
and Andrei Alexandrescu

© Chapter 17 in "Clean Code - A handbook of agile software craftsmanship.” by Robert C. Martin

® Rule 20701 in"TRAIN REAL TIME DATA PROTOCOL Coding Rules' by Armin-Hagen
Weiss, Bombardier

o http://wiki.c2.com/?MagicNumber

Examples of magic values:
double circleArea= 3.1415926535 * radius * radius;
double total Charge = 1.08 * itemPrice;

int getAnswer() {
return -3; // FILENOTFOUND

}

for (int mm = 1; mm <= 12; ++mm) {
std::cout << month[mm] <<’\n’;

}

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

Example with magic values refactored:
doublecircleArea=M_PI * radius* radius,
const double TAX_RATE = 0.08; // or make it variable and read from afile
double totalCharge = (1.0 + TAX_RATE) * itemPrice;

int getAnswer() {
return E_FILE_NOT_FOUND;

}

for (int mm = 1; mm <= MONTHS_IN_A_YEAR; ++mm) {
std::cout << month[mm] <<’\n’;

}

For integral literals by default only 0 and 1 (and -1) integer values are accepted without a
warning. This can be overridden with the IgnoredintegerValues option. Negative values are
accepted if their absolute value is present in the Ignoredinteger Values list.

Asaspecia casefor integral values, all powers of two can be accepted without warning by
enabling the IgnorePower sOf2I nteger Val ues option.

For floating point literals by default the 0.0 floating point value is accepted without awarning.
The set of ignored floating point literals can be configured using the
IgnoredFloatingPointValues option. For each value in that set, the given string valueis
converted to afloating-point value representation used by the target architecture. If a
floating-point literal value compares equal to one of the converted values, then that literal is not
diagnosed by this check. Because floating-point equality is used to determine whether to
diagnose or not, the user needs to be aware of the details of floating-point representations for
any values that cannot be precisely represented for their target architecture.

For each value in the IgnoredFloatingPointVal ues set, both the single-precision form and
double-precision form are accepted (for example, if 3.14 isin the set, neither 3.14f nor 3.14 will
produce awarning).

Scientific notation is supported for both source code input and option. Alternatively, the check

for the floating point numbers can be disabled for all floating point values by enabling the
I gnor eAll FloatingPointVal ues option.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Since values 0 and 0.0 are so common as the base counter of loops, or initialization values for
sums, they are always accepted without warning, even if not present in the respective ignored
valueslist.

Options

Ignoredlnteger Values
Semicolon-separated list of magic positive integers that will be accepted without a warning.
Default valuesare {1, 2, 3, 4}, and 0 is accepted unconditionally.

I gnor ePower sOf2l nteger Values
Boolean value indicating whether to accept al powers-of-two integer values without warning.
Default valueisfalse.

I gnor edFloatingPointValues
Semicolon-separated list of magic positive floating point values that will be accepted without a
warning. Default values are {1.0, 100.0} and 0.0 is accepted unconditionally.

I gnor eAllFloatingPointValues
Boolean value indicating whether to accept all floating point values without warning. Default value
isfalse.

IgnoreBitFieldsWidths
Boolean value indicating whether to accept magic numbers as bit field widths without warning.
Thisisuseful for example for register definitions which are generated from hardware
specifications. Default value istrue.

readability-make-member -function-const

Finds non-static member functions that can be made const because the functions don’t usethisin a

non-const way.

This check tries to annotate methods according to logical constness (not physical constness).

Therefore, it will suggest to add a const qualifier to a non-const method only if this method does

something that is already possible though the public interface on a const pointer to the object:

© reading a public member variable

o calling apublic const-qualified member function

® returning const-qualified this

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

® passing const-qualified this as a parameter.
This check will also suggest to add a const qualifier to anon-const method if this method uses
private data and functionsin alimited number of ways where logical constness and physical
constness coincide:
® reading amember variable of builtin type
Specifically, this check will not suggest to add a const to a non-const method if the method
reads a private member variable of pointer type because that allows to modify the pointee which
might not preserve logical constness. For the same reason, it does not allow to call private
member functions or member functions on private member variables.
In addition, this check ignores functions that
® are declared virtual
® contain aconst_cast
© aretemplated or part of aclasstemplate
® have an empty body
® do not (implicitly) usethisat al (see readability-convert-member-functions-to-static).
The following real-world examples will be preserved by the check:
classE1{
Pimpl & getPimpl() const;
public:
int &get() {
I/ Cdlling a private member function disables this check.
return getPimpl ()->i;
}
|
classE2 {

public:
const int *get() congt;

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

I/ const_cast disables this check.
S*get() {

return const_cast<int*>(const_cast<const C*>(this)->get());
}

|

After applying modifications as suggested by the check, running the check again might find
more opportunities to mark member functions const.

readability-misleading-indentation
Correct indentation helps to understand code. Mismatch of the syntactical structure and the indentation
of the code may hide serious problems. Missing braces can also make it significantly harder to read the
code, therefore it isimportant to use braces.

The way to avoid dangling else isto aways check that an else belongsto the if that begins in the same
column.

Y ou can omit braces when your inner part of e.g. anif statement has only one statement in it. Although
in that case you should begin the next statement in the same column with the if.

Examples:

// Dangling else:
if (condl)
if (cond2)
fool();
else
foo2(); // Wrong indentation: else belongs to if(cond2) statement.

/I Missing braces:
if (condl)
fool();
foo2(); /I Not guarded by if(condl).

Limitations
Note that this check only works as expected when the tabs or spaces are used consistently and not

mixed.

readability-misplaced-array-index

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

This check warns for unusual array index syntax.
The following code has unusual array index syntax:
void f(int * X, int Y) {

Y[X] =0;
}

becomes
void f(int *X, int Y) {

X[Y]=0;
}

The check warns about such unusual syntax for readability reasons:
© There are programmers that are not familiar with this unusual syntax.

o Itispossiblethat variables are mixed up.

readability-named-par ameter

Find functions with unnamed arguments.

The check implements the following rule originating in the Google C++ Style Guide:
https:.//google.github.io/styleguide/cppguide. html#Function_Declarations and_Definitions
All parameters should be named, with identical names in the declaration and implementation.

Corresponding cpplint.py check name: readability/function.

readability-non-const-par ameter

15

The check finds function parameters of a pointer type that could be changed to point to a constant type
instead.

When const is used properly, many mistakes can be avoided. Advantages when using const properly:
® prevent unintentional modification of data;

® get additional warnings such as using uninitialized data;

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® makeit easier for developers to see possible side effects.

This check is not strict about constness, it only warns when the constness will make the function
interface safer.

// warning here; the declaration "const char *p" would make the function
I interface safer.
char f1(char *p) {

return *p;

}

/I no warning; the declaration could be more const "const int * const p" but
/[that does not make the function interface safer.
int f2(const int *p) {

return *p;

}

// no warning; making x const does not make the function interface safer
int f3(int x) {
return x;

}

// no warning; Technically, *p can be const ("const struct S*p"). But making
I/l *p const could be misleading. People might think that it's safe to pass
/I const data to this function.
struct S{ int*a; int *b; };
int f3(struct S*p) {
*(p->a) = 0;
}

// nowarning; p is referenced by an lvalue.
void f4(int *p) {

int&x =*p;
}

readability-qualified-auto
Adds pointer qualifications to auto-typed variables that are deduced to pointers.

LLVM Coding Standards advises to make it obvious if aauto typed variable is a pointer. This check
will transform auto to auto * when the type is deduced to be a pointer.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

for (auto Data : MutatablePtrContainer) {
change(* Data);

}

for (auto Data : ConstantPtrContainer) {
observe(* Data);

}

Would be transformed into:

for (auto * Data : MutatablePtrContainer) {
change(* Data);

}

for (const auto * Data : ConstantPtrContainer) {
observe(* Data);

}

EXTRACLANGTOOL (1)

Note const volatile qualified types will retain their const and volatile qualifiers. Pointersto

pointers will not be fully qualified.

const auto Foo = cast<int *>(Bazl);
const auto Bar = cast<const int *>(Baz2);
volatile auto FooBar = cast<int *>(Baz3);
auto BarFoo = cast<int **>(Baz4);

Would be transformed into:

auto *const Foo = cast<int *>(Bazl);

const auto * const Bar = cast<const int *>(Baz2);
auto *volatile FooBar = cast<int *>(Baz3);

auto *BarFoo = cast<int **>(Baz4);

Options

15

AddConstToQualified

When set to true the check will add const qualifiers variables defined as auto * or auto & when

applicable. Default valueistrue.
auto Fool = cast<const int *>(Barl);

auto *Foo2 = cast<const int *>(Bar2);
auto & Foo3 = cast<const int & >(Bar3);

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

If AddConstToQualified is set to false, it will be transformed into:

const auto * Fool = cast<const int *>(Barl);
auto *Foo2 = cast<const int *>(Bar2);
auto & Foo3 = cast<const int &>(Bar3);

Otherwise it will be transformed into:

const auto * Fool = cast<const int *>(Barl);
const auto * Foo2 = cast<const int *>(Bar2);
const auto & Foo3 = cast<const int & >(Bar3);

Noteinthe LLVM dlias, the default value is false.

readability-redundant-access-specifiers
Finds classes, structs, and unions containing redundant member (field and method) access specifiers.

Example

classFoo {
public:
int x;
inty;
public:
intz
protected:
inta
public:
intc;

}

In the example above, the second public declaration can be removed without any changes of
behavior.

Options
CheckFirstDeclar ation

If set to true, the check will aso diagnose if the first access specifier declaration is redundant (e.g.
privateinside class, or public inside struct or union). Default isfalse.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Example

struct Bar {
public:
int x;

}

If CheckFirstDeclaration option is enabled, a warning about redundant access specifier will be
emitted, because public is the default member access for structs.

readability-redundant-control-flow

15

This check looks for procedures (functions returning no value) with retur n statements at the end of the
function. Such return statements are redundant.

L oop statements (for, while, do while) are checked for redundant continue statements at the end of the
loop body.

Examples:

The following function f contains a redundant r eturn statement:

extern void g();
void f() {

a0);

return;

}

becomes

extern void g();
void f() {

a();
}

The following function k contains a redundant continue statement:

void k() {
for (inti =0;i <10; ++i) {
continue;

}

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

becomes

void k() {
for (inti = 0; i < 10; ++) {
}

}

readability-redundant-declar ation
Finds redundant variable and function declarations.

externint X;
externint X;

becomes

externint X;
Such redundant declarations can be removed without changing program behavior. They can for
instance be unintentional left overs from previous refactorings when code has been moved
around. Having redundant declarations could in worst case mean that there are typos in the code

that cause bugs.

Normally the code can be automatically fixed, clang-tidy can remove the second declaration.
However there are 2 cases when you need to fix the code manually:

® When the declarations are in different header files;
® When multiple variables are declared together.
Options

I gnoreM acr os
If set to true, the check will not give warnings inside macros. Default istrue.

readability-redundant-function-ptr-der eference
Finds redundant dereferences of a function pointer.

Before:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

int f(int,int);
int (*p)(int, int) = &f;

inti=(**p)(10, 50);
After:

int f(int,int);
int (*p)(int, int) = &f;

inti= (*p)(10, 50);

readability-redundant-member -init
Finds member initializations that are unnecessary because the same default constructor would be called
if they were not present.

Example

I/l Explicitly initializing the member sis unnecessary.
classFoo {
public:

Foo() : s) {}

private:
std::string s;
b

Options

IgnoreBasel nCopyConstructors
Default isfalse.

When true, the check will ignore unnecessary base class initializations within copy constructors,

since some compilers issue warnings/errors when base classes are not explicitly initialized in copy
constructors. For example, gcc with -Wextra or -Werror=extra issues warning or error base class
'Bar’ should be explicitly initialized in the copy constructor if Bar () were removed in the following
example:

I/l Explicitly initializing member s and base class Bar is unnecessary.
struct Foo : public Bar {

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

EXTRACLANGTOOL (1)

// Remove () below. If IgnoreBasel nCopyConstructors!=0, keep Bar().

Foo(const Foo& foo) : Bar(), s() {}
std::string s;
|

readability-redundant-prepr ocessor
Finds potentially redundant preprocessor directives. At the moment the following cases are detected:

15

o #ifdef .. #endif pairs which are nested inside an outer pair with the same condition. For example:

#ifdef FOO

#ifdef FOO // inner ifdef is considered redundant
void f();

#endif

#endif

® Same for #ifndef .. #endif pairs. For example:

#ifndef FOO

#ifndef FOO // inner ifndef is considered redundant
void f();

#endif

#endif

® #ifndef inside an #ifdef with the same condition:

#ifdef FOO

#ifndef FOO // inner ifndef is considered redundant
void f();

#endif

#endif

® #ifdef inside an #ifndef with the same condition:

#ifndef FOO

#ifdef FOO // inner ifdef is considered redundant
void f();

#endif

#endif

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

o #if .. #endif pairs which are nested inside an outer pair with the same condition. For example:

#define FOO 4

#f FOO==4

#f FOO ==4// inner if is considered redundant
void f();

#endif

#endif

readability-redundant-smartptr-get
Find and remove redundant callsto smart pointer’s .get() method.

Examples:
ptr.get()->Foo() ==> ptr->Foo()
*ptr.get() ==> *ptr
*ptr->get() ==> **ptr
if (ptr.get() == nullptr) ... =>if (ptr == nullptr) ...

I gnoreM acr os
If thisoption is set to true (default istrue), the check will not warn about calls inside macros.

readability-redundant-string-cstr
Finds unnecessary calsto std::string::c_str() and std::string::data().

readability-redundant-string-init
Finds unnecessary string initializations.

Examples
/I Initializing string with empty string literal is unnecessary.
std::stringa="";
std::string b("");

/I becomes

std::string a;
std::string b;

/[Initializing a string_view with an empty string literal produces an

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

I instance that compares equal to string_view().
std::string_view a="";
std::string_view b("");

/I becomes
std::string_view &;
std::string_view b;

Options

StringNames
Default is::std::basic_string;::std::basic_string_view.

Semicolon-delimited list of class names to apply this check to. By default ::std::basic_string
appliesto std::string and std::wstring. Set to e.g. ::std::basic_string;llvm:: StringRef; Qring to
perform this check on custom classes.

readability-simplify-boolean-expr
Looks for boolean expressions involving boolean constants and simplifies them to use the appropriate
boolean expression directly. Simplifies boolean expressions by application of DeMorgan’s Theorem.

Examples:
+ + +
[Initial |Result |
|expression | |
+ + +
[if (b== |if |
[true) () |
+ + +
if (b== |if |
[false) ('b) |
+ + +
[if (b && [if |
[tr ue) Ib) |
+ + +
[if (b && [if |
[false) |(false) |
+ + +
lif (b | lif |

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

15

Extra Clang Tools
[true) |(true) |
+ +
lif (b |l lif |
Ifalse) I(b) |
+ +
le?true: le |
lfalse I I
+ +
le?false: |'e |
[true | |
+ +
lif (true) t(); else tO; |
IfO; I |
+ +
lif (false) t(); else f0; |
fO; I I
+ +
[if (e) returntrue; elsereturn |return |
[false; le; |
+ +

[if (e) returnfalse; elsereturn Jreturn |

[true; l'e; |

+ +

if () b=true elseb = b= |
[false; le; |

+ +

if (¢) b =false; elseb = b=
[true; l'e; |

+ +

[if (e) return true; return [return |
[false; l&; I

+ +

[if () return false; return [return |
[true; l'e; |

+ +

['(fall a&& |
[b) b |

+ +

'@l la&& |
1Y) lo I

December 15, 2023

EXTRACLANGTOOL (1)

+

+

+

+

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

+ + +
['(tal| a&& |
1Y) lo |
+ + +
(la&& lall |
[b) b |
+ + +
(a&& fall |
|'o) lo I
+ + +
l(a&& lall |
1Y) lo |
+ + +

Theresulting expression eis modified as follows:
1. Unnecessary parentheses around the expression are removed.
2. Negated applications of ! are eliminated.
3. Negated applications of comparison operators are changed to use the opposite condition.

4. Implicit conversions of pointers, including pointers to members, to bool are replaced with
explicit comparisons to nullptr in C++11 or NULL in C++98/03.

5. Implicit caststo bool are replaced with explicit casts to bool.

6. Object expressions with explicit operator bool conversion operators are replaced with
explicit caststo bool.

7. Implicit conversions of integral types to bool are replaced with explicit comparisons to 0.
Examples:

1. Theternary assignment bool b = (i <0) ? true: false; has redundant parentheses and
becomesbool b =i <0:;.

2. Theconditional returnif (!b) return false; return true; has an implied double negation and
becomesreturn b;.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

3. Theconditional returnif (i <0) return false; return true; becomesreturn i >=0;.
The conditional returnif (i !'=0) return false; return true; becomesreturn i ==0;.

4. The conditional return if (p) return true; return false; has an implicit conversion of a
pointer to bool and becomesreturn p != nullptr;.

Theternary assignment bool b = (i & 1) ? true: false; has an implicit conversion of i & 1
to bool and becomesbool b = (i & 1) !=0;.

5. Theconditional returnif (i & 1) return true; elsereturn false; has an implicit conversion of
an integer quantity i & 1 to bool and becomesreturn (i & 1) '=0;

6. Givenstruct X { explicit operator bool(); };, and an instance x of struct X, the conditional
return if (x) return true; return false; becomesreturn static_cast<bool>(x);

Options

ChainedConditionalReturn
If true, conditional boolean return statements at the end of an if/elseif chain will be transformed.
Default is false.

ChainedConditional Assignment
If true, conditional boolean assignments at the end of an if/elseif chain will be transformed.
Default isfalse.

SimplifyDeM organ
If true, DeMorgan’s Theorem will be applied to simplify negated conjunctions and disjunctions.
Default istrue.

SimplifyDeM or ganRelaxed
If true, SmplifyDeMorgan will also transform negated conjunctions and disjunctions where there
is no negation on either operand. This option has no effect if SmplifyDeMorgan isfalse. Default
isfalse.

When Enabled:

bool X =1(A && B)
bool Y =!(A || B)

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Would be transformed to:

bool X =!A || 'B
bool Y =!A && 'B

readability-simplify-subscript-expr
This check simplifies subscript expressions. Currently this covers calling .data() and immediately doing
an array subscript operation to obtain a single element, in which case simply calling oper ator[] suffice.

Examples:

std::strings=...;
char ¢ = s.data()[i]; // char c=di];

Options
Types
Thelist of type(s) that triggers this check. Default is
.:std::basic_string;::std::basic_string_view;::std::vector;::std::array
readability-static-accessed-thr ough-instance
Checks for member expressions that access static members through instances, and replaces them with
uses of the appropriate qualified-id.
Example:
The following code:
struct C {
static void foo();
static int x;
|
C*cl=new C();
cl->foo();
cl->x;

is changed to:

C*cl=new C();

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

C::foo();
C::x;

readability-static-definition-in-anonymous-namespace
Finds static function and variable definitions in anonymous namespace.

In this case, static isredundant, because anonymous namespace limits the visibility of definitionsto a
single tranglation unit.

namespace {
staticint a= 1; // Warning.
static const int b = 1; // Warning.
namespace inner {
static int ¢ = 1; // Warning.
}
}

The check will apply afix by removing the redundant static qualifier.

readability-string-compare
Finds string comparisons using the compare method.

A common mistake is to use the string’s compar e method instead of using the equality or inequality
operators. The compare method is intended for sorting functions and thus returns a negative number, a
positive number or zero depending on the lexicographical relationship between the strings compared.
If an equality or inequality check can suffice, that is recommended. This is recommended to avoid the
risk of incorrect interpretation of the return value and to simplify the code. The string equality and
inequality operators can also be faster than the compar e method due to early termination.

Examples:

std::string str1{"a'};
std::string str2{"b"};

/[use strl = str2 instead.
if (strl.compare(str2)) {

}

Il use strl == str2 instead.
if (!strl.compare(str2)) {

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Il use strl == str2 instead.
if (strl.compare(str2) ==0) {
}

Il use strl != str2 instead.
if (strl.compare(str2) !=0) {
}

I use strl == str2 instead.
if (0==strl.compare(str2)) {
}

/l use strl != str2 instead.
if (0!=strl.compare(str2)) {
}

I/l Use strl == "foo" instead.
if (strl.compare("foo") ==0) {
}

The above code examples show the list of if-statements that this check will give awarning for.
All of them uses compar e to check if equality or inequality of two strings instead of using the
correct operators.

readability-suspicious-call-argument
Finds function calls where the arguments passed are provided out of order, based on the difference
between the argument name and the parameter names of the function.

Given afunction call f(foo, bar); and afunction signature void f(T tvar, U uvar), the arguments foo and
bar are swapped if foo (the argument name) is more similar to uvar (the other parameter) than tvar (the
parameter it is currently passed to) and bar is more similar to tvar than uvar.

Warnings might indicate either that the arguments are swapped, or that the names’ cross-similarity
might hinder code comprehension.

Heuristics

The following heuristics are implemented in the check. If any of the enabled heuristics deem the
arguments to be provided out of order, awarning will be issued.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

The heuristics themselves are implemented by considering pairs of strings, and are symmetric, so in the
following there is no distinction on which string is the argument name and which string is the
parameter name.

Equality
The most trivial heuristic, which compares the two strings for case-insensitive equality.

Abbreviation
Common abbreviations can be specified which will deem the strings similar if the abbreviated and the
abbreviation stand together. For example, if srcisregistered as an abbreviation for sour ce, then the
following code example will be warned about.

void foo(int source, int x);
foo(b, src);

The abbreviations to recognise can be configured with the Abbreviations check option. This
heuristic is case-insensitive.

Prefix
The prefix heuristic reports if one of the stringsis a sufficiently long prefix of the other string, e.g.
target to targetPtr. The similarity percentage is the length ratio of the prefix to the longer string, in the
previous example, it would be 6 / 9 = 66.66...%.

This heuristic can be configured with bounds. The default bounds are: below 25% dissimilar and
above 30% similar. This heuristic is case-insensitive.

Suffix
Anaogousto the Prefix heuristic. I1n the case of oldValue and value compared, the similarity
percentageis8/5 = 62.5%.

This heuristic can be configured with bounds. The default bounds are: below 25% dissimilar and
above 30% similar. This heuristic is case-insensitive.

Substring
The substring heuristic combines the prefix and the suffix heuristic, and tries to find the longest
common substring in the two strings provided. The similarity percentage is the ratio of the found
longest common substring against the longer of the two input strings. For example, given val and
rvalue, the similarity is3/ 6 = 50%. If no characters are common in the two string, 0%.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

This heuristic can be configured with bounds. The default bounds are: below 40% dissimilar and
above 50% similar. This heuristic is case-insensitive.

L evenshtein distance (as Levenshtein)

The Levenshtein distance describes how many single-character changes (additions, changes, or
removals) must be applied to transform one string into another.

The Levenshtein distance is translated into a similarity percentage by dividing it with the length of the
longer string, and taking its complement with regards to 100%. For example, given something and
anything, the distance is 4 edits, and the similarity percentageis 100% - 4/ 9 = 55.55...%.

This heuristic can be configured with bounds. The default bounds are: below 50% dissimilar and
above 66% similar. This heuristic is case-sensitive.

Jaro--Winkler distance (as Jarowinkler)

The Jaro--Winkler distance is an edit distance like the Levenshtein distance. It is calculated from the
amount of common characters that are sufficiently close to each other in position, and to-be-changed
characters. The original definition of Jaro has been extended by Winkler to weigh prefix similarities
more. The similarity percentage is expressed as an average of the common and non-common
characters against the length of both strings.

This heuristic can be configured with bounds. The default bounds are: below 75% dissimilar and
above 85% similar. This heuristic is case-insensitive.

SHrensen--Dice coefficient (as Dice)

The Sbrensen--Dice coefficient was originally defined to measure the similarity of two sets. Formally,
the coefficient is calculated by dividing 2 * #(intersection) with #(setl) + #(set2), where #() isthe
cardinality function of sets. This metric is applied to strings by creating bigrams (substring sequences
of length 2) of the two strings and using the set of bigrams for the two strings as the two sets.

This heuristic can be configured with bounds. The default bounds are: below 60% dissimilar and
above 70% similar. Thisheuristic is case-insensitive.

Options

15

Minimumldentifier NameL ength
Sets the minimum required length the argument and parameter names need to have. Names shorter
than this length will beignored. Defaultsto 3.

Abbreviations

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

Extra Clang Tools

EXTRACLANGTOOL (1)

For the Abbreviation heuristic (see here), this option configures the abbreviationsin the
"abbreviation=abbreviated value' format. The option isastring, with each value joined by ";".

By default, the following abbreviations are set:

15

addr=address
arr=array
attr=attribute
buf=buffer
cl=client
cnt=count
col=column
Cpy=copy
dest=destination
dist=distance
dst=distance
elem=element
hght=height
i=index
idx=index
len=length
In=line

Ist=list

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® nr=number

©® num=number

® pPOoS=position

® ptr=pointer

o ref=reference

® Ssrc=source

® Srv=server

® stmt=statement

® str=string

® val=value

© var=variable

® vec=vector

® wdth=width
The configuration options for each implemented heuristic (see above) is constructed
dynamically. Inthefollowing, <HeuristicName> refers to one of the keys from the heuristics

implemented.

<HeuristicName>
True or False, whether a particular heuristic, such as Equality or Levenshtein is enabled.

Defaultsto True for every heuristic.
<HeuristicName>Dissimilar Below, <HeuristicName>Similar Above
A value between 0 and 100, expressing a percentage. The bounds set what percentage of similarity

the heuristic must deduce for the two identifiers to be considered similar or dissimilar by the
check.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Given arguments argl and ar g2 passed to paraml and param2, respectively, the bounds check is
performed in the following way: If the similarity of the currently passed argument order (argl to
paraml) is below the DissimilarBelow threshold, and the similarity of the suggested swapped order
(argl to param2) is above the Smilar Above threshold, the swap is reported.
For the defaults of each heuristic, see above.
Name synthesis
When comparing the argument names and parameter names, the following logic is used to gather the
names for comparison:
Parameter names are the identifiers as written in the source code.
Argument names are:
o |f avariableis passed, the variable’s name.
o |f asubsequent function call’s return value is used as argument, the called function’s name.
© Otherwise, empty string.
Empty argument or parameter names are ignored by the heuristics.
readability-uniqueptr-delete-release
Replace delete <unique_ptr>.release() with <unique_ptr> = nullptr. Thelatter is shorter, simpler and

does not require use of raw pointer APIs.

std::unique_ptr<int> P,
delete P.release();

/I becomes

std::unique_ptr<int> P;
P = nullptr;

Options
Prefer ResetCall

If true, refactor by calling the reset member function instead of assigning to nullptr. Default value
isfalse.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

std::unique_ptr<int> P,
delete P.release();

// becomes

std::unique_ptr<int> P,
P.reset();

readability-upper case-liter al-suffix
cert-dcl 16-c redirects here as an alias for this check. By default, only the suffixes that begin with | (I,
I, lu, llu, but not u, ul, ull) are diagnosed by that alias.

hicpp-upper case-literal -suffix redirects here as an alias for this check.

Detects when the integral literal or floating point (decimal or hexadecimal) literal has a non-uppercase
suffix and provides afix-it hint with the uppercase suffix.

All valid combinations of suffixes are supported.
auto x = 1; // OK, no suffix.
auto x = 1u; // warning: integer literal suffix 'u’ is not upper-case

auto x = 1U; // OK, suffix is uppercase.

Options

NewSuffixes
Optionally, alist of the destination suffixes can be provided. When the suffix isfound, a
case-insensitive lookup in that list is made, and if areplacement isfound that is different from the
current suffix, then the diagnostic isissued. This allows for fine-grained control of what suffixesto
consider and what their replacements should be.

Example
Givenalist L;uL:

®1->L

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

<

L will bekept asis.
© ul ->uL
® Ul ->uL

® UL ->uL

<

uL will be kept asis.

@

ull will bekept asis, sinceitisnotinthelist
® and so on.

IgnoreM acros
If thisoption is set to true (default istrue), the check will not warn about literal suffixesinside
macros.

readability-use-anyofallof
Finds range-based for loops that can be replaced by acall to std::any_of or std::all_of. In C++ 20 mode,
suggests std::ranges::any_of or std::ranges::all_of.

Example:

bool al_even(std::vector<int> V) {
for (intl:V){
if (1% 2)
return false;
}
return true;
I/l Replace loop by
/l return std::ranges::all_of (V, [J(int 1) { return |1 % 2==0; });
}

zircon-tempor ar y-obj ects
Warns on construction of specific temporary objectsin the Zircon kernel. If the object should be
flagged, If the object should be flagged, the fully qualified type name must be explicitly passed to the
check.

For example, given thelist of classes "Foo" and "NS::Bar", all of the following will trigger the

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

warning:

Foo();

Foo F = Foo();
func(Foo());
namespace NS {

Bar();

With the same ligt, the following will not trigger the warning:

Foo F; // Non-temporary construction okay
Foo F(param); I/l Non-temporary construction okay
Foo *F = new Foo(); // New construction okay

Bar(); /I Not NS::Bar, so okay
NS::Bar B; /I Non-temporary construction okay

EXTRACLANGTOOL (1)

Note that objects must be explicitly specified in order to be flagged, and so objects that inherit a

specified object will not be flagged.

This check matches temporary objects without regard for inheritance and so a prohibited base

class type does not similarly prohibit derived class types.

class Derived : Foo {} // Derived is not explicitly disallowed
Derived(); /[and so temporary construction is okay

Options

15

Names

A semi-colon-separated list of fully-qualified names of C++ classes that should not be constructed

astemporaries. Default is empty.

+ + +
[Name |Offers |
| [fixes |
+ + +

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

EXTRACLANGTOOLS(1)

|abseil-cleanup-ctad [Yes |

+ + +
|abseil-duration-addition [Yes |

+ + +
|abseil-duration-comparison [Yes |

+ + +
|abseil-dur ation-conver sion-cast [Yes |

+ + +
|abseil-duration-division [Yes |

+ + +
|abseil-duration-factory-float [Yes |

+ + +
|abseil-dur ation-factory-scale [Yes |

+ + +
|abseil-duration-subtraction [Yes |

+ + +
|abseil-dur ati on-unnecessary-conversion [Yes |

+ + +
|abseil-faster-strsplit-delimiter [Yes |

+ + +
|abseil-no-inter nal-dependencies | |

+ + +
|abseil-no-namespace | |

+ + +
|abseil-redundant-strcat-calls [Yes |

+ + +
|abseil-str-cat-append [Yes |

+ + +
|abseil-string-find-startswith [Yes |

+ + +
|abseil-string-find-str-contains |Yes |

+ + +
|abseil-time-comparison [Yes |

+ + +
|abseil-time-subtraction [Yes |

+ + +
|abseil-upgrade-dur ation-conversions [Yes |

+ + +
|alter a-id-dependent-backwar d-branch | |

+ + +

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

|altera-kernel-name-restriction

EXTRACLANGTOOL (1)

+ + +
|altera-single-work-item-barrier | |

+ + +
|altera-struct-pack-align [Yes |

+ + +
|altera-unroll-loops | |

+ + +
|android-cloexec-accept [Yes |

+ + +
|andr oid-cloexec-accept4 [Yes |

+ + +
|andr oi d-cloexec-creat [Yes |

+ + +
|android-cloexec-dup [Yes |

+ + +
|andr oid-cloexec-epoll-create [Yes |

+ + +
|andr oid-cloexec-epoll-createl [Yes |

+ + +
|android-cloexec-fopen [Yes |

+ + +
|android-cloexec-inotify-init [Yes |

+ + +
|android-cloexec-inotify-initl [Yes |

+ + +
|andr oi d-cl oexec-memfd-create [Yes |

+ + +
|android-cloexec-open [Yes |

+ + +
|androi d-cloexec-pipe [Yes |

+ + +
|andr oi d-cl oexec-pipe2 [Yes |

+ + +
|andr oi d-cl oexec-socket [Yes |

+ + +
|android-comparison-in-temp-failure-retry | |

+ + +
|boost-use-to-string [Yes |

+ + +

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) ExtraClang Tools EXTRACLANGTOOLS(1)
|bugpr one-argument-comment [Yes |
+ + +
|bugpr one-assert-side-effect | |
+ + +
|bugprone-assignment-in-if-condition | |
+ + +
|bugpr one-bad-signal-to-kill-thread | |
+ + +
[bugprone-bool-pointer-implicit-conversion [Yes |
+ + +
[bugprone-branch-clone | |
+ + +
[bugpr one-copy-constructor-init [Yes |
+ + +
|bugprone-dangling-handle | |
+ + +
[bugprone-dynamic-static-initializers | |
+ + +
|bugprone-easily-swappabl e-parameters | |
+ + +
[bugpr one-exception-escape | |
+ + +
[bugprone-fol d-init-type | |
+ + +
[bugpr one-forwar d-decl ar ation-namespace | |
+ + +
|bugpr one-forwar ding-reference-overload | |
+ + +
|bugpr one-implicit-widening-of-multiplication-result [Yes |
+ + +
|bugprone-inaccurate-erase [Yes |
+ + +
[bugprone-incorrect-roundings | |
+ + +
[bugprone-infinite-loop | |
+ + +
[bugprone-integer-division | |
+ + +
[bugpr one-lambda-function-name | |
+ + +

15

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) ExtraClang Tools EXTRACLANGTOOLS(1)

|bugprone-macro-parentheses [Yes |

+ + +
|bugpr one-macr o-r epeated-side-effects | |

+ + +
|bugpr one-misplaced-operator-in-strlen-in-alloc [Yes |

+ + +
[bugpr one-mi splaced-pointer-arithmetic-in-alloc [Yes |

+ + +
|bugprone-mi splaced-widening-cast | |

+ + +
|bugprone-move-forwar ding-reference [Yes |

+ + +
[bugprone-multiple-statement-macro | |

+ + +
[bugpr one-no-escape | |

+ + +
[bugprone-not-null-terminated-result [Yes |

+ + +
|bugprone-parent-virtual-call [Yes |

+ + +
[bugprone-posix-return [Yes |

+ + +
[bugpr one-redundant-branch-condition [Yes |

+ + +
|bugprone-reserved-identifier [Yes |

+ + +
|bugpr one-shared-ptr-array-mismatch [Yes |

+ + +
|bugprone-signal-handler | |

+ + +
[bugprone-signed-char-misuse | |

+ + +
|bugpr one-si zeof-container | |

+ + +
|bugpr one-si zeof-expression | |

+ + +
[bugpr one-spuriousy-wake-up-functions | |

+ + +
[bugprone-string-constructor [Yes |

+ + +

15

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

EXTRACLANGTOOLS(1)

[bugprone-string-integer-assignment [Yes |

+ +
[bugpr one-string-literal-with-embedded-nul | |

+ +
|bugprone-stringview-nullptr [Yes |

+ +
[bugpr one-suspicious-enum-usage | |

+ +
|bugprone-suspi cious-include | |

+ +
|bugprone-suspi cious-memory-comparison | |

+ +
[bugpr one-suspi cious-memset-usage [Yes |

+ +
[bugpr one-suspi cious-missing-comma | |

+ +
|bugprone-suspicious-semicolon [Yes |

+ +
|bugprone-suspi cious-string-compare [Yes |

+ +
|bugpr one-swapped-arguments [Yes |

+ +
[bugpr one-ter minating-continue [Yes |

+ +
[bugpr one-throw-keywor d-missing | |

+ +
|bugprone-too-small-loop-variable | |

+ +
|bugpr one-unchecked-optional-access | |

+ +
|bugpr one-undefined-memory-manipul ation | |

+ +
[bugpr one-undel egated-constructor | |

+ +
|bugpr one-unhandl ed-exception-at-new | |

+ +
[bugpr one-unhandl ed-sel f-assignment | |

+ +
[bugprone-unused-raii [Yes |

+ +

+

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

EXTRACLANGTOOLS(1)

|bugprone-unused-return-value | |

+ + +
|bugpr one-use-after-move | |

+ + +
|bugprone-virtual-near-miss |Yes |

+ + +
|cert-dcl21-cpp [Yes |

+ + +
|cert-dcl50-cpp | |

+ + +
|cert-dcl58-cpp | |

+ + +
|cert-env33-c | |

+ + +
|cert-err33-c | |

+ + +
|cert-err34-c | |

+ + +
|cert-err52-cpp | |

+ + +
|cert-err58-cpp | |

+ + +
|cert-err60-cpp | |

+ + +
|cert-flp30-c | |

+ + +
|cert-mem57-cpp | |

+ + +
|cert-msc50-cpp | |

+ + +
|cert-msc51-cpp | |

+ + +
|cert-oop57-cpp | |

+ + +
|cert-oop58-cpp | |

+ + +
|clang-analyzer -core.DynamicTypePropagation | |

+ + +

|clang-analyzer-core.uninitialized.CapturedBlockVariabl g] |

+

+ +

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

|clang-analyzer -cpluspl us.I nner Pointer

EXTRACLANGTOOL (1)

+

+ +

|clang-analyzer -nullability.Nul labl eRetur nedFromNonnull | |

+ + +
|clang-anal yzer -optin.osx.OSObjectCStyleCast | |

+ + +
|clang-analyzer -optin.performance.GCDAnti pattern | |

+ + +
|clang-analyzer-optin.performance.Padding | |

+ + +
|clang-analyzer-optin.portability. UnixAPI | |

+ + +
|clang-analyzer-osx.MIG | |

+ + +
|clang-anal yzer -osx.Number ObjectConversion | |

+ + +
|clang-anal yzer -osx.OSObj ectRetainCount | |

+ + +
|clang-analyzer-osx.Obj CProperty | |

+ + +
|clang-analyzer-osx.cocoa.Autor el easeWrite | |

+ + +
|clang-anal yzer -osx.cocoa.Loops | |

+ + +
|clang-anal yzer -osx.cocoa. MissingSuper Call | |

+ + +
|clang-anal yzer -osx.cocoa.NonNilReturnValue | |

+ + +
|clang-analyzer -osx.cocoa. RunLoopAutor el easel eak | |

+ + +
|clang-analyzer-valist.CopyToSelf | |

+ + +
|clang-analyzer-valist.Uninitialized | |

+ + +
|clang-analyzer-valist.Unterminated | |

+ + +
|concurrency-mt-unsafe | |

+ + +
|concurrency-thread-cancel type-asynchronous | |

+ + +

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

|cppcor eguidelines-avoid-goto

EXTRACLANGTOOL (1)

+ + +
|cppcor eguidelines-avoid-non-const-global -variables | |

+ + +
|cppcoreguidelines-init-variables [Yes |

+ + +
|cppcor eguidelines-interfaces-global -init | |

+ + +
|cppcoreguidelines-macro-usage | |

+ + +
|cppcor eguidelines-narrowing-conversions | |

+ + +
|cppcor eguidelines-no-malloc | |

+ + +
|cppcor eguidelines-owning-memory | |

+ + +
|cppcor eguidelines-prefer-member-initializer [Yes |

+ + +
|cppcoreguidelines-pro-bounds-array-to-pointer-decay | |

+ + +
|cppcor eguidelines-pro-bounds-constant-array-index [Yes |

+ + +
|cppcor eguidelines-pro-bounds-pointer-arithmetic | |

+ + +
|cppcor eguidelines-pro-type-const-cast | |

+ + +
|cppcor eguidelines-pro-type-cstyl e-cast [Yes |

+ + +
|cppcor eguidelines-pro-type-member -init [Yes |

+ + +
|cppcor eguidelines-pro-type-reinter pret-cast | |

+ + +
|cppcor egui delines-pro-type-stati c-cast-downcast [Yes |

+ + +
|cppcor egui delines-pro-type-uni on-access | |

+ + +
|cppcor eguidelines-pro-type-vararg | |

+ + +
|cppcoreguidelines-slicing | |

+ + +

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

15

|cppcor egui delines-speci al-member -functions

EXTRACLANGTOOL (1)

+ + +
|cppcor eguidelines-virtual -class-destructor [Yes |

+ + +
|darwin-avoid-spinlock | |

+ + +
|darwin-dispatch-once-nonstatic [Yes |

+ + +
[fuchsia-default-arguments-calls | |

+ + +
[fuchsia-default-arguments-declarations [Yes |

+ + +
[fuchsia-multiple-inheritance | |

+ + +
[fuchsia-overloaded-operator | |

+ + +
[fuchsia-statically-constructed-objects | |

+ + +
[fuchsia-trailing-return | |

+ + +
[fuchsia-virtual-inheritance | |

+ + +
|google-build-explicit-make-pair | |

+ + +
|googl e-build-namespaces | |

+ + +
|googl e-build-using-namespace | |

+ + +
|googl e-default-arguments | |

+ + +
|google-explicit-constructor [Yes |

+ + +
|google-global-names-in-headers | |

+ + +
|googl e-obj c-avoi d-nsobject-new | |

+ + +
|googl e-obj c-avoi d-thr owi ng-exception | |

+ + +
|googl e-obj c-function-naming | |

+ + +

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

15

|googl e-objc-global -variable-declaration

Extra Clang Tools

EXTRACLANGTOOL (1)

+ + +
|googl e-readability-avoid-under scor e-in-googletest-name | |

+ + +
|google-readability-casting | |

+ + +
|google-readability-todo | |

+ + +
|google-runtime-int | |

+ + +
|google-runtime-operator | |

+ + +
|google-upgrade-googl etest-case [Yes |

+ + +
|hicpp-avoid-goto | |

+ + +
|hi cpp-exception-baseclass | |

+ + +
|hi cpp-multiway-paths-covered | |

+ + +
|hicpp-no-assembler | |

+ + +
|hicpp-signed-bitwise | |

+ + +
[linuxker nel-must-use-errs | |

+ + +
[llvm+-header-guard | |

+ + +
[llvm+-include-order [Yes |

+ + +
[llvm-namespace-comment | |

+ + +
[lvm-pr efer -isa-or-dyn-cast-in-conditional s [Yes |

+ + +
[llvm+-prefer-register-over-unsigned [Yes |

+ + +
[[lvm-twine-local [Yes |

+ + +
[lvmlibc-callee-namespace | |

+ + +

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools EXTRACLANGTOOLS(1)

[Ivmlibe-implementati on-in-namespace | |

+ + +
[[lvmlibc-restrict-system-libc-header s |Yes |

+ + +
|[misc-confusable-identifiers | |

+ + +
|mi sc-const-correctness [Yes |

+ + +
|mi sc-definitions-in-headers [Yes |

+ + +
|misc-misleading-bidirectional | |

+ + +
|mi sc-misleading-identifier | |

+ + +
|mi sc-mi splaced-const | |

+ + +
|misc-new-del ete-overloads | |

+ + +
|misc-no-recursion | |

+ + +
|mi sc-non-copyabl e-objects | |

+ + +
|[mi sc-non-private-member -variables-in-classes | |

+ + +
|misc-redundant-expression [Yes |

+ + +
|[misc-static-assert [Yes |

+ + +
|mi sc-thr ow-by-val ue-catch-by-reference | |

+ + +
|mi sc-unconventional -assi gn-oper ator | |

+ + +
[mi sc-uniqueptr-reset-release [Yes |

+ + +
|misc-unused-alias-decls [Yes |

+ + +
|mi sc-unused-parameters [Yes |

+ + +
|mi sc-unused-using-decls [Yes |

+ + +

15

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools EXTRACLANGTOOLS(1)

|[moder nize-avoid-bind [Yes |

+ + +
|moder nize-avoid-c-arrays | |

+ + +
|[moder nize-concat-nested-namespaces [Yes |

+ + +
|[moder nize-depr ecated-headers [Yes |

+ + +
|[moder nize-depr ecated-ios-base-aliases [Yes |

+ + +
|[moder nize-loop-convert [Yes |

+ + +
|[moder nize-macr o-to-enum |Yes |

+ + +
|[moder nize-make-shared [Yes |

+ + +
|[moder ni ze-make-unique [Yes |

+ + +
|[moder nize-pass-by-value [Yes |

+ + +
|[moder nize-raw-string-literal [Yes |

+ + +
|[moder nize-redundant-void-arg [Yes |

+ + +
|[moder nize-replace-auto-ptr [Yes |

+ + +
|[moder nize-replace-disallow-copy-and-assign-macr o [Yes |

+ + +
|[moder nize-replace-random-shuffle [Yes |

+ + +
|[moder nize-retur n-braced-init-list [Yes |

+ + +
|[moder nize-shrink-to-fit [Yes |

+ + +
|[moder nize-unary-static-assert [Yes |

+ + +
|moder nize-use-auto [Yes |

+ + +
|[moder nize-use-bool-literals [Yes |

+ + +

15

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

15

Extra Clang Tools EXTRACLANGTOOLS(1)
|[moder ni ze-use-default-member -init [Yes |
+ + +
|moder nize-use-emplace |Yes |
+ + +
|[moder nize-use-equal s-default [Yes |
+ + +
|[moder nize-use-equal s-del ete [Yes |
+ + +
|[moder nize-use-nodiscard [Yes |
+ + +
|[moder ni ze-use-noexcept [Yes |
+ + +
|[moder nize-use-null ptr [Yes |
+ + +
|[moder nize-use-override [Yes |
+ + +
|[moder nize-use-trailing-return-type [Yes |
+ + +
|[moder nize-use-transpar ent-functors [Yes |
+ + +
|[moder ni ze-use-uncaught-exceptions [Yes |
+ + +
|[moder nize-use-using [Yes |
+ + +
|mpi-buffer-der ef [Yes |
+ + +
|mpi-type-mismatch [Yes |
+ + +
|objc-assert-equals [Yes |
+ + +
|objc-avoid-nserror-init | |
+ + +
|objc-deall oc-in-category | |
+ + +
|obj c-forbidden-subclassing | |
+ + +
|objc-missing-hash | |
+ + +
|objc-nsinvocation-argument-lifetime [Yes |
+ + +

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) ExtraClang Tools EXTRACLANGTOOLS(1)

|objc-property-declaration [Yes |

+ + +
|objc-super-self [Yes |

+ + +
|openmp-exception-escape | |

+ + +
|openmp-use-default-none | |

+ + +
|perfor mance-faster-string-find [Yes |

+ + +
|perfor mance-for-range-copy [Yes |

+ + +
|perfor mance-implicit-conversion-in-loop | |

+ + +
|perfor mance-i nefficient-algorithm [Yes |

+ + +
|perfor mance-i neffi cient-string-concatenation | |

+ + +
|per for mance-inefficient-vector-operation [Yes |

+ + +
|perfor mance-move-const-arg |Yes |

+ + +
|perfor mance-move-constructor -init | |

+ + +
|perfor mance-no-automatic-move | |

+ + +
|perfor mance-no-int-to-ptr | |

+ + +
|perfor mance-noexcept-move-constructor [Yes |

+ + +
|performance-trivially-destructible [Yes |

+ + +
|perfor mance-type-promotion-in-math-fn [Yes |

+ + +
|perfor mance-unnecessary-copy-initialization [Yes |

+ + +
|perfor mance-unnecessary-val ue-param [Yes |

+ + +
|portability-restrict-system-includes [Yes |

+ + +

15

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools EXTRACLANGTOOLS(1)

|portability-simd-intrinsics | |

+ + +
|portability-std-all ocator-const | |

+ + +
[readability-avoid-const-params-in-decls [Yes |

+ + +
[readability-braces-around-statements [Yes |

+ + +
[readability-const-return-type [Yes |

+ + +
[readability-container-contains [Yes |

+ + +
[readability-container-data-pointer [Yes |

+ + +
[readability-container-size-empty [Yes |

+ + +
[readability-convert-member -functions-to-static [Yes |

+ + +
[readability-del ete-null-pointer [Yes |

+ + +
[readability-duplicate-include [Yes |

+ + +
[readability-el se-after-return [Yes |

+ + +
[readability-function-cognitive-complexity | |

+ + +
[readability-function-size | |

+ + +
[readability-identifier-length | |

+ + +
[readability-identifier-naming [Yes |

+ + +
[readability-implicit-bool-conversion [Yes |

+ + +
[readability-inconsi stent-declar ation-par ameter-name [Yes |

+ + +
[readability-isolate-declaration [Yes |

+ + +
[readability-magic-numbers | |

+ + +

15

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools EXTRACLANGTOOLS(1)
[readability-make-member-function-const [Yes |
+ + +
[readability-misleading-indentation | |
+ + +
[readability-misplaced-array-index [Yes |
+ + +
[readability-named-parameter [Yes |
+ + +
|readability-non-const-parameter [Yes |
+ + +
[readability-qualified-auto [Yes |
+ + +
[readability-redundant-access-specifiers [Yes |
+ + +
[readability-redundant-control-flow |Yes |
+ + +
[readability-redundant-declaration [Yes |
+ + +
[readability-redundant-function-ptr-der eference [Yes |
+ + +
[readability-redundant-member -init [Yes |
+ + +
[readability-redundant-preprocessor | |
+ + +
[readability-redundant-smartptr-get [Yes |
+ + +
[readability-redundant-string-cstr [Yes |
+ + +
[readability-redundant-string-init [Yes |
+ + +
[readability-simplify-bool ean-expr [Yes |
+ + +
[readability-simplify-subscript-expr [Yes |
+ + +
[readability-stati c-accessed-through-instance [Yes |
+ + +

15

[readability-static-definition-in-anonymous-namespace [Yes |

+ + +
[readability-string-compare [Yes |
+ + +

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) ExtraClang Tools EXTRACLANGTOOLS(1)
|readability-suspicious-call-argument | |
+ + +
[readability-uniqueptr-del ete-rel ease [Yes |
+ + +
[readability-upper case-literal -suffix [Yes |
+ + +
[readability-use-anyofall of | |
+ + +
|zircon-temporary-objects | |
+ + +

Aliases..

+ +

[Name |Redirect

I I

+ +

|bugprone-narrowing-conversions
+

|cppcor eguidelines-narrowing-conversior
+

|cert-con36-c |bugpr one-spuriously-wake-up-functions
+ +

|cert-con54-cpp |bugpr one-spuriously-wake-up-functions
+ +

|cert-dcl03-c |misc-static-assert

+ +

|cert-dcl16-c [readability-uppercase-literal -suffix

+ +

|cert-dcl37-c |bugprone-reserved-identifier

+ +

|cert-dcl51-cpp |bugpr one-reserved-identifier

+ +

|cert-dcl54-cpp |misc-new-del ete-overloads

+ +

|cert-dcl59-cpp |google-build-namespaces

+ +

|cert-err09-cpp |misc-throw-by-val ue-catch-by-reference
+ +

|cert-err61-cpp |mi sc-thr ow-by-val ue-catch-by-reference
+ +

|cert-exp42-c |bugpr one-suspi ci ous-memor y-compari ol
15 December 15, 2023 EXTRACLANGTOOLS(1)

EXTRACLANGTOOLS(1) Extra Clang Tools EXTRACLANGTOOLS(1)

+ +

|cert-fio38-c |misc-non-copyabl e-objects

+ +

|cert-flp37-c |bugpr one-suspi cious-memor y-compari sol
+ +

|cert-msc30-c |cert-msc50-cpp

+ +

|cert-msc32-c |cert-msc51-cpp

+ +

|cert-oopl1-cpp |performance-move-constructor -init
+ +

|cert-oop54-cpp |bugpr one-unhandl ed-sel f-assignment
+ +

|cert-pos44-c |bugprone-bad-signal-to-kill-thread
+ +

|cert-posa7-c |concurrency-thread-canceltype-asynchro
+ +

|cert-sig30-c |bugprone-signal-handler

+ +

|cert-str34-c |bugprone-signed-char-misuse

+ +

|clang-analyzer-core.Call AndMessage |Clang Satic Analyzer

| |core.CallAndMessage

+ +

|clang-analyzer-core.DivideZero |Clang Satic Analyzer

| |core.DivideZero

+ +

|clang-analyzer -core.NonNull ParamChecker |Clang Static Analyzer

| |core.NonNullParamChecker

+ +

|clang-analyzer-core.Null Der eference |Clang Static Analyzer

| |core.NullDer eference

+ +

|clang-analyzer-core. SackAddressEscape |Clang Satic Analyzer

| |core.StackAddressEscape

+ +

|clang-anal yzer -cor e.UndefinedBinaryOper ator Result |Clang Static Analyzer

+

|core.UndefinedBinaryOper ator Result

-+
T

|clang-analyzer-core.VLAS ze

15

December 15, 2023

|Clang Satic Analyzer

EXTRACLANGTOOL (1)

+

EXTRACLANGTOOLS(1) ExtraClang Tools EXTRACLANGTOOLS(1)
|core VLAS ze
+
|clang-analyzer-core.uninitialized.ArraySubscript |Clang Satic Analyzer

+

|core.uninitialized.ArraySubscript
+

|clang-analyzer-core.uninitialized.Assign
I

+

|[Clang Static Analyzer
|core.uninitialized.Assign
+

|clang-analyzer-core.uninitialized.Branch

|Clang Static Analyzer
|core.uninitialized.Branch

+
|clang-analyzer-core.uninitialized. UndefReturn
I

+

+
|Clang Satic Analyzer
|core.uninitialized.UndefReturn

-+
T

|clang-anal yzer-cplusplus.Move

+

|[Clang Satic Analyzer
[cplusplus.Move
+

|clang-analyzer -cplusplus.NewDel ete
I

+

|Clang Satic Analyzer
[cplusplus.NewDel ete
+

|clang-analyzer-cplusplus.NewDel etel_eaks
I

+

|Clang Static Analyzer
[cplusplus.NewDel etel_eaks

-+
T

|clang-analyzer-deadcode.DeadStores

+

|Clang Satic Analyzer
|deadcode.DeadSores
+

|clang-analyzer-nullability.Nul| Passed ToNonnull
I

+

|Clang Satic Analyzer
[nullability.Null PassedToNonnull
+

|clang-analyzer -nullability.Nul | Retur nedFromNonnul |
I

+

|Clang Static Analyzer
[nullability.Null Retur nedFromNonnul|
+

|clang-analyzer-nullability.NullableDer eferenced
I

+

|Clang Static Analyzer
[nullability.NullableDer eferenced
+

|clang-analyzer -nullability.NullablePassed ToNonnul |
I

+

|Clang Satic Analyzer
[nullability.NullablePassedToNonnull
+

|clang-analyzer-optin.cplusplus.UninitializedObject
I

15 December 15, 2023

|Clang Satic Analyzer
|optin.cplusplus.UninitializedObject

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) ExtraClang Tools EXTRACLANGTOOL (1)
+ +
|clang-analyzer-optin.cplusplus.Virtual Call |Clang Satic Analyzer

| |optin.cplusplus.Virtual Call
+ +

|clang-analyzer -optin.mpi.MPI-Checker |Clang Static Analyzer

| |optin.mpi.MPI-Checker

+ +

|clang-anal yzer-optin.osx.cocoa.l ocalizability. Emptyl ocalizationContextChecker |Clang Static Analyzer

+

|optin.osx.cocoa.localizability. EmptyLoca
+

|clang-analyzer-optin.osx.cocoa.localizability.NonLocalizedStringChecker

|Clang Satic Analyzer
|optin.osx.cocoa.localizability.NonLocaliz

+ +
|clang-analyzer-osx.API |Clang Static Analyzer

| |osx.API

+ +

|clang-anal yzer-osx. SecKeychainAPI |Clang Satic Analyzer

| |osx.SecKeychainAPI

+ +

|clang-anal yzer-osx.cocoa. AtSync |Clang Satic Analyzer

| |osx.cocoa.AtSync

+ +
|clang-analyzer-osx.cocoa.ClassRel ease |Clang Static Analyzer

| |osx.cocoa.ClassRelease
+ +

|clang-anal yzer-osx.cocoa.Dealloc |Clang Satic Analyzer

| |osx.cocoa.Dealloc

+ +

|clang-anal yzer-osx.cocoa.l ncompatibleMethodTypes |Clang Static Analyzer

|osx.cocoa.l ncompatibleMethod Types

+ +
|clang-analyzer-osx.cocoa.NSAutor el easePool |Clang Static Analyzer

| |osx.cocoa.NSAutor el easePool
+ +

|clang-anal yzer -osx.cocoa.NSError |Clang Satic Analyzer

| |osx.cocoa.NSError

+ +
|clang-analyzer-osx.cocoa.NilArg |Clang Satic Analyzer

| losx.cocoa.NilArg

+ +

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

|clang-anal yzer-osx.cocoa.ObjCGenerics

+

EXTRACLANGTOOL (1)

|Clang Satic Analyzer
|osx.cocoa.ObhjCGenerics
+

|clang-anal yzer-osx.cocoa.Retai nCount

+

|Clang Satic Analyzer
|osx.cocoa.RetainCount
+

|clang-analyzer-osx.cocoa. Selflnit

+

|[Clang Satic Analyzer
|osx.cocoa. Sl fInit
+

|clang-anal yzer -osx.cocoa. Super Dealloc

+

|Clang Satic Analyzer
|osx.cocoa.Super Dealloc
+

|clang-anal yzer-osx.cocoa.Unusedivars

|Clang Static Analyzer
|osx.cocoa.Unusedivars

+
|clang-anal yzer-osx.cocoa.VariadicMethodTypes

+

|[Clang Satic Analyzer
|osx.cocoa.VariadicMethodTypes

+

+
|clang-analyzer-osx.coreFoundation.CFError |Clang Satic Analyzer
|osx.coreFoundation.CFError
+
|clang-analyzer -osx.cor eFoundation.CFNumber |Clang Satic Analyzer

+

|osx.coreFoundation.CFNumber
+

|clang-anal yzer-osx.cor eFoundation. CFRetainRelease

+

|Clang Satic Analyzer
|osx.coreFoundation.CFRetainRel ease
+

|clang-anal yzer-osx.cor eFoundati on.contai ner s.OutOfBounds

|Clang Static Analyzer
|osx.coreFoundation.containers.OutOfBol

+
|clang-analyzer -osx.cor eFoundation.container s.Pointer S zedVal ues

+

-+
T

|[Clang Satic Analyzer
|osx.coreFoundation.containers.Pointer S

+

+
|clang-analyzer -security.FloatLoopCounter |Clang Static Analyzer
|security.FloatLoopCounter
+
|clang-analyzer -security.insecur eAPI .DeprecatedOr UnsafeBuffer Handling |Clang Static Analyzer

+

|security.insecur eAPI.DeprecatedOrUnsa

-+
T

|clang-analyzer-security.insecur eAPI .UncheckedReturn

15 December 15, 2023

|Clang Static Analyzer

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

EXTRACLANGTOOL (1)

|security.insecur eAPI.UncheckedReturn

+
|clang-analyzer -security.insecureAPI .bcmp

+

+
|Clang Static Analyzer
|security.insecureAPI.bcmp
+

|clang-analyzer-security.insecur eAPI .bcopy

+

|Clang Static Analyzer
|security.insecureAPI.bcopy
+

|clang-analyzer-security.insecureAPI .bzero

|Clang Satic Analyzer
|security.insecureAPI.bzero

+
|clang-analyzer-security.insecur eAPI .getpw

+

+
|Clang Static Analyzer
|security.insecur eAPI.getpw

+

|clang-analyzer-security.insecur eAPI.gets |Clang Satic Analyzer
|[security.insecureAPI.gets
+
|clang-analyzer -security.insecur eAPI .mkstemp |Clang Static Analyzer

+

|security.insecur eAPI.mkstemp
+

|clang-analyzer -security.insecur eAPI.mktemp

+

|Clang Static Analyzer
|security.insecureAPI.mktemp

-+
T

|clang-analyzer-security.insecureAPI.rand

+

|Clang Satic Analyzer
|security.insecureAPI.rand
+

|clang-analyzer-security.insecur eAPI .strcpy

+

|Clang Satic Analyzer
|security.insecureAPI .strcpy
+

|clang-analyzer -security.insecur eAPI .vfork

+

|[Clang Satic Analyzer
|security.insecur eAPI .vfork
+

|clang-analyzer-unix.API
I

+

|[Clang Satic Analyzer
[unix.API
+

|clang-analyzer-unix.Malloc

+

|Clang Static Analyzer
|unix.Malloc
+

|clang-analyzer-unix.MallocS zeof

15 December 15, 2023

|Clang Satic Analyzer
|unix.MallocS zeof

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools EXTRACLANGTOOLS(1)
+ +

|clang-analyzer -unix.MismatchedDeall ocator |Clang Satic Analyzer

| |unix.MismatchedDeal l ocator
+ +

|clang-analyzer -unix.Vfork |Clang Static Analyzer

| [unix.Vfork

+ +
|clang-analyzer-unix.cstring.BadSizeArg |Clang Static Analyzer

| |unix.cstring.BadS zeArg

+ +
|clang-analyzer-unix.cstring.Null Arg |Clang Satic Analyzer

| |unix.cstring.NullArg

+ +
|cppcoreguidelines-avoid-c-arrays |moder nize-avoid-c-arrays
+ +

|cppcor egui delines-avoi d-magi c-numbers [readability-magic-numbers
+ +

|cppcor egui delines-c-copy-assignment-signature
+

|misc-unconventional-assi gn-oper ator
+

|cppcor eguidelines-explicit-virtual-functions

|[moder nize-use-override

+ +
|cppcor egui delines-macr o-to-enum |[moder nize-macr o-to-enum
+ +

|cppcor egui delines-non-private-member -variables-in-classes
+

|misc-non-private-member-variables-in-c

+

[fuchsia-header-anon-namespaces

|google-build-namespaces

+

|googl e-readability-braces-around-statements
+

+

|readability-braces-around-statements
+

|google-readability-function-size

[readability-function-size

+ +

|googl e-readability-namespace-comments [[lvm-namespace-comment

+ +

|hicpp-avoid-c-arrays |[moder nize-avoid-c-arrays

+ +

|hicpp-braces-around-statements [readability-braces-around-statements
+ +

|hicpp-deprecated-headers |[moder nize-depr ecated-headers

+ +

|hicpp-explicit-conversions

15 December 15, 2023

|google-explicit-constructor

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools EXTRACLANGTOOLS(1)
+ +

|hicpp-function-size [readability-function-size
+ +
|hicpp-invalid-access-moved |bugpr one-use-after-move
+ +

|hicpp-member-init

|cppcor eguidelines-pro-type-member-init

+ +

|hicpp-move-const-arg |perfor mance-move-const-arg
+ +

|hicpp-named-par ameter |readability-named-par ameter
+ +

|hicpp-new-del ete-operator s
+

|misc-new-del ete-overloads
+

|hicpp-no-array-decay

[cppcor eguidelines-pro-bounds-array-to-|

+ +

|hicpp-no-malloc |cppcor eguidelines-no-malloc

+ +

|hicpp-noexcept-move |per formance-noexcept-move-constructor
+ +

|hi cpp-special-member -functions
+

|cppcor eguidelines-speci al-member -functi

+

|hicpp-static-assert
+

|mi sc-static-assert

-+
T

|hicpp-undel egated-constructor
+

[bugpr one-undel egated-constructor
+

|hicpp-upper case-literal-suffix

[readability-uppercase-literal -suffix

+
|hicpp-use-auto

+
|moder nize-use-auto

+ +
|hicpp-use-emplace |[moder nize-use-emplace
+ +

|hicpp-use-equal s-default
+

|[moder nize-use-equal s-default
+

|hicpp-use-equal s-del ete

|[moder nize-use-equal s-del ete

+ +
|hi cpp-use-noexcept |[moder nize-use-noexcept
+ +

|hicpp-use-nullptr |[moder nize-use-null ptr

+ +

|hicpp-use-override

15

December 15, 2023

|[moder nize-use-override

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) ExtraClang Tools EXTRACLANGTOOLS(1)

+ +

|hicpp-vararg |cppcoreguidelines-pro-type-vararg
+ +

[llvm-else-after-return [readability-else-after-return

+ +

[lvm-qualified-auto
+

[readability-qualified-auto

-+
T

Clang-tidy I DE/Editor Integrations
Apart from being a standalone tool, clang-tidy isintegrated into various IDES, code analyzers, and
editors. We recommend using clangd which integrates clang-tidy and is available in most major editors
through plugins (Vim, Emacs, Visual Studio Code, Sublime Text and more).

The following table shows the most well-known clang-tidy integrationsin detail.

+ + + + + + +
I |Feature | I I I I
+ + + + + + +
[Tool |[On-the-fly|Check list |Optionsto |Configuration|Custom |
| [inspection|configuration|checks [via |clang-tidy |
| | [(GUI) [(GUI) |.clang-tidy |binary |
I I I I ffiles I I
+ + + + + + +
|A.L.E. for |+ - - - [+ |
Vim | I I I I I
+ + + + + + +
|Clang Power |- I+ - I+ - I
[Toolsfor | | | | | |
[Visua Studio | | | | | |
+ + + + + + +
|Clangd [+ - - [+ - I
+ + + + + + +
|CLion [+ [+ [+ [+ [+ I
IDE | I I I I I
+ + + + + + +
|CodeChecker |- - - - [+ |
+ + + + + + +
|CPPCheck |- - - - - I
+ + + + + + +
|CPPDepend |- - - - - I

15

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

+ + + + + +
|Flycheck for |+ |- |- [+ [+ |
[Emacs I I I I I I
+ + + + + +
|[KDevelop |- [+ [+ [+ [+ I
|IDE I I I I I I
+ + + + + +
|Qt Creator |+ |+ |- |+ [+ I
|IDE I I I I I I
+ + + + + +
|ReSharper |+ [+ - [+ [+ I
|C++ for I I I I I I
[Visual Studio | | | | | |
+ + + + + +
[Syntastic for |+ - |- - [+ |
[Vim I I I I I I
+ + + + + +
[Visual Assist |+ |+ - - - |
[for Visual | | | | | |
[Studio I I I I I I
+ + + + + +

IDEs

CLion 2017.2 and later integrates clang-tidy as an extension to the built-in code analyzer. Starting from
2018.2 EAP, CLion alows using clang-tidy via Clangd. Inspections and applicable quick-fixes are
performed on the fly, and checks can be configured in standard command line format. In this
integration, you can switch to the clang-tidy binary different from the bundled one, pass the
configuration in .clang-tidy filesinstead of using the IDE settings, and configure options for particular
checks.

KDevelop with the kdev-clang-tidy plugin, starting from version 5.1, performs static analysis using
clang-tidy. The plugin launches the clang-tidy binary from the specified location and parses its output
to provide alist of issues.

QtCreator 4.6 integrates clang-tidy warnings into the editor diagnostics under the Clang Code Model.
To employ clang-tidy inspection in QtCreator, you need to create a copy of one of the presets and
choose the checks to be performed. Since QtCreator 4.7 project-wide analysis is possible with the
Clang Tools analyzer.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

MS Visual Sudio has a native clang-tidy-vs plugin and also can integrate clang-tidy by means of three
other tools. The ReSharper C++ extension, version 2017.3 and later, provides seamless clang-tidy
integration: checks and quick-fixes run alongside native inspections. Apart from that, ReSharper C++
incorporates clang-tidy as a separate step of its code clean-up process. Visual Assist build 2210
includes a subset of clang-tidy checklist to inspect the code as you edit. Another way to bring
clang-tidy functionality to Visual Studio isthe Clang Power Tools plugin, which includes most of the
clang-tidy checks and runs them during compilation or as a separate step of code analysis.

Editors

Emacs24, when expanded with the Flycheck plugin, incorporates the clang-tidy inspection into the
syntax analyzer. For Vim, you can use Syntastic, which includes clang-tidy, or A.L.E., alint engine
that applies clang-tidy along with other linters.

Analyzers

clang-tidy isintegrated in CPPDepend starting from version 2018.1 and CPPCheck 1.82. CPPCheck
integration lets you import Visual Studio solutions and run the clang-tidy inspection on them. The
CodeChecker application of version 5.3 or later, which also comes as a plugin for Eclipse, supports
clang-tidy as a static analysisinstrument and allows to use a custom clang-tidy binary.

Getting Involved
clang-tidy has several own checks and can run Clang static analyzer checks, but its power isin the

ability to easily write custom checks.

Checks are organized in modules, which can be linked into clang-tidy with minimal or no code changes
in clang-tidy.

Checks can plug into the analysis on the preprocessor level using PPCallbacks or on the AST level
using AST Matchers. When an error is found, checks can report them in away similar to how Clang

diagnostics work. A fix-it hint can be attached to a diagnostic message.

Theinterface provided by clang-tidy makes it easy to write useful and precise checksin just afew lines
of code. If you have an ideafor agood check, the rest of this document explains how to do this.

There are afew tools particularly useful when developing clang-tidy checks:

© add_new_check.py is ascript to automate the process of adding a new check, it will create
the check, update the CMake file and create atest;

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

© rename_check.py does what the script name suggests, renames an existing check;

® pp-trace logs method calls on PPCallbacks for a source file and isinvaluablein
understanding the preprocessor mechanism;

® clang-query isinvaluable for interactive prototyping of AST matchers and exploration of
the Clang AST;

© clang-check with the -ast-dump (and optionally -ast-dump-filter) provides a convenient way
to dump AST of a C++ program.

If CMake is configured with CLANG_TIDY_ENABLE_STATIC_ANALYZER=NO,
clang-tidy will not be built with support for the clang-analyzer-* checks or the mpi-* checks.

Choosing the Right Place for your Check
If you have an idea of acheck, you should decide whether it should be implemented as a:

® Clang diagnostic: if the check is generic enough, targets code patterns that most probably are bugs
(rather than style or readability issues), can be implemented effectively and with extremely low false
positive rate, it may make a good Clang diagnostic.

® Clang static analyzer check: if the check requires some sort of control flow analysis, it should
probably be implemented as a static analyzer check.

® clang-tidy check is a good choice for linter-style checks, checks that are related to a certain coding
style, checks that address code readability, etc.

Preparing your Workspace
If you are new to LLVM development, you should read the Getting Started with the LLVM System,
Using Clang Tools and How To Setup Clang Tooling For LLVM documents to check out and build
LLVM, Clang and Clang Extra Tools with CMake.

Once you are done, change to the llvm/clang-tools-extra directory, and let’ s start!

When you configure the CMake build, make sure that you enable the clang and clang-tools-extra
projects to build clang-tidy. Because your new check will have associated documentation, you will
also want to install Sphinx and enable it in the CMake configuration. To save build time of the core

Clang libraries you may want to only enable the X86 target in the CMake configuration.

The Directory Structure

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

clang-tidy/ # Clang-tidy core.

[-- ClangTidy.h # Interfaces for users.

[-- ClangTidyCheck.h # Interfaces for checks.

[-- ClangTidyModule.h # Interface for clang-tidy modules.
I

|-- google/ # Google clang-tidy module.
|-+

|-- GoogleTidyModule.cpp

|-- GoogleTidyModule.h

[-- Hvm/ #LLVM clang-tidy module.
[-+

|-- LLVMTidyModule.cpp

|-- LLVMTidyModule.h

|-- objc/ # Objective-C clang-tidy module.
[-+

|-- ObjCTidyModule.cpp

|-- ObjCTidyModule.h

|-- tool/ # Sources of the clang-tidy binary.

test/clang-tidy/ # Integration tests.

unittests/clang-tidy/ # Unit tests.
[-- ClangTidyTest.h

-- GoogleModuleTest.cpp

- LLVMModuleTest.cpp

- ObjCModuleTest.cpp

Writing a clang-tidy Check

15

So you have an idea of auseful check for clang-tidy.

December 15, 2023

EXTRACLANGTOOL (1)

clang-tidy source code resides in the llvm/clang-tools-extra directory and is structured as follows:

- ClangTidyModuleRegistry.h # Interface for registering of modules.

First, if you're not familiar with LLVM development, read through the Getting Started with LLVM
document for instructions on setting up your workflow and the LLVM Coding Standards document to
familiarize yourself with the coding style used in the project. For code reviews we mostly use LLVM

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

Phabricator.
Next, you need to decide which module the check belongs to. Modules are located in subdirectories of
clang-tidy/ and contain checks targeting a certain aspect of code quality (performance, readability,
etc.), certain coding style or standard (Google, LLVM, CERT, etc.) or awidely used APl (e.g. MPI).
Their names are the same as the user-facing check group names described above.
After choosing the module and the name for the check, run the clang-tidy/add_new_check.py script to
create the skeleton of the check and plug it to clang-tidy. It's the recommended way of adding new
checks.
If we want to create a readability-awesome-function-names, we would run:

$ clang-tidy/add_new_check.py readability awesome-function-names

Theadd_new_check.py script will:

© create the class for your check inside the specified modul€e’ s directory and register it in the
module and in the build system;

© create alit test filein the test/clang-tidy/ directory;
® create adocumentation file and include it into the docs/clang-tidy/checkd/list.rst.

Let’sseein more detail at the check class definition:

#include"../ClangTidyCheck.h"

namespace clang {
namespace tidy {
namespace readability {

class AwesomeFunctionNamesCheck : public ClangTidyCheck {
public:
AwesomeFunctionNamesCheck(StringRef Name, ClangTidyContext * Context)
: ClangTidyCheck(Name, Context) {}
void registerMatchers(ast_matchers::MatchFinder * Finder) override;

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

void check(const ast_matchers::MatchFinder::MatchResult & Result) override;
|

} // namespace readability
} /I namespace tidy
} /I namespace clang

Constructor of the check receives the Name and Context parameters, and must forward them to
the ClangTidyCheck constructor.

In our case the check needs to operate on the AST level and it overridesthe registerMatchers
and check methods. If we wanted to analyze code on the preprocessor level, we' d need instead
to override the register PPCallback s method.

In the register M atcher s method we create an AST Matcher (see AST Matchers for more
information) that will find the pattern in the AST that we want to inspect. The results of the
matching are passed to the check method, which can further inspect them and report diagnostics.

using namespace ast_matchers;

void AwesomeFunctionNamesCheck::registerMatchers(MatchFinder * Finder) {

Finder->addM atcher(functionDecl ().bind("x"), this);

void AwesomeFunctionNamesCheck::check(const MatchFinder::MatchResult & Result) {

const auto * MatchedDecl = Result.Nodes.getNodeA s<FunctionDecl>("x");
if (!MatchedDecl->getldentifier() || MatchedDecl->getName().startswith("awesome "))
return;
diag(MatchedDecl->getL ocation(), "function %0 is insufficiently awesome")
<< MatchedDecl
<< FixItHint::Createl nsertion(MatchedDecl->getL ocation(), "awesome_");

(If you want to see an example of auseful check, look at
clang-tidy/google/ExplicitConstructor Check.h and
clang-tidy/google/ExplicitConstructor Check.cpp).

If you need to interact with macros or preprocessor directives, you will want to override the

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

method register PPCallbacks. The add _new_check.py script does not generate an override for
this method in the starting point for your new check.

If your check applies only under a specific set of language options, be sure to override the
method isL anguageV er sionSupported to reflect that.

Check development tips

Writing your first check can be a daunting task, particularly if you are unfamiliar with the LLVM and
Clang code bases. Here are some suggestions for orienting yourself in the codebase and working on
your check incrementally.

Guideto useful documentation

15

Many of the support classes created for LLVM are used by Clang, such as SringRef and SmallVector.
These and other commonly used classes are described in the Important and useful LLVM APIs and
Picking the Right Data Structure for the Task sections of the LLVM Programmer’s Manual. Y ou don’'t
need to memorize all the details of these classes; the generated doxygen documentation has everything
if you need it. Inthe header LLVM/ADT/STLEXtras.h you'll find useful versions of the STL
algorithms that operate on LLVM containers, such as [lvm::all_of.

Clang isimplemented on top of LLVM and introduces its own set of classes that you will interact with
while writing your check. When a check issues diagnostics and fix-its, these are associated with
locationsin the source code. Source code locations, source files, ranges of source locations and the
SourceManager class provide the mechanisms for describing such locations. These and other topics are
described in the "Clang" CFE Internals Manual. Whereas the doxygen generated documentation serves
as areference to the internals of Clang, this document serves as a guide to other developers. Topicsin
that manual of interest to a check developer are:

© The Clang "Basic" Library for information about diagnostics, fix-it hints and source locations.

® The Lexer and Preprocessor Library for information about tokens, lexing (transforming characters
into tokens) and the preprocessor.

® The AST Library for information about how C++ source statements are represented as an abstract
syntax tree (AST).

Most checks will interact with C++ source code viathe AST. Some checks will interact with
the preprocessor. The input source file is lexed and preprocessed and then parsed into the AST.
Once the AST isfully constructed, the check is run by applying the check’ sregistered AST
matchers against the AST and invoking the check with the set of matched nodes from the AST.
Monitoring the actions of the preprocessor is detached from the AST construction, but a check

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

can collect information during preprocessing for later use by the check when nodes are matched
by the AST.

Every syntactic (and sometimes semantic) element of the C++ source code is represented by
different classesin the AST. You select the portions of the AST you're interested in by
composing AST matcher functions. Y ou will want to study carefully the AST Matcher
Reference to understand the relationship between the different matcher functions.

Using the Transformer library

The Transformer library allows you to write a check that transforms source code by expressing the
transformation as a RewriteRule. The Transformer library provides functions for composing edits to
source code to create rewrite rules. Unless you need to perform low-level source location
manipulation, you may want to consider writing your check with the Transformer library. The Clang
Transformer Tutorial describes the Transformer library in detail.

To use the Transformer library, make the following changes to the code generated by the
add_new_check.py script:

® Include ../utilg/Transformer ClangTidyCheck.h instead of ../ClangTidyCheck.h

® Change the base class of your check from ClangTidyCheck to Transfor mer ClangTidyCheck
® Delete the override of theregister Matcher s and check methods in your check class.

® Write afunction that creates the RewriteRule for your check.

® Call the function in your check’s constructor to pass the rewrite rule to
Transformer ClangTidyCheck’s constructor.

Developing your check incrementally

15

The best way to develop your check isto start with the simple test cases and increase complexity
incrementally. Thetest file created by the add_new_check.py script is a starting point for your test
cases. A rough outline of the process looks like this:

® Write atest case for your check.

© Prototype matchers on the test file using clang-query.

® Capture the working matchersin the register M atcher s method.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® |ssue the necessary diagnostics and fix-itsin the check method.

® Add the necessary CHECK-MESSAGES and CHECK -FI XES annotations to your test case to
validate the diagnostics and fix-its.

® Build the target check-clang-tool to confirm the test passes.
® Repeat the process until all aspects of your check are covered by tests.

The quickest way to prototype your matcher is to use clang-query to interactively build up your
matcher. For complicated matchers, build up a matching expression incrementally and use
clang-query’slet command to save named matching expressions to simplify your matcher. Just
like breaking up a huge function into smaller chunks with intention-revealing names can help
you understand a complex algorithm, breaking up a matcher into smaller matchers with
intention-revealing names can help you understand a complicated matcher. Once you have a
working matcher, the C++ API will be virtually identical to your interactively constructed
matcher. You can use local variables to preserve your intention-revealing names that you
applied to nested matchers.

Creating private matchers
Sometimes you want to match a specific aspect of the AST that isn’t provided by the existing AST
matchers. Y ou can create your own private matcher using the same infrastructure as the public
matchers. A private matcher can simplify the processing in your check method by eliminating complex
hand-crafted AST traversal of the matched nodes. Using the private matcher allows you to select the
desired portions of the AST directly in the matcher and refer to it by abound name in the check
method.

Unit testing helper code
Private custom matchers are a good example of auxiliary support code for your check that can be tested
with aunit test. It will be easier to test your matchers or other support classes by writing a unit test
than by writing a FileCheck integration test. The ASTM atcher ST ests target contains unit tests for the
public AST matcher classes and is agood source of testing idioms for matchers.

Y ou can build the Clang-tidy unit tests by building the ClangTidyTeststarget. Test targetsin LLVM
and Clang are excluded from the "build all" style action of IDE-based CMake generators, so you heed
to explicitly build the target for the unit tests to be built.

Making your check robust

Once you've covered your check with the basic "happy path" scenarios, you'll want to torture your
check with as many edge cases as you can cover in order to ensure your check is robust. Running your

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

check on alarge code base, such as Clang/LLVM, is agood way to catch things you forgot to account
for in your matchers. However, the LLVM code base may be insufficient for testing purposes as it was
developed against a particular set of coding styles and quality measures. The larger the corpus of code
the check is tested againgt, the higher confidence the community will have in the check’s efficacy and
false positive rate.

Some suggestions to ensure your check is robust:

® Create header files that contain code matched by your check.

® Validate that fix-its are properly applied to test header files with clang-tidy. You will need to
perform thistest manually until automated support for checking messages and fix-itsis added to the
check_clang_tidy.py script.

® Define macros that contain code matched by your check.

® Define template classes that contain code matched by your check.

® Define template specializations that contain code matched by your check.

® Test your check under both Windows and Linux environments.

® Watch out for high false positive rates. Ideally, a check would have no false positives, but given that
matching against an AST is not control- or data flow- sensitive, a number of false positives are
expected. The higher the false positive rate, the less likely the check will be adopted in practice.
M echanisms should be put in place to help the user manage fal se positives.

® There are two primary mechanisms for managing false positives. supporting a code pattern which
allows the programmer to silence the diagnostic in an ad hoc manner and check configuration
optionsto control the behavior of the check.

® Consider supporting a code pattern to allow the programmer to silence the diagnostic whenever such
a code pattern can clearly express the programmer’ sintent. For example, allowing an explicit cast to

void to silence an unused variable diagnostic.

® Consider adding check configuration options to alow the user to opt into more aggressive checking
behavior without burdening users for the common high-confidence cases.

Documenting your check
The add_new_check.py script creates entries in the release notes, the list of checks and a new file for

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

the check documentation itself. It isrecommended that you have a concise summation of what your
check does in asingle sentence that is repeated in the rel ease notes, as the first sentence in the doxygen
comments in the header file for your check class and as the first sentence of the check documentation.
Avoid the phrase "this check" in your check summation and check documentation.

If your check relates to a published coding guideline (C++ Core Guidelines, MISRA, etc.) or style
guide, provide links to the relevant guideline or style guide sectionsin your check documentation.

Provide enough examples of the diagnostics and fix-its provided by the check so that a user can easily
understand what will happen to their code when the check isrun. If there are exceptions or limitations
to your check, document them thoroughly. Thiswill help users understand the scope of the diagnostics
and fix-its provided by the check.

Building the target docs-clang-tools-html will run the Sphinx documentation generator and create
documentation HTML files in the tools/clang/tool s/extra/docs/html directory in your build tree. Make
sure that your check is correctly shown in the release notes and the list of checks. Make sure that the
formatting and structure of your check’s documentation looks correct.

Registering your Check
(Theadd_new_check.py script takes care of registering the check in an existing module. If you want to
create a new module or know the details, read on.)

The check should be registered in the corresponding module with a distinct name:

classMyModule : public ClangTidyModule {
public:
void addCheckFactories(ClangTidyCheckFactories & CheckFactories) override {
CheckFactories.registerCheck<ExplicitConstructorCheck>(
"my-explicit-constructor");

Now we need to register the module in the ClangTidyM oduleRegistry using a statically
initialized variable:

static ClangTidyModuleRegistry::Add<MyModule> X ("my-module”,
"Adds my lint checks.");

When using LLVM build system, we need to use the following hack to ensure the moduleis
linked into the clang-tidy binary:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Add this near the ClangTidyM oduleRegistry:: Add<MyM odule> variable:

/I Thisanchor is used to force the linker to link in the generated object file
/l and thus register the MyModule.
volatile int MyM oduleAnchorSource = 0;

And this to the main trandation unit of the clang-tidy binary (or the binary you link the
clang-tidy library in) clang-tidy/tool/ClangTidyMain.cpp:

I/l This anchor is used to force the linker to link the MyModule.
extern volatile int MyM odul eAnchorSource;
static int MyModuleAnchorDestination = MyM oduleAnchorSource;

Configuring Checks
If acheck needs configuration options, it can access check-specific options using the
Options.get<Type>(" SomeOption", DefaultValue) cal in the check constructor. In this case the check
should also override the ClangTidyCheck:: stor eOptions method to make the options provided by the
check discoverable. This method lets clang-tidy know which options the check implements and what
the current values are (e.g. for the -dump-config command line option).

class MyCheck : public ClangTidyCheck {
const unsigned SomeOptionl;
const std::string SomeOption2;

public:
MyCheck(StringRef Name, ClangTidyContext * Context)
: ClangTidyCheck(Name, Context),
SomeOption(Options.get(" SomeOptionl”, -1U)),
SomeOption(Options.get(" SomeOption2”, "some default™)) {}

void storeOptions(ClangTidyOptions::OptionMap & Opts) override {

Options.store(Opts, " SomeOption1", SomeOptionl);
Options.store(Opts, " SomeOption2", SomeOption2);

}

Assuming the check is registered with the name "my-check”, the option can then be set ina
.clang-tidy filein the following way:

CheckOptions:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

my-check.SomeOptionl: 123
my-check.SomeOption2: ' some other value'

If you need to specify check options on acommand line, you can use the inline YAML format:

$ clang-tidy -config="{ CheckOptions: {a b, x: y}}" ...

Testing Checks

15

To run tests for clang-tidy, build the check-clang-toolstarget. For instance, if you configured your
CMake build with the ninja project generator, use the command:

$ ninja check-clang-tools

clang-tidy checks can be tested using either unit tests or lit tests. Unit tests may be more
convenient to test complex replacements with strict checks. Lit tests allow using partial text
matching and regular expressions which makes them more suitable for writing compact tests for
diagnostic messages.

The check_clang_tidy.py script provides an easy way to test both diagnostic messages and
fix-its. It filters out CHECK lines from the test file, runs clang-tidy and verifies messages and
fixes with two separate FileCheck invocations: once with FileCheck’ s directive prefix set to
CHECK-MESSAGES, validating the diagnostic messages, and once with the directive prefix set
to CHECK-FIXES, running against the fixed code (i.e., the code after generated fix-its are
applied). In particular, CHECK-FI XES: can be used to check that code was not modified by
fix-its, by checking that it is present unchanged in the fixed code. The full set of FileCheck
directivesis available (e.g., CHECK-MESSAGES-SAME:, CHECK-MESSAGES-NOT:),
though typically the basic CHECK forms (CHECK-MESSAGES and CHECK-FIXES) are
sufficient for clang-tidy tests. Note that the FileCheck documentation mostly assumes the

default prefix (CHECK), and hence describes the directive as CHECK :, CHECK-SAME:,
CHECK-NOT:, etc. Replace CHECK by either CHECK-FIXES or CHECK-MESSAGES for
clang-tidy tests.

An additiona check enabled by check_clang_tidy.py ensuresthat if CHECK-MESSAGES is
used in afile then every warning or error must have an associated CHECK in that file. Or, you
can use CHECK-NOTES: instead, if you want to also ensure that al the notes are checked.

To usethe check _clang_tidy.py script, put a.cpp file with the appropriate RUN linein the

test/clang-tidy directory. Use CHECK-MESSAGES: and CHECK-FIXES: linesto write checks
against diagnostic messages and fixed code.

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

It's advised to make the checks as specific as possible to avoid checks matching to incorrect
parts of the input. Use [[@L INE+X]]/[[@L I NE-X]] substitutions and distinct function and
variable namesin the test code.

Here's an example of atest using the check_clang_tidy.py script (the full source codeis at
test/clang-tidy/checker s'google/readability-casting.cpp):

/Il RUN: %check_clang_tidy %s google-readability-casting %t

void f(int a) {
intb=(int)g;

/I CHECK-MESSAGES: :[[@LINE-1]]:11: warning: redundant cast to the same type [google-readability-casting]

/I CHECK-FIXES: intb = a;
}

To check more than one scenario in the same test file use -check-suffix=SUFFI X-NAME on
check_clang_tidy.py command line or
-check-suffixes=sSUFFIX-NAME-1,SUFFIX-NAME-2,.... With

-check-suffix[es]=SUFFI X-NAM E you need to replace your CHECK -* directives with
CHECK-MESSAGES-SUFFIX-NAME and CHECK -FI XES-SUFFIX-NAME.

Here's an example:

/I RUN: %check_clang_tidy -check-suffix=USING-A %s misc-unused-using-decls %t -- -- -DUSING_A
Il RUN: %check_clang_tidy -check-suffix=USING-B %s misc-unused-using-decls %t -- -- -DUSING_B
/I RUN: %check_clang_tidy %s misc-unused-using-decls %t

/Il CHECK-MESSAGES-USING-A: :[[@LINE-8]]:10: warning: using decl 'A’ {{.*}}
Il CHECK-MESSAGES-USING-B: :[[@LINE-7]]:10: warning: using decl 'B’ {{.*}}
/I CHECK-MESSAGES: :[[@LINE-6]]:10: warning: using decl 'C’ {{.*}}

/l CHECK-FIXES-USING-A-NOT: using a::A;$

/| CHECK-FIXES-USING-B-NOT: using a::B;$

/| CHECK-FIXES-NOT: using a::C;$

There are many dark corners in the C++ language, and it may be difficult to make your check
work perfectly in all cases, especialy if it issuesfix-it hints. The most frequent pitfalls are

macros and templates:

1. code written in a macro body/template definition may have a different meaning depending on the
macro expansion/template instantiation;

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

2. multiple macro expansions/template instantiations may result in the same code being inspected by
the check multiple times (possibly, with different meanings, see 1), and the same warning (or a
dightly different one) may be issued by the check multiple times; clang-tidy will deduplicate
_identical _warnings, but if the warnings are slightly different, all of them will be shown to the user
(and used for applying fixes, if any);

3. making replacements to a macro body/template definition may be fine for some macro
expansiong/template instantiations, but easily break some other expansiong/instantiations.

If you need multiple files to exercise al the aspects of your check, it is recommended you place
them in a subdirectory named for the check under the I nputs directory for the module containing
your check. This keeps the test directory from getting cluttered.

If you need to validate how your check interacts with system header files, a set of simulated
system header filesislocated in the checker s/l nputs/Header s directory. The path to this
directory isavailable in alit test with the variable % clang_tidy_headers.

Out-of-tree check plugins
Developing an out-of-tree check as a plugin largely follows the steps outlined above. The pluginisa
shared library whose code lives outside the clang-tidy build system. Build and link this shared library
against LLVM as done for other kinds of Clang plugins.

The plugin can be loaded by passing -load to clang-tidy in addition to the names of the checks to
enable.

$ clang-tidy --checks=-* ,my-explicit-constructor -list-checks -load myplugin.so

There is no expectations regarding ABI and API stahility, so the plugin must be compiled
against the version of clang-tidy that will be loading the plugin.

The plugins can use threads, TLS, or any other facilities available to in-tree code which is
accessible from the external headers.

Running clang-tidy on LLVM
Totest acheck it'sbest to try it out on alarger code base. LLVM and Clang are the natural targets as
you aready have the source code around. The most convenient way to run clang-tidy iswith acompile
command database; CMake can automatically generate one, for a description of how to enable it see
How To Setup Clang Tooling For LLVM. Once compile_commands.json isin place and aworking
version of clang-tidy isin PATH the entire code base can be analyzed with
clang-tidy/tool/run-clang-tidy.py. The script executes clang-tidy with the default set of checks on every

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

tranglation unit in the compile command database and displays the resulting warnings and errors. The
script provides multiple configuration flags.

® The default set of checks can be overridden using the -checks argument, taking the identical format
as clang-tidy does. For example -checks=-* , moder nize-use-override will run the
moder nize-use-override check only.

® To restrict the files examined you can provide one or more regex arguments that the file names are
matched against. run-clang-tidy.py clang-tidy/.* Check\.cpp will only analyze clang-tidy checks. It
may also be necessary to restrict the header files that warnings are displayed from using the
-header -filter flag. It has the same behavior as the corresponding clang-tidy flag.

® To apply suggested fixes -fix can be passed as an argument. This gathers all changes in atemporary
directory and applies them. Passing -for mat will run clang-format over changed lines.

On checks profiling
clang-tidy can collect per-check profiling info, and output it for each processed source file (trandation
unit).

To enable profiling info collection, use the -enable-check-profile argument. The timings will be output
to stderr as atable. Example outpuit:

$ clang-tidy -enable-check-profile -checks=-* ,readability-function-size source.cpp

clang-tidy checks profiling

Total Execution Time: 1.0282 seconds (1.0258 wall clock)

---User Time--- --System Time-- --User+System-- --- wall Time--- --- Name ---
0.9136 (100.0%) 0.1146 (100.0%) 1.0282 (100.0%) 1.0258 (100.0%) readability-function-size
0.9136 (100.0%) 0.1146 (100.0%) 1.0282 (100.0%) 1.0258 (100.0%) Total

It can also store that data as JSON files for further processing. Example output:

$ clang-tidy -enable-check-profile -store-check-profile=. -checks=-* ,readability-function-size source.cpp
$ # Note that there won’t be timings table printed to the console.

$ Is /tmp/out/

20180516161318717446360-source.cpp.json

$ cat 20180516161318717446360-source.cpp.json

{

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

"file": "/path/to/source.cpp”,
"timestamp”: "2018-05-16 16:13:18.717446360",
"profile": {

"time.clang-tidy.readability-function-size.wall": 1.0421266555786133e+00,
"time.clang-tidy.readability-function-size.user": 9.2088400000005421e-01,
"time.clang-tidy.readability-function-size.sys": 1.2418899999999974e-01

There is only one argument that controls profile storage:
® -store-check-profile=<prefix>

By default reports are printed in tabulated format to stderr. When this option is passed, these per-TU
profiles areinstead stored as JSON. |f the prefix is not an absolute path, it is considered to be
relative to the directory from where you have run clang-tidy. All . and .. patternsin the path are
collapsed, and symlinks are resolved.

Example: Let’s suppose you have a source file named example.cpp, located in the /sour ce directory.
Only the input filename is used, not the full path to the source file. Additionally, it is prefixed with
the current timestamp.

® |f you specify -store-check-profile=/tmp, then the profile will be saved to /tmp/<I SO8601-like
timestamp>-example.cpp.json

® If you run clang-tidy from within /foo directory, and specify -stor e-check-profile=., then the
profile will still be saved to /foo/<I SO8601-like timestamp>-example.cpp.json

clang-tidy isaclang-based C++ "linter" tool. Its purposeis to provide an extensible framework
for diagnosing and fixing typical programming errors, like style violations, interface misuse, or
bugs that can be deduced via static analysis. clang-tidy is modular and provides a convenient
interface for writing new checks.

Using clang-tidy

15

clang-tidy isaLibTooling-based tool, and it’ s easier to work with if you set up a compile command
database for your project (for an example of how to do this, see How To Setup Tooling For LLVM).
Y ou can also specify compilation options on the command line after --:

$ clang-tidy test.cpp -- -Imy_project/include -DMY _DEFINES ...

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

clang-tidy hasits own checks and can aso run Clang Static Analyzer checks. Each check has a
name and the checks to run can be chosen using the -checks= option, which specifies a
comma-separated list of positive and negative (prefixed with -) globs. Positive globs add subsets
of checks, and negative globs remove them. For example,

$ clang-tidy test.cpp -checks=-* clang-analyzer-* ,-clang-analyzer-cplusplus*

will disable all default checks (-*) and enable all clang-analyzer-* checks except for
clang-analyzer-cplusplus® ones.

The -list-checks option lists all the enabled checks. When used without -checks=, it shows
checks enabled by default. Use -checks=* to see all available checks or with any other value of

-checks= to see which checks are enabled by this value.

There are currently the following groups of checks:

+ + +
|Name |Description |
|prefix | |

+ + +
labseil- |Checks related to Abseil |

| [library. |

+ + +
laltera- |Checks related to OpenCL |

| [programming for FPGAS. |

+ + +
landroid- |Checks related to |

| |Android. |

+ + +
|boost- |Checks related to Boost |

| [library. |

+ + +
lbugprone- |Checks that target bug-prone code |

| |constructs. |

+ + +
|cert- |Checks related to CERT Secure |

| |Coding Guidelines. |

+ + +
|clang-analyzer- |Clang Static Analyzer |

| |checks. |

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

15

EXTRACLANGTOOL (1)

|Checks related to concurrent

[programming (including threads, |

[fibers, coroutines, etc.).

Extra Clang Tools
+ +
|concurrency-
|
|
+ +

|cppcor eguidelines-|Checks related to C++ Core

| |Guidelines. |

+ +

|darwin- |Checks related to Darwin coding |
| |conventions. |

+ +

[fuchsia- |Checks related to Fuchsiacoding |
| [conventions. |

|google- |Checks related to Google coding |

| |conventions. |

+ +

|hicpp- |Checks related to High Integrity |
| |C++ Coding Standard. |

+ +

[linuxker nel- |Checks related to the Linux |
| |Kernel coding conventions. |

+ +

[Hvm- |Checks related to the LLVM |

| |coding conventions. |

+ +

[llvmlibc- |Checks related to the LLVM-libc |
| |coding standards. |

+ +

|[misc- |Checks that we didn’t have a |
| |better category for. |
+ +

|[moder nize- |Checks that advocate usage of |
| |[modern (currently "modern” |

| |[means "C++11") language |

| |constructs. |

+ +

|[mpi- |[Checks related to MPI (Message |

|Passing Interface).

+

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools EXTRACLANGTOOLS(1)
lobjc- |Checks related to Objective-C
| |coding conventions.
+ +
|openmp- |Checks related to OpenMP
| |API.
+ +
|performance- |Checks that target
| [performance-related issues.
+ +
|portability- |Checks that target
| |portability-related issues that
| |[don’t relate to any particular
| |coding style.
[readability- |Checks that target
| [readability-related issues that
| |[don’t relate to any particular
| |coding style.
+ +
|zir con- |Checks related to Zircon kernel

-+
T

|coding conventions.

-+
T

Clang diagnostics are treated in asimilar way as check diagnostics. Clang diagnostics are
displayed by clang-tidy and can be filtered out using the -checks= option. However, the
-checks= option does not affect compilation arguments, so it cannot turn on Clang warnings
which are not already turned on in the build configuration. The -war nings-as-er r or s= option
upgrades any warnings emitted under the -checks= flag to errors (but it does not enable any
checksitself).

Clang diagnostics have check names starting with clang-diagnostic-. Diagnostics which have a
corresponding warning option, are named clang-diagnostic-<war ning-option>, e.g. Clang
warning controlled by -Wliter al-conversion will be reported with check name
clang-diagnostic-literal-conversion.

The -fix flag instructs clang-tidy to fix found errorsif supported by corresponding checks.

An overview of all the command-line options:

$ clang-tidy --help

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

USAGE: clang-tidy [options] <source0> [... <sourceN>]
OPTIONS:

Generic Options:

--help - Digplay available options (--hel p-hidden for more)
--help-list - Disgplay list of available options (--help-list-hidden for more)
--version - Display the version of this program

clang-tidy options:

--checks=<string> -
Comma-separated list of globs with optional ’-’
prefix. Globs are processed in order of
appearance in the list. Globs without ’-’
prefix add checks with matching namesto the
set, globswith the’-’ prefix remove checks
with matching names from the set of enabled
checks. Thisoption’s value is appended to the
value of the’ Checks' option in .clang-tidy
file, if any.
--config=<string> -
Specifies aconfigurationin Y AML/JSON format:
-config="{ Checks. "*’,
CheckOptions: {x, y}}"
When the value is empty, clang-tidy will
attempt to find afile named .clang-tidy for
each sourcefilein its parent directories.
--config-file=<string> -
Specify the path of .clang-tidy or custom config file:
e.g. --config-file=/some/path/myTidyConfigFile
This option internally works exactly the same way as
--config option after reading specified config file.
Use either --config-file or --config, not both.
--dump-config -
Dumps configuration in the Y AML format to
stdout. This option can be used along with a
filename (and’--' if thefileis outside of a
project with configured compilation database).

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

--enabl e-check-profi

--explain-config

Extra Clang Tools

The configuration used for this file will be
printed.

Use aong with -checks=* to include
configuration of all checks.

le -

Enable per-check timing profiles, and print a
report to stderr.

For each enabled check explains, whereitis
enabled, i.e. in clang-tidy binary, command
line or a specific configuration file.

--export-fixes=<filename> -

--extra-arg=<string>

--extra-arg-before=<string>

--fix

--fix-errors

--fix-notes

YAML fileto store suggested fixesin. The
stored fixes can be applied to the input source
code with clang-apply-replacements.

EXTRACLANGTOOL (1)

- Additional argument to append to the compiler command line.

Can be used several times.

Can be used severa times.

Apply suggested fixes. Without -fix-errors
clang-tidy will bail out if any compilation
errors were found.

Apply suggested fixes even if compilation
errors were found. If compiler errors have
attached fix-its, clang-tidy will apply them as
well.

If awarning has no fix, but asinglefix can

be found through an associated diagnostic note,
apply thefix.

Specifying this flag will implicitly enable the
"--fix’ flag.

--format-style=<string> -

15

Style for formatting code around applied fixes:
-'non€’ (default) turns off formatting
- 'file (literally *file’, not a placeholder)
uses .clang-format file in the closest parent
directory

December 15, 2023

- Additional argument to prepend to the compiler command line.

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

-'{ <json>}" specifies optionsinline, e.g.
-format-style="{ BasedOnStyle: llvm, IndentWidth: 8}’
-’llvm’, "google’, "webkit’, 'mozilla
See clang-format documentation for the up-to-date
information about formatting styles and options.
This option overrides the ' FormatStyle' option in
.Cclang-tidy file, if any.
--header-filter=<string> -
Regular expression matching the names of the
headers to output diagnostics from. Diagnostics
from the main file of each translation unit are
aways displayed.
Can be used together with -line-filter.
This option overrides the ' HeaderFilterRegex’
optionin .clang-tidy file, if any.
--line-filter=<string> -
List of fileswith line rangesto filter the
warnings. Can be used together with
-header-filter. The format of thelistisa
JSON array of objects:
[
{"name":"filel.cpp","lines":[[1,3],[5,71]},
{"name":"file2.h"}
]
--list-checks -
List al enabled checks and exit. Use with
-checks=* to list all available checks.
-load=<plugin> -
Load the dynamic object *‘plugin‘‘. This
object should register new static analyzer
or clang-tidy passes. Once loaded, the
object will add new command line options
to run various analyses. To see the new
complete list of passes, use the
:option:*--list-checks' and
:option:‘-load’ options together.
-p <string> - Build path
--quiet -
Run clang-tidy in quiet mode. This suppresses
printing statistics about ignored warnings and

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

warningstreated as errorsif the respective
options are specified.
--store-check-profile=<prefix> -
By default reports are printed in tabul ated
format to stderr. When this option is passed,
these per-TU profiles are instead stored as JSON.
--system-headers - Digplay the errors from system headers.
--use-color -
Use colorsin diagnostics. If not set, colors
will be used if the terminal connected to
standard output supports colors.
This option overrides the’ UseColor’ optionin
.clang-tidy file, if any.
--verify-config -
Check the config files to ensure each check and
option is recognized.
--vfsoverlay=<filename> -
Overlay the virtual filesystem described by file
over thereal file system.
--warnings-as-errors=<string> -
Upgrades warnings to errors. Same format as
'-checks'.
This option’ s value is appended to the value of
the’ WarningsAsErrors' option in .clang-tidy
file, if any.

-p <build-path> is used to read a compile command database.

For example, it can be a CMake build directory in which afile named
compile_commands.json exists (use -DCMAKE_EXPORT_COMPILE_COMMANDS=ON
CMake option to get this output). When no build path is specified,

asearch for compile_commands.json will be attempted through al

parent paths of the first input file . See:
https.//clang.llvm.org/docs/HowToSetupToolingForLLVM.html for an

example of setting up Clang Tooling on a source tree.

<source0> ... specify the paths of source files. These paths are
looked up in the compile command database. If the path of afileis
absolute, it needs to point into CMake' s source tree. If the path is
relative, the current working directory needs to be in the CMake

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

source tree and the file must be in a subdirectory of the current
working directory. "./" prefixesin the relative fileswill be
automatically removed, but the rest of arelative path must be a
suffix of a path in the compile command database.

Configuration files:
clang-tidy attemptsto read configuration for each source file from a
.clang-tidy file located in the closest parent directory of the source

EXTRACLANGTOOL (1)

file. If InheritParentConfig istrue in a config file, the configuration file

in the parent directory (if any exists) will be taken and current config file

will be applied on top of the parent one. If any configuration options have

a corresponding command-line option, command-line option takes precedence.

The effective configuration can be inspected using -dump-config:

$ clang-tidy -dump-config

Checks; '-* some-check’

WarningsAsErrors: '

HeaderFilterRegex:

FormatStyle: none

InheritParentConfig: true

User: user

CheckOptions:
some-check.SomeOption: ' some value'

Suppressing Undesired Diagnostics

clang-tidy diagnostics are intended to call out code that does not adhere to a coding standard, or is
otherwise problematic in some way. However, if the code is known to be correct, it may be useful to
silence the warning. Some clang-tidy checks provide a check-specific way to silence the diagnostics,
e.g. bugprone-use-after-move can be silenced by re-initializing the variable after it has been moved out,
bugprone-string-integer-assignment can be suppressed by explicitly casting the integer to char,
readability-implicit-bool-conversion can aso be suppressed by using explicit casts, etc.

If a specific suppression mechanism is not available for a certain warning, or its useis not desired for
some reason, clang-tidy has a generic mechanism to suppress diagnostics using NOLINT,

NOLINTNEXTLINE, and NOLINTBEGIN ... NOLINTEND comments.

The NOLINT comment instructs clang-tidy to ignore warnings on the same line (it doesn’t apply to a

15 December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

function, ablock of code or any other language construct; it appliesto the line of codeitison). If
introducing the comment on the same line would change the formatting in an undesired way, the
NOLINTNEXTLINE comment allows suppressing clang-tidy warnings on the next line. The
NOLINTBEGIN and NOLINTEND comments allow suppressing clang-tidy warnings on multiple
lines (affecting all lines between the two comments).

All comments can be followed by an optional list of check namesin parentheses (see below for the
formal syntax). Thelist of check names supports globbing, with the same format and semantics as for
enabling checks. Note: negative globs are ignored here, as they would effectively re-activate the
warning.

For example:

class Foo {
Il Suppress al the diagnostics for the line
Foo(int param); // NOLINT

I/ Consider explaining the motivation to suppress the warning
Foo(char param); // NOLINT: Allow implicit conversion from ‘char’, because <some valid reason>

I Silence only the specified checks for the line
Foo(double param); // NOLINT (google-explicit-constructor, google-runtime-int)

/I Silence al checks from the ‘google’ module
Foo(bool param); // NOLINT(google*)

// Silence al checks ending with ‘-avoid-c-arrays
int array[10]; // NOLINT(*-avoid-c-arrays)

/ Silence only the specified diagnostics for the next line
/I NOLINTNEXTLINE(google-explicit-constructor, google-runtime-int)
Foo(bool param);

I/ Silence al checks from the ‘google’ module for the next line
/I NOLINTNEXTLINE(google*)
Foo(bool param);

/I Silence @l checks ending with ‘-avoid-c-arrays' for the next line

/I NOLINTNEXTLINE(*-avoid-c-arrays)
int array[10];

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

15

I Silence only the specified checks for all lines between the BEGIN and END
/I NOLINTBEGIN(google-explicit-constructor, google-runtime-int)
Foo(short param);

Foo(long param);

/I NOLINTEND(google-explicit-constructor, google-runtime-int)

I/ Silence al checks from the ‘google’ module for al lines between the BEGIN and END
/I NOLINTBEGIN(google*)

Foo(bool param);

/I NOLINTEND(google*)

/I Silence @l checks ending with ‘-avoid-c-arrays' for al lines between the BEGIN and END
/I NOLINTBEGIN(*-avoid-c-arrays)

int array[10];

/I NOLINTEND(*-avoid-c-arrays)

|

The formal syntax of NOLINT, NOLINTNEXTLINE, and NOLINTBEGIN ... NOLINTEND is
the following:

lint-comment:
lint-command
lint-command lint-args

lint-args:
(check-name-list)

check-name-list:
check-name
check-name-list , check-name

lint-command:
NOLINT
NOLINTNEXTLINE
NOLINTBEGIN
NOLINTEND

Note that whitespaces between NOLINT/NOLINTNEXTLINE/NOLINTBEGIN/NOLINTEND

and the opening parenthesis are not allowed (in this case the comment will be treated just as
NOLINT/NOLINTNEXTLINE/NOLINTBEGIN/NOLINTEND), whereas in the check names

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

list (inside the parentheses), whitespaces can be used and will be ignored.

All NOLINTBEGIN comments must be paired by an equal number of NOLINTEND comments.
Moreover, apair of comments must have matching arguments -- for example,

NOL INTBEGIN(check-name) can be paired with NOL INTEND(check-name) but not with
NOLINTEND (zero arguments). clang-tidy will generate a clang-tidy-nolint error diagnostic if
any NOLINTBEGIN/NOLINTEND comment violates these requirements.

CLANG-INCLUDE-FIXER
Contents

® Clang-Include-Fixer
® Setup
® Creating a Symbol Index From a Compilation Database
® Integrate with Vim
® Integrate with Emacs
® How it Works
One of the mgjor nuisances of C++ compared to other languages is the manual management of
#include directivesin any file. clang-include-fixer addresses one aspect of this problem by
providing an automated way of adding #include directives for missing symbolsin one

tranglation unit.

While inserting missing #include, clang-include-fixer adds missing namespace qualifiersto all
instances of an unidentified symbol if the symbol is missing some prefix hamespace qualifiers.

Setup
To use clang-include-fixer two databases are required. Both can be generated with existing tools.

® Compilation database. Contains the compiler commands for any given file in aproject and can be
generated by CMake, see How To Setup Tooling For LLVM.

® Symbol index. Contains al symbol information in a project to match a given identifier to a header
file.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Ideally both databases (compile_commands.json and find_all_symbols db.yaml) are linked into
the root of the source tree they correspond to. Then the clang-include-fixer can automatically
pick them up if called with a source file from that tree. Note that by default
compile_commands.json as generated by CMake does not include header files, so only
implementation files can be handled by tools.

Creating a Symbol Index From a Compilation Database
The include fixer contains find-all-symbols, atool to create a symbol databasein YAML format from a
compilation database by parsing all sourcefileslisted init. The following list of commands shows how
to set up adatabase for LLVM, any project built by CMake should follow similar steps.

$ cd path/to/llvm-build
$ ninjafind-all-symbols// build find-all-symbols tool.
$ ninja clang-include-fixer // build clang-include-fixer tool.
$ Is compile_commands.json # Make sure compile_commands.json exists.
compile_commands.json
$ path/to/llvm/source/clang-tool s-extral/clang-include-fixer/find-all-symbol s'tool /run-find-al I-symbol s.py
... wait as clang indexes the code base ...
$In-s$PWD/find_all_symbols_db.yaml path/to/llvm/source/ # Link database into the source tree.
$ In -s $PWD/compile_commands.json path/to/llvm/source/ # Also link compilation database if it’s not there alrea
$ cd path/to/llvm/source
$ /path/to/clang-include-fixer -db=yaml path/to/file/with/missing/include.cpp
Added #include "foo.h"

Integrate with Vim
To run clang-include-fixer on a potentially unsaved buffer in Vim. Add the following key binding to
your .vimrc:
noremap <leader>cf :pyf path/to/llvm/source/clang-tool s-extra/clang-include-fixer/tool/clang-include-fixer.py<cr>

This enables clang-include-fixer for NORMAL and VISUAL mode. Change <leader>cf to
another binding if you need clang-include-fixer on a different key. The <leader> keyisa
reference to a specific key defined by the mapleader variable and is bound to backslash by
defaullt.
Make sure vim can find clang-include-fixer:

® Add the path to clang-include-fixer to the PATH environment variable.

® Or set g:clang_include fixer_path invimrc: let

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

g:clang_include fixer_path=path/to/clang-include-fixer

Y ou can customize the number of headers being shown by setting let
g:.clang_include fixer_maximum_suggested header s=5

Customized settingsin .vimrc:
® let g:.clang_include fixer_path =" clang-include-fixer"
Set clang-include-fixer binary file path.
o let g:.clang_include fixer_maximum_suggested headers=3
Set the maximum number of #includes to show. Default is 3.
® let g:clang_include fixer_increment_num =5
Set the increment number of #includes to show every time when pressing m. Default is5.
o let g:clang_include fixer_jump_to_include=0
Set to 1if you want to jump to the new inserted #include line. Default is 0.
® let g:clang_include fixer_query_mode=0
Set to 1if you want to insert #include for the symbol under the cursor. Default is 0. Compared to
normal mode, this mode won't parse the source file and only search the symbol from database,
which isfaster than normal mode.
See clang-include-fixer.py for more details.
Integrate with Emacs
To run clang-include-fixer on a potentially unsaved buffer in Emacs. Ensure that Emacs finds
clang-include-fixer.el by adding the directory containing the file to the load-path and requiring the

clang-include-fixer in your .emacs:

(add-to-list ’load-path " path/to/llvm/source/clang-tool s-extral/clang-include-fixer/tool /"
(require’ clang-include-fixer)

Within Emacs the tool can be invoked with the command M -x clang-include-fixer. Thiswill

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

insert the header that defines the first undefined symboal; if there is more than one header that
would define the symbol, the user is prompted to select one.

To include the header that defines the symbol at point, run M -x clang-include-fixer-at-point.
Make sure Emacs can find clang-include-fixer:
® Either add the parent directory of clang-include-fixer to the PATH environment variable, or

customize the Emacs user option clang-include-fixer-executable to point to the file name of the
program.

How it Works

To get the most information out of Clang at parse time, clang-include-fixer runsin tandem with the
parse and receives callbacks from Clang's semantic analysis. In particular it reuses the existing support
for typo corrections. Whenever Clang tries to correct a potential typo it emits a callback to the include
fixer which then looks for a corresponding file. At this point rich lookup information is still available,
whichisnot availablein the AST at alater stage.

Theidentifier that should be typo corrected is then sent to the database, if a header fileisreturneditis
added as an include directive at the top of thefile.

Currently clang-include-fixer only insertsasingle include at atime to avoid getting caught in follow-up
errors. If multiple #include additions are desired the program can be rerun until afix-point is reached.

MODULARIZE USER'SMANUAL
Modularize Usage

15

modularize [<modularize-options>] [<module-map>|<include-files-list>]* [<front-end-options>...]

<modularize-options> is a place-holder for options specific to modularize, which are described below
in Modularize Command Line Options.

<module-map> specifies the path of afile name for an existing module map. The module map must be
well-formed in terms of syntax. Modularize will extract the header file names from the map. Only
normal headers are checked, assuming headers marked "private", "textual", or "exclude" are not to be
checked as atop-level include, assuming they either are included by other headers which are checked,
or they are not suitable for modules.

<include-files-list> specifies the path of afile name for afile containing the newline-separated list of

headers to check with respect to each other. Lines beginning with '# and empty lines are ignored.
Header file names followed by a colon and other space-separated file names will include those extra

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

files as dependencies. The file names can be relative or full paths, but must be on the same line. For
example:

header1.h
header2.h
header3.h: header1.h header2.h

Note that unless a -prefix (header path) option is specified, non-absolute file paths in the header
list file will be relative to the header list file directory. Use -prefix to specify a different
directory.

<front-end-options> is a place-holder for regular Clang front-end arguments, which must follow
the <include-files-list>. Note that by default, modularize assumes .h files contain C++ source,

so if you are using a different language, you might need to use a-x option to tell Clang that the
header contains another language, i.e.: -x

Note also that because modularize does not use the clang driver, you will likely need to passin
additional compiler front-end arguments to match those passed in by default by the driver.

Modularize Command Line Options

-prefix=<header -path>
Prepend the given path to non-absolute file paths in the header list file. By default, headers are
assumed to be relative to the header list file directory. Use -pr efix to specify a different directory.

-module-map-path=<module-map-path>
Generate a module map and output it to the given file. See the description in Module Map
Generation.

-problem-files-list=<pr oblem-files-list-file-name>
For use only with module map assistant. Input list of files that have problems with respect to
modules. These will still be included in the generated module map, but will be marked as
"excluded" headers.

-r oot-module=<r oot-name>
Put modules generated by the -module-map-path option in an enclosing module with the given

name. See the description in Module Map Generation.

-block-check-header -list-only
Limit the #include-inside-extern-or-namespace-block check to only those headers explicitly listed

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

in the header list. Thisisawork-around for avoiding error messages for private includes that
purposefully get included inside blocks.

-no-cover age-check
Don't do the coverage check for a module map.

-cover age-check-only
Only do the coverage check for a module map.

-display-file-lists
Display lists of good files (no compile errors), problem files, and a combined list with problem
files preceded by a’#. This can be used to quickly determine which files have problems. The
latter combined list might be useful in starting to modularize a set of headers. Y ou can start with a
full list of headers, use -display-file-lists option, and then use the combined list as your
intermediate list, uncommenting-out headers as you fix them.

modularizeis astandalone tool that checks whether a set of headers provides the consistent
definitions required to use modules. For example, it detects whether the same entity (say, a
NULL macro or size t typedef) is defined in multiple headers or whether a header produces
different definitions under different circumstances. These conditions cause modules built from
the headers to behave poorly, and should be fixed before introducing a module map.

modularize also has an assistant mode option for generating a module map file based on the
provided header list. The generated file is a functional module map that can be used as a starting
point for amodule.map file.

Getting Started
To build from source:

1. Read Getting Sarted with the LLVM System and Clang Tools Documentation for information on
getting sources for LLVM, Clang, and Clang Extra Tools.

2. Getting Sarted with the LLVM System and Building LLVM with CMake give directions for how
to build. With sources all checked out into the right place the LLVM build will build Clang Extra
Tools and their dependencies automatically.

o If using CMake, you can also use the modularize target to build just the modularize tool and its
dependencies.

Before continuing, take alook at Modularize Usage to see how to invoke modularize.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

What M odularize Checks
Modularize will check for the following:

© Duplicate global type and variable definitions
® Duplicate macro definitions

® Macro instances, 'defined(macro)’, or #if, #elif, #ifdef, #ifndef conditions that evaluate differently in
aheader

® #include directivesinside ’extern "C/C++" {}' or "namespace (name) {}' blocks
® Module map header coverage completeness (in the case of a module map input only)

Modularize will do normal C/C++ parsing, reporting normal errors and warnings, but will also
report special error messages like the following:

error: ' (symbol)’ defined at multiple locations:
(file):(row):(column)
(file):(row):(column)

error: header ’ (file)’' has different contents depending on how it was included
The latter might be followed by messages like the following:
note: ' (symbol)’ in (file) at (row):(column) not always provided

Checks will also be performed for macro expansions, defined(macro) expressions, and
preprocessor conditional directives that evaluate inconsistently, and can produce error messages
like the following:

(...)/SubHeader.h:11:5:
#if SYMBOL ==
N
error: Macro instance’SYMBOL' has different valuesin this header,
depending on how it was included.
"'SYMBOL’ expanded to: ' 1" with respect to these inclusion paths:
(...)/Headerl.h
(...)/SubHeader.h
(...)/SubHeader.h:3:9:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

#define SYMBOL 1
N
Macro defined here.
"SYMBOL’ expanded to: '2" with respect to these inclusion paths:
(...)/Header2.h
(...)/SubHeader.h
(...)/SubHeader.h:7:9:
#define SYMBOL 2

N

Macro defined here.

Checks will also be performed for "#include' directives that are nested inside’ extern "C/C++"
{}’ or "namespace (name) {}’ blocks, and can produce error message like the following:

Includel nExtern.h:2:3:

#include "Empty.h"

N

error: Include directive within extern "C" {}.
Includel nExtern.h:1:1:

extern "C" {

N

The"extern"C" {}" block is here.

Module Map Coverage Check

15

The coverage check uses the Clang library to read and parse the module map file. Starting at the
module map file directory, or just the include paths, if specified, it will collect the names of all the files
it considers headers (no extension, .h, or .inc--if you need more, modify the isHeader function). It then
compares the headers against those referenced in the module map, either explicitly named, or implicitly
named via an umbrella directory or umbrellafile, as parsed by the ModuleMap object. If headers are
found which are not referenced or covered by an umbrella directory or file, warning messages will be
produced, and this program will return an error code of 1. If no problems are found, an error code of O
is returned.

Note that in the case of umbrella headers, thistool invokes the compiler to preprocess the file, and uses
a callback to collect the header files included by the umbrella header or any of its nested includes. If
any front end options are needed for these compiler invocations, these can be included on the command
line after the module map file argument.

Warning message have the form:
warning: module.modulemap does not account for file: Level3A.h

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Note that for the case of the module map referencing afile that does not exist, the module map
parser in Clang will (at the time of thiswriting) display an error message.

To limit the checks modularize does to just the module map coverage check, use the
-cover age-check-only option.

For example:

modularize -coverage-check-only module.modulemap

Module Map Generation

15

If you specify the -module-map-path=<module map file>, modularize will output a module map based
on the input header list. A module will be created for each header. Also, if the header in the header list
isapartial path, a nested module hierarchy will be created in which a module will be created for each
subdirectory component in the header path, with the header itself represented by the innermost module.

If other headers use the same subdirectories, they will be enclosed in these same modules also.

For example, for the header list:

SomeTypes.h
SomeDecls.h
SubModulel/Header1.h
SubM odulel/Header2.h
SubM odule2/Header3.h
SubM odule2/Header4.h
SubModule2.h

The following module map will be generated:

{/ Output/NoProblemsAssistant.txt
I/l Generated by: modularize -modul e-map-path=0utput/NoProblemsA ssistant.txt \
-root-module=Root NoProblemsA ssistant.modul arize

module SomeTypes {
header " SomeTypes.h"
export *

}

module SomeDecls {
header " SomeDecls.h"
export *

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

}
module SubModulel {

module Header1 {
header " SubModulel/Header1.h"
export *

}

module Header2 {
header " SubM odulel/Header2.h"
export *

}

}
module SubModule2 {

module Header3 {
header " SubM odule2/Header3.h"
export *

}

module Header4 {
header " SubM odule2/Header4.h"
export *

}

header "SubModule2.h"

export *

}

Extra Clang Tools EXTRACLANGTOOLS(1)

An optional -root-module=<root-name> option can be used to cause aroot module to be created

which encloses all the modules.

An optional -problem-files-list=<problem-file-name> can be used to input alist of filesto be
excluded, perhaps as atemporary stop-gap measure until problem headers can be fixed.

For example, with the same head

// Output/NoProblemsA ssistant.txt
I/l Generated by: modularize -modul

er list from above:

e-map-path=0utput/NoProblemsAssistant.txt \

-root-module=Root NoProblemsA ssistant.modularize

module Root {
module SomeTypes {
header " SomeTypes.h"
export *

15

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

}

module SomeDecls {
header "SomeDecls.h"
export *
}
module SubModulel {
module Header1 {
header " SubM odulel/Header1.h"
export *
}
module Header2 {
header " SubM odulel/Header2.h"
export *
}

}
module SubModule2 {

module Header3 {
header " SubM odul e2/Header3.h"
export *

}

module Header4 {
header " SubM odule2/Header4.h"
export *

}

header " SubM odule2.h"

export *

}
}

EXTRACLANGTOOL (1)

Note that headers with dependents will be ignored with awarning, as the Clang module
mechanism doesn’t support headers the rely on other headers to be included first.

The module map format defines some keywords which can’t be used in module names. If a
header has one of these names, an underscore (' _") will be prepended to the name. For example,
if the header name is header .h, because header is akeyword, the module name will be _header.

For alist of the module map keywords, please see: Lexical structure

PP-TRACE USER’'SMANUAL

pp-traceis a standalone tool that traces preprocessor activity. It'salso used as atest of Clang's
PPCallbacks interface. It runs agiven source file through the Clang preprocessor, displaying selected

15 December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

EXTRACLANGTOOL (1)

information from callback functions overridden in a PPCallbacks derivation. The output isin a

high-level YAML format, described in pp-trace Output Format.

pp-trace Usage
Command Line Format

pp-trace [<pp-trace-options>] <sour ce-file> [-- <front-end-options>]

<pp-trace-options> is a place-holder for options specific to pp-trace, which are described below in
Command Line Options.

<sour ce-file> specifies the source file to run through the preprocessor.

<front-end-options> is a place-holder for regular Clang Compiler Options, which must follow the
<source-file>.

Command Line Options

15

-callbacks <comma-separ ated-globs>
This option specifies a comma-separated list of globs describing the list of callbacks that should be
traced. Globs are processed in order of appearance. Positive globs add matched callbacks to the
set, netative globs (those with the’-’ prefix) remove callacks from the set.

®

®

FileChanged
FileSkipped
InclusionDirective
modul el mport
EndOfMainFile
[dent
PragmaDirective
PragmaComment

PragmaDetectMismatch

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

© PragmaDebug

® PragmaMessage

© PragmaDiagnosticPush
© PragmaDiagnosticPop
© PragmaDiagnostic

© PragmaOpenCLExtension
© PragmaWarning

© PragmaWarningPush
® PragmaWarningPop

© MacroExpands

® MacroDefined

® MacroUndefined

® Defined

© SourceRangeSkipped
o If

o Elif

o |fdef

o Ifndef

® Else

o Endif

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

-output <output-file>
By default, pp-trace outputs the trace information to stdout. Use this option to output the trace
information to afile.

pp-trace Output For mat
The pp-trace output is formatted as Y AML. See https://yaml.org/ for general YAML information. It’s
arranged as a sequence of information about the callback call, including the callback name and
argument information, for example::

- Callback: Name
Argumentl: Vauel
Argument2: Value2

(etc.)

With real data::

- Callback: FileChanged
Loc: "c:/Clang/llvm/clang-tool s-extraltest/pp-trace/pp-trace-include.cpp: 1:1"
Reason: EnterFile
FileType: C_User
PrevFID: (invalid)
(etc.)
- Callback: FileChanged
Loc: "D:/Clang/llvm/clang-tool s-extraltest/pp-trace/pp-trace-include.cpp:5:1"
Reason: ExitFile
FileType: C_User
PrevFID: "D:/Clang/llvm/clang-tool s-extraltest/pp-trace/I nput/Level 1B.h"
- Callback: EndOfMainFile

In all but one case (MacroDirective) the "Argument" scalars have the same name as the
argument in the corresponding PPCallbacks callback function.

Callback Details
The following sections describe the purpose and output format for each callback.

Click on the callback name in the section heading to see the Doxygen documentation for the callback.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) Extra Clang Tools

EXTRACLANGTOOL (1)

The argument descriptions table describes the callback argument information displayed.

The Argument Name field in most (but not all) cases is the same name as the callback function

parameter.

The Argument Value Syntax field describes the values that will be displayed for the argument value. It
uses an ad hoc representation that mixes literal and symbolic representations. Enumeration member
symbols are shown as the actual enum member in a (memberljmember2|...) form. A namein
parentheses can either represent a place holder for the described value, or confusingly, it might be a
literal, such as (null), for anull pointer. Locations are shown as quoted only to avoid confusing the
documentation generator.

The Clang C++ Typefield is the type from the callback function declaration.

The description describes the argument or what is displayed for it.

Note that in some cases, such as when a structure pointer is an argument value, only some key member
or members are shown to represent the value, instead of trying to display all members of the structure.

FileChanged Callback
FileChanged is called when the preprocessor enters or exits afile, both the top level file being
compiled, aswell as any #include directives. It will also be called as aresult of a system header pragma
or ininternal renaming of afile.

Argument descriptions:

+ + + +

|Argument |Argument Value |Clang C++ |Description |
IName |Syntax [Type I I
+ + + +

|Loc [*(file):(line):(col)" |Sourcel ocation [Thelocation of |
| | | [the directive. |
+ + + +

|Reason |(EnterFilelExitFile|SystemHeaderPragmalRenamelil) |PPCal | backs: : Fil eChangeReason|Reason for |
I I | change. I
+ + + +

|FileType |(C_User|C_System|C_ExternCSystem) |SreMgr::CharacteristicKind [Include |
I I | [type. I
+ + + +

|PrevFID [((file)|(invalid)) |FilelD |Previousfile, if |
15 December 15, 2023 EXTRACLANGTOOLS(1)

EXTRACLANGTOOL (1)

Extra Clang Tools

EXTRACLANGTOOL (1)

any.

Example::

- Callback: FileChanged

Loc: "D:/Clang/llvm/clang-tool s-extraltest/pp-trace/pp-trace-include.cpp: 1:1"

Reason: EnterFile
FileType: C_User
PrevFID: (invalid)

FileSkipped Callback
FileSkipped is called when a source file is skipped as the result of header guard optimization.

15

Argument descriptions:

+ + + +
|Argument |Argument Value |Clang C++ |Description |
|[Name |Syntax [Type |
+ + + +
|ParentFile |("(file)" or |const [Thefile that
| |(null)) |FileEntry [#included the |
| | | |skipped file. |
+ + + +
|FilenameTok |(token) |const [The tokenin
| | [Token |ParentFile that
| | | [indicates the
| | | |skipped file. |
+ + + +
|FileType |(C_User|C_System|C_ExternCSystem)|SrcMgr::CharacteristicKind|The file
| | I [type.
+ + + +
Example::
- Callback: FileSkipped

ParentFile: "/path/filename.h”

FilenameTok: "filename.h"

FileType: C_User

December 15, 2023 EXTRACLANGTOOLS(1)

EXTRACLANGTOOL (1)

InclusionDirective Callback
InclusionDirectiveis called when an inclusion directive of any kind (#include</code>,

15

#import</code>, etc.) has been processed, regardless of whether the inclusion will actually result in an

inclusion.

Argument descriptions:

Extra Clang Tools

EXTRACLANGTOOL (1)

+ + + +
|Argument |Argument Vaue |Clang C++ |Description |
|[Name |Syntax [Type | |
+ + + +

[HashLoc [*(file):(line):(col)"	SourceL ocation	The location of the
		[# that startsthe
		linclusion directive.
+ + + +

[IncludeTok |(token) |const [The token that |
	[Token lindicatesthekind		
			of inclusion
			directive, e.g.,
		['include’ or	
		['import’.	
+ + + +

FileName " (file)" [StringRef	The name of thefile		
			being included, as
			written in the
			source code.
+ + + +

[[sAngled |(truejfal se) |bool [Whether thefile |
		[name was enclosed
		lin angle brackets;
		[otherwise, it was
		lenclosed in quotes.
+ + + +

FilenameRange	" (file)"	CharSourceRange	The character
		[range of the quotes	
			or angle brackets
		[for the written file	
	I Iname. I		
+ + + +

|File " (file)" |const |The actud filethat |

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1)

Example:

Extra Clang Tools

|FileEntry

EXTRACLANGTOOL (1)

|[may be included by |
[thisinclusion |
[directive. |

+
I"(path)”

+

+
|StringRef
I

+

+ +
|Contains the search |
|path which was |
lused to find thefile |
inthefile system. |

+ +

IRelativePath
|

-+

I"(path)”
|
|
|

+

[StringRef
I

-+
T

[The path relativeto |
|SearchPath, at |
|which theinclude |
[file was found. |
+ +

[I/mported
I
I
I
I
I
I

-+
T

[((module
[name)|(null))

[const
[Module

[The module, |
[whenever an |
[inclusion directive |
|was automatically |
[turned into a |
|[moduleimport or |
[null otherwise. |
+ +

- Callback: InclusionDirective
HashL oc: "D:/Clang/llvmnewmod/clang-tool s-extra/test/pp-trace/pp-trace-include.cpp:4:1"
IncludeTok: include
FileName: "Input/Level 1B.h"
IsAngled: false
FilenameRange: "Input/Level1B.h"
File: "D:/Clang/llvmnewmod/clang-tool s-extra/test/pp-trace/I nput/Level 1B.h"
SearchPath: " D:/Clang/llvmnewmod/clang-tool s-extra/test/pp-trace”
RelativePath: "Input/Level1B.h"
Imported: (null)

modulelmport Callback
modulelmport is called when there was an explicit module-import syntax.

15

Argument descriptions:

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

+ + + + +
|[Argument |Argument Value |Clang C++ |Description |
[Name |Syntax [Type | |
+ + + + +
[I/mportLoc [*(file):(line):(col)"|SourceL ocation|The location of |
| | | limport directive |
| | | |token. |
+ + + + +
|Path [*(path)" [ModuleldPath [Theidentifiers (and |

| | | [their locations) of |
| | | the module "path”. |

+ + + + +
[I/mported [((module |const |The imported |
| [name)|(null)) [Module |[module; can be null |
| | | |if importing failed. |
+ + + + +

Example::

- Callback: modulel mport
ImportLoc: "d:/Clang/llvm/clang-tool s-extraltest/pp-trace/pp-trace-modul es.cpp:4:2"
Path: [{ Name: Level 1B, Loc: "d:/Clang/llvmnewmod/clang-tool s-extra/test/pp-trace/pp-trace-modul es.cpp:4:9'} ,
Imported: Level2B

EndOfMainFile Callback
EndOfMainFileis called when the end of the main file is reached.

Argument descriptions:

+ + + + +
|[Argument |Argument |Clang C++ |Description |

[Name [Value Syntax [Type | |

+ + + + +
|(no I | I |
larguments) | | I |

+ + + + +

Example::

- Callback: EndOfMainFile

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Ident Callback
Ident is called when a#ident or #sccs directive is read.

Argument descriptions:

+ + + + +
[Argument |[Argument Value [Clang C++ |Description |
[Name [Syntax [Type | |
+ + + + +
|[Loc [*(file):(line):(col)"|SourceL ocation|The location |
| | | |of the directive. |
+ + + + +
[str |(name) |const |The text of the |
| | std::string |directive. |
+ + + + +
Example:
- Callback: Ident
Loc: "D:/Clang/llvm/clang-tool s-extraltest/pp-trace/pp-trace-ident.cpp: 3:1"
str: "$1d$"

PragmaDirective Callback
PragmaDirectiveis called when start reading any pragma directive.

Argument descriptions:

+ + + +
|Argument |Argument Value |Clang C++ |Description |
|[Name |Syntax [Type | |
+ + + +
[Loc ["(file):(line):(cal)" |Sourcel ocation [The location of the |
I | | |directive. |
+ + + +

[Introducer |(PIK_HashPragmalPIK__ Pragma|PIK___ pragma)|Pragmal ntroducerKind|The type of the |

| | | [pragmadirective. |
+ + + +

Example:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

- Callback: PragmaDirective
Loc: "D:/Clang/llvm/clang-tool s-extral/test/pp-trace/pp-trace-pragma.cpp: 3:1"
Introducer: PIK_HashPragma

PragmaComment Callback
PragmaComment is called when a #pragma comment directive is read.

Argument descriptions:

+ + + + +
|[Argument |Argument Value |Clang C++ |Description |
IName |Syntax [Type | |
+ + + + +
|Loc [*(file):(line):(col)"|SourceL ocation [Thelocation of |
| | | [the directive. |
+ + + + +
|Kind [((name)|(null)) |const [The comment |
| | [Identifierinfo |kind symbol. |
+ + + + +
Str	(message	const [The comment
[directive) std::string	[message	
		[directive.
+ + + + +

Example:

- Callback: PragmaComment
Loc: "D:/Clang/llvm/clang-tool s-extra/test/pp-trace/pp-trace-pragma.cpp: 3:1"
Kind: library
Str: kernel 32.1ib

PragmaDetectMismatch Callback
PragmaDetectMismatch is called when a #pragma detect_mismatch directive is read.

Argument descriptions:

+ + + + +
|Argument |Argument Value |Clang C++ |Description |
|[Name |Syntax [Type | |
+ + + + +

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

[Loc [*(file):(line):(col)"|Sourcel ocation|The location |
| | | |of the directive. |
+ + + + +
[Name [*(name)" |const [The |
| | std::string [name. |
+ + + + +
[Value |(string) |const |The |
| | |std::string jvalue. |
+ + + + +

Example:

- Callback: PragmaDetectMismatch
Loc: "D:/Clang/llvm/clang-tool s-extra/test/pp-trace/pp-trace-pragma.cpp:3:1"
Name: name
Vaue: vaue

PragmaDebug Callback
PragmaDebug is called when a#pragma clang __ debug directive is read.

Argument descriptions:

+ + + + +
|[Argument |Argument Value |Clang C++ |Description |
[Name |Syntax |Type | |
+ + + + +
|[Loc [*(file):(line):(col)"|Sourcel ocation|The location of the |
| | | |directive. |
+ + + + +
|[DebugType |(string) |StringRef [Indicatestypeof |
| | | |debug message. |
+ + + + +

Example::
- Callback: PragmaDebug
Loc: "D:/Clang/llvm/clang-tool s-extra/test/pp-trace/pp-trace-pragma.cpp: 3:1"
DebugType: warning

PragmaMessage Callback

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

PragmaMessage is called when a#pragma message directive is read.

Argument descriptions:

+ + + +
|[Argument |[Argument Value |Clang C++ |Description |
[Name [Syntax |Type | |
+ + + +
|Loc [*(file):(line):(col)" |Sourcel ocation [The location of the |
| | | [directive. |
+ + + +
[Namespace	(name)	StringRef [The namespace of
		[the message
I		directive.
+ + + +
|Kind |(PMK_Message|PMK_Warning|PMK _Error)|PPCallbacks::PragmaMessageKind|The type of the |
| | | |[message directive. |
+ + + +
|Str |(string) |StringRef [The text of the |
| | | |[message directive. |
+ + + +
Example:

- Callback: PragmaM essage
Loc: "D:/Clang/llvm/clang-tool s-extral/test/pp-trace/pp-trace-pragma.cpp:3:1"
Namespace: "GCC"
Kind: PMK_Message
Str: The message text.

PragmaDiagnosticPush Callback
PragmaDiagnosticPush is called when a#pragma gcc diagnostic push directiveis read.

Argument descriptions:

+ + + + +
|Argument |[Argument Value |Clang C++ |Description |
|[Name [Syntax [Type | |
+ + + + +
|ILoc [*(file):(line):(col)"|Sourcel ocation|The location of |

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

| | | [the directive. |
+ + + + +
|Namespace |(name) |StringRef [Namespace |
| | | Iname. |
+ + + + +

Example:
- Callback: PragmaDiagnosticPush
Loc: "D:/Clang/llvm/clang-tool s-extral/test/pp-trace/pp-trace-pragma.cpp:3:1"
Namespace: "GCC"

PragmaDiagnosticPop Callback
PragmaDiagnosticPop is called when a #pragma gcc diagnostic pop directive is read.

Argument descriptions:

+ + + + +
|Argument |[Argument Value |Clang C++ |Description |
|[Name |[Syntax [Type | |
+ + + + +
|ILoc [*(file):(line):(col)"|Sourcel ocation|The location of |
| | | [the directive. |
+ + + + +
|Namespace [(name) |StringRef [Namespace |
| I I Iname. I
+ + + + +

Example::
- Callback: PragmaDiagnosticPop
Loc: "D:/Clang/llvm/clang-tool s-extral/test/pp-trace/pp-trace-pragma.cpp:3:1"
Namespace: "GCC"

PragmaDiagnostic Callback
PragmaDiagnostic is called when a#pragma gcc diagnostic directiveis read.

Argument descriptions:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

|[Argument |[Argument Value |Clang C++ |Description |
[Name [Syntax |Type | |
+ + + +
|Loc [*(file):(line):(col)" |Sourcel ocation|The location of |
| I | [the directive. |
+ + + +
[Namespace |(name) |StringRef |[Namespace |
I I | Iname. I
+ + + +
|[mapping |[(OIMAP_IGNOREMAP_WARNING|MAP_ERROR|MAP_FATAL)|diag::Severity |[Mapping |
| | | ltype. I
+ + + +
|Str |(string) |StringRef [Warning/error |
I I | Iname. I
+ + + +
Example::

- Callback: PragmaDiagnostic
Loc: "D:/Clang/llvm/clang-tool s-extra/test/pp-trace/pp-trace-pragma.cpp: 3:1"
Namespace: "GCC"
mapping: MAP_WARNING
Str: WarningName

PragmaOpenCLExtension Callback
PragmaOpenCLExtension is called when OpenCL extension is either disabled or enabled with a

pragma.

Argument descriptions:

15

+ + + + +
[Argument |[Argument Value |Clang C++ |Description |
|[Name |Syntax [Type | |
+ + + + +
[NameLoc [*(file):(line):(col)"|SourceLocation [The location of |
| | | [the name. |
+ + + + +
[Name |(name) |const [Name |
| | [Identifierinfo [symbol. |
+ + + + +

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

|Stateloc [*(file):(line):(col)"|SourceL ocation [The location of |

| | | the state. |

+ + + + +
[State [(1]0) lunsigned |Enabled/disabled |

I | I |state. I

+ + + + +

Example:

- Callback: PragmaOpenCL Extension
NameL oc: "D:/Clang/llvm/clang-tool s-extraitest/pp-trace/pp-trace-pragma.cpp:3:10"
Name: Name
Statel oc: "D:/Clang/llvm/clang-tool s-extral/test/pp-trace/pp-trace-pragma.cpp: 3:18"
State: 1

PragmaWarning Callback
PragmaWarning is called when a#pragmawarning directive is read.

Argument descriptions:

+ + + + +
|[Argument |Argument Value |Clang C++ |Description |
|[Name |Syntax [Type | |
+ + + + +
|[Loc [*(file):(line):(col)"|Sourcel ocation|The location of the |
| | | directive. |
+ + + + +
[WarningSpec |(string) |StringRef [The warning |
| | | |specifier. |
+ + + + +
[lds [[(number)][, |ArrayRef<int>[The warning |
| [...]] | [numbers. |
+ + + + +

Example:

- Callback: Pragmawarning
Loc: "D:/Clang/llvm/clang-tool s-extraltest/pp-trace/pp-trace-pragma.cpp:3:1"
WarningSpec: disable
Ids: 1,2,3

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

PragmaWarningPush Callback
PragmaWarningPush is called when a#pragma warning(push) directiveis read.

Argument descriptions:

+ + + + +
[Argument |[Argument Value [Clang C++ |Description |
|[Name |Syntax [Type | |
+ + + + +
|[Loc [*(file):(line):(col)"|SourceL ocation|The location |
| | | |of the directive. |
+ + + + +
[Level |(number) int |[Warning |
I | I llevel. I
+ + + + +

Example:
- Callback: PragmaWarningPush
Loc: "D:/Clang/llvm/clang-tool s-extra/test/pp-trace/pp-trace-pragma.cpp: 3:1"
Level: 1

PragmaWar ningPop Callback
PragmaWarningPop is called when a #pragma warning(pop) directive is read.

Argument descriptions:

+ + + + +
|[Argument |Argument Value |[Clang C++ |Description |
|[Name |Syntax [Type | |
+ + + + +
[Loc [*(file):(line):(col)"|Sourcel ocation|The location |
| | | |of the directive. |
+ + + + +

Example::

- Callback: PragmawWarningPop
Loc: "D:/Clang/llvm/clang-tool s-extra/test/pp-trace/pp-trace-pragma.cpp:3:1"

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

MacroExpands Callback
MacroExpands is called when ::HandleM acroExpandedI dentifier when a macro invocation is found.

Argument descriptions:

+ + + +
|Argument |[Argument Value |Clang C++ |Description |
|[Name [Syntax [Type | |
+ + + +
[MacroNameT ok|(token) |const [The macro name |
| | [Token [token. |
+ + + +
[MacroDirective [(MD_DefinelMD_UndefinelMD_Visibility)|const [The kind of macro |
	[MacroDirective	directive from the	
		[MacroDirective	
			structure.
+ + + +
|Range [["(file):(line):(cal)", |SourceRange [The sourcerange |
| [*(file):(line):(col)"] | [for the expansion. |
+ + + +
|Args [[(name)|(number)|<(token name)>[, |const [The argument |
| [...]] [MacroArgs [tokens. Names and |
		[numbers are literal,	
		leverything elseis	
			of the form ' <’
		[tokenName’'>".	
+ + + +

Example::

- Callback: MacroExpands
MacroNameTok: X_IMPL
MacroDirective: MD_Define
Range: [(nonfile), (nonfile)]
Args: [a<plus>y, b]

MacroDefined Callback

15

MacroDefined is called when a macro definition is seen.

Argument descriptions:

December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

+ + + +
[Argument |[Argument Value [Clang C++ |[Description |
[Name |[Syntax [Type | |
+ + + +
|[MacroNameT ok|(token) |const [The macro |
| | [Token [nametoken. |
+ + + +
|[MacroDirective |(MD_DefinelMD_UndefinelMD_Visibility)|const [Thekind of |

| | [MacroDirective |macro |
| |directive from |

I I
I | I [the |
| | | [MacroDirective |
| | | [structure. |
+ + + +

Example:

- Callback: MacroDefined
MacroNameTok: X_IMPL
MacroDirective: MD_Define
MacroUndefined Callback

MacroUndefined is called when a macro #undef is seen.

Argument descriptions:
+ + + +
[Argument |Argument Value |Clang C++ |Description |
IName |Syntax [Type I I
+ + + +
|[MacroNameT ok|(token) |const [The macro |
| | [Token [nametoken. |
+ + + +
[MacroDirective [(MD_DefinelMD_UndefinelMD_Visibility)|const [Thekind of |

| | [MacroDirective |[macro |
| [directive from |
I [the I
| [MacroDirective |
| [structure. |

-+ -+ -+
T T T

|
|
I
I
+

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOLS(1) ExtraClang Tools EXTRACLANGTOOLS(1)
Example::
- Callback: MacroUndefined
MacroNameTok: X _IMPL
MacroDirective: MD_Define
Defined Callback

Defined is called when the ' defined’ operator is seen.

Argument descriptions:
+ + + +
Argument [Argument Value	Clang C++	Description	
[Name	Syntax [Type		
[MacroNameT ok	(token)	const	The macro name
	[Token [token.		
+ + + +
[MacroDirective	(MD_DefinelMD_UndefineMD_Visibility)	const [The kind of	
		[MacroDirective	[macro directive
		[from the	
			[MacroDirective
		[structure.	
+ + + +
|Range [["(file):(line):(col)", |SourceRange [The source range |
| [*(file):(line):(col)"] | [for the directive. |
+ + + +

Example::

- Callback: Defined

MacroNameTok: MACRO
MacroDirective: (null)

Range: ["D:/Clang/llvm/clang-tools-extraltest/pp-trace/pp-trace-macro.cpp:8:5", "D:/Clang/llvm/clang-tool s-extr:

SourceRangeSkipped Callback
SourceRangeSkipped is called when a source range is skipped.

Argument descriptions:

15 December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

+ + + + +
|[Argument |Argument Value |Clang C++ |Description |
[Name |Syntax [Type | |
+ + + + +
|[Range [["(file):(line):(col)",|SourceRange |The source |
| ["(file):(line):(cal)"]| [range skipped. |
+ + + + +

Example::

- Callback: SourceRangeSkipped
Range: [":/Clang/llvm/clang-tool s-extraltest/pp-trace/pp-trace-macro.cpp:8:2", ":/Clang/llvm/clang-tool s-extra/tes

If Callback
If iscaled when an #if is seen.

Argument descriptions:

+ + + + +
|[Argument |[Argument Value |Clang C++ |Description |
[Name [Syntax [Type | |
+ + + + +
[Loc [*(file):(line):(col)" |SourcelLocation|The location of |
| | | the directive. |
+ + + + +
|ConditionRangel[" (file):(line):(cal)",|SourceRange [The source range |
| [*(file):(line):(cal)"]| [for the condition. |
+ + + + +
|ConditionV a uel(truejfal se) |bool |The condition |
| | | value. |
+ + + + +

Example:

- Callback: If

Loc: "D:/Clang/llvm/clang-tool s-extra/test/pp-trace/pp-trace-macro.cpp:8:2"
ConditionRange: ["D:/Clang/llvm/clang-tool s-extra/test/pp-trace/pp-trace-macro.cpp:8:4", "D:/Clang/llvm/clang-
ConditionValue: false

Elif Callback

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Elif is called when an #€lif is seen.

Argument descriptions:

+ + + + +
|Argument |Argument Value |Clang C++ |Description |
|[Name |Syntax [Type | |
+ + + + +
[Loc [*(file):(line):(col)" |SourcelLocation|The location of |
| | | the directive. |
+ + + + +
|ConditionRange|["(file):(line):(col)",|SourceRange [The source range |
| [*(file):(line):(col)"| [for the condition. |
+ + + + +
|ConditionV aluel(truejfal se) |bool |The condition |
| | | |value. |
+ + + + +
[IfLoc [*(file):(line):(col)" |SourcelLocation|The location of |
| | | the directive. |
+ + + + +
Example:
- Callback: Elif

Loc: "D:/Clang/llvm/clang-tool s-extra/test/pp-trace/pp-trace-macro.cpp: 10: 2"

ConditionRange: ["D:/Clang/llvm/clang-tool s-extraitest/pp-trace/pp-trace-macro.cpp: 10:4", " D:/Clang/llvm/clanc
ConditionValue: false

IfLoc: "D:/Clang/llvm/clang-tool s-extraltest/pp-trace/pp-trace-macro.cpp:8:2"

Ifdef Callback
Ifdef iscalled when an #ifdef is seen.

Argument descriptions:

+ + + + +
|Argument |Argument Value |Clang C++ |Description |
[Name |Syntax [Type | |
+ + + + +
[Loc I"(file):(line):(cal)" |Sourcelocation [The location of |
I | | the directive. |

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)
+ + + +
[MacroNameT ok|(token) |const [The macro |
| | [Token [name token. |
+ + + +
[MacroDirective |(MD_DefingMD_UndefinelMD_Visibility)|const [The kind of |

	[MacroDirective	macro directive	
		from the	
		[MacroDirective	
			structure.
+ + + +
Example::
- Callback: Ifdef

Loc: "D:/Clang/llvm/clang-tool s-extra/test/pp-trace/pp-trace-conditional .cpp: 3: 1"

MacroNameTok: MACRO
MacroDirective: MD_Define

Ifndef Callback

15

Ifndef is called when an #ifndef is seen.

Argument descriptions:

+ + + +
[Argument |Argument Value |[Clang C++ |[Description |
[Name |Syntax [Type | |
+ + + +

|Loc ["(file):(line):(cal)" |Sourcel ocation [The location of |
| | | [the directive. |
+ + + +
|[MacroNameT ok|(token) |const [The macro |
| | [Token [name token. |
+ + + +
[MacroDirective [(MD_DefinelMD_UndefinelMD_Visibility)|const [The kind of |
	[MacroDirective	[macro directive
		[from the
		[MacroDirective
		[structure.
+ + + +

December 15, 2023

EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Example::

- Callback: Ifndef
Loc: "D:/Clang/llvm/clang-tool s-extraltest/pp-trace/pp-trace-conditional .cpp: 3: 1"
MacroNameTok: MACRO
MacroDirective: MD_Define

Else Callback
Elseiscalled when an #elseis seen.

Argument descriptions:

+ + + + +
|[Argument |Argument Value |Clang C++ |Description |
[Name [Syntax [Type | |
+ + + + +
|[Loc [*(file):(line):(col)"|SourceL ocation|The location of |
| | | [the else directive. |
+ + + + +
[IfLoc [*(file):(line):(col)"|SourceL ocation|The location of |
| | | [the if directive. |
+ + + + +

Example:

- Callback: Else

Loc: "D:/Clang/llvm/clang-tool s-extral/test/pp-trace/pp-trace-macro.cpp: 10: 2"
IfLoc: "D:/Clang/llvm/clang-tool s-extraltest/pp-trace/pp-trace-macro.cpp:8:2"

Endif Callback
Endif is called when an #endif is seen.

Argument descriptions:

+ + + + +
|Argument |Argument Value |Clang C++ |Description |
[Name |Syntax [Type | |
+ + + + +
[Loc [*(file):(line):(col)"|Sourcel ocation|The location of |
| | | the endif |

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

| | | |directive. |
+ + + + +
[IfLoc [*(file):(line):(col)"|SourceL ocation|The location of |
| | | the if directive. |
+ + + + +

Example:
- Callback: Endif

Loc: "D:/Clang/llvm/clang-tool s-extral/test/pp-trace/pp-trace-macro.cpp: 10: 2"
IfLoc: "D:/Clang/llvm/clang-tool s-extraltest/pp-trace/pp-trace-macro.cpp:8:2"

Building pp-trace
To build from source:

1. Read Getting Sarted with the LLVM System and Clang Tools Documentation for information on
getting sources for LLVM, Clang, and Clang Extra Tools.

2. Getting Sarted with the LLVM System and Building LLVM with CMake give directions for how
to build. With sources all checked out into the right place the LLVM build will build Clang Extra

Tools and their dependencies automatically.

® If using CMake, you can also use the pp-tracetarget to build just the pp-trace tool and its
dependencies.

CLANG-RENAME
Contents

® Clang-Rename
® Using Clang-Rename
® Vim Integration
® Emacs Integration
See dso:

clang-renameis a C++ refactoring tool. Its purposeis to perform efficient renaming actionsin
large-scale projects such as renaming classes, functions, variables, arguments, namespaces etc.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

Thetool isin avery early development stage, so you might encounter bugs and crashes.
Submitting reports with information about how to reproduce the issue to the LLVM bugtracker
will definitely help the project. If you have any ideas or suggestions, you might want to put a
feature request there.
Using Clang-Rename

clang-renameisaLibTooling-based tool, and it's easier to work with if you set up a compile command

database for your project (for an example of how to do this see How To Setup Tooling For LLVM).

Y ou can also specify compilation options on the command line after --:

$ clang-rename -offset=42 -new-name=foo test.cpp -- -Imy_project/include -DMY _DEFINES. ...

To get an offset of asymbol in afile run

$ grep -FUbo 'foo’ file.cpp

Thetool currently supports renaming actions inside a single tranglation unit only. It is planned
to extend the tool’ s functionality to support multi-TU renaming actions in the future.

clang-rename also aims to be easily integrated into popular text editors, such as Vim and Emacs,
and improve the workflow of users.

Although a command line interface exists, it is highly recommended to use the text editor
interface instead for better experience.

Y ou can also identify one or more symbolsto be renamed by giving the fully qualified name:
$ clang-rename -qualified-name=foo -new-name=bar test.cpp
Renaming multiple symbols at once is supported, too. However, clang-rename doesn’'t accept
both -offset and -qualified-name at the same time. So, you can either specify multiple -offset or
-qualified-name.
$ clang-rename -offset=42 -new-name=bar1l -offset=150 -new-name=bar?2 test.cpp
or

$ clang-rename -qualified-name=fool -new-name=barl -qualified-name=f002 -new-name=bar2 test.cpp

Alternatively, {offset | qualified-name} / new-name pairs can be put into aYAML file:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

- Offsat: 42
NewName; barl
- Offsat: 150

NewName; bar2

or

- QualifiedName: fool
NewName: barl
- QualifiedName: foo2
NewName: bar2
That way you can avoid spelling out all the names as command line arguments:
$ clang-rename -input=test.yaml test.cpp

clang-rename offers the following options:

$ clang-rename --help
USAGE: clang-rename [subcommand] [options] <source0> [... <sourceN>]

OPTIONS:

Generic Options:

-help - Display available options (-hel p-hidden for more)
-help-list - Display list of available options (-hel p-list-hidden for more)
-version - Digplay the version of this program

clang-rename common options:

-export-fixes=<filename> - YAML fileto store suggested fixesin.

-extra-arg=<string> - Additional argument to append to the compiler command line
Can be used severa times.

-extra-arg-before=<string> - Additional argument to prepend to the compiler command line
Can be used several times.

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

-force - Ignore nonexistent qualified names.

-i - Overwrite edited <file>s.

-input=<string> - YAML file to load oldname-newname pairs from.
-new-name=<string> - The new name to change the symboal to.

-offset=<uint> - Locates the symbol by offset as opposed to <line>:<column>.
-p <string> - Build path

-pl - Print the locations affected by renaming to stderr.

-pn - Print the found symbol’ s name prior to renaming to stderr.

-qualified-name=<string> - The fully qualified name of the symbol.
Vim Integration
Y ou can call clang-rename directly from Vim! To set up clang-rename integration for Vim see

clang/tool/clang-rename/clang-rename.py.

Please note that you have to save all buffers, in which the replacement will happen beforerunning the
tool.

Onceinstalled, you can point your cursor to symbols you want to rename, press <leader>cr and type
new desired name. The <leader> key is areference to a specific key defined by the mapleader variable
and is bound to backslash by default.

Emacs I ntegration
Y ou can aso use clang-rename while using Emacs! To set up clang-rename integration for Emacs see

clang-rename/tool/clang-rename.el.

Onceinstalled, you can point your cursor to symbols you want to rename, press M-X, type
clang-rename and new desired name.

Please note that you have to save all buffers, in which the replacement will happen before running the
tool.

CLANG-DOC
Contents

® Clang-Doc
® Use

® Output

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

® Configuration
® Options
clang-doc isatool for generating C and C++ documentation from source code and comments.
Thetool isin avery early development stage, so you might encounter bugs and crashes.
Submitting reports with information about how to reproduce the issue to the LLVM bug tracker
will definitely help the project. If you have any ideas or suggestions, please to put a feature
request there.
Use

clang-doc isaLibTooling-based tool, and so requires a compile command database for your project

(for an example of how to do this see How To Setup Tooling For LLVM).

By default, the tool will run on al fileslisted in the given compile commands database:

$ clang-doc /path/to/compile_commands.json

The tool can also be used on asingle file or multiple filesif abuild path is passed with the -p
flag.

$ clang-doc /path/to/file.cpp -p /path/to/build
Output
clang-doc produces a directory of documentation. One file is produced for each namespace and record
in the project source code, containing all documentation (including contained functions, methods, and
enums) for that item.
The top-level directory is configurable through the output flag:
$ clang-doc -output=output/directory/ compile_commands.json
Configuration
Configuration for clang-doc is currently limited to command-line options. In the future, it may develop

the ability to use a configuration file, but no such efforts are currently in progress.

Options
clang-doc offers the following options:

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

$ clang-doc --help
USAGE: clang-doc [options] <source0> [... <sourceN>]

OPTIONS:

Generic Options:

-help - Display available options (-hel p-hidden for more)
-help-list - Display list of available options (-hel p-list-hidden for more)
-version - Display the version of this program

clang-doc options:

--doxygen - Use only doxygen-style comments to generate docs.

--extra-arg=<string> - Additional argument to append to the compiler command line
Can be used several times.

--extra-arg-before=<string> - Additional argument to prepend to the compiler command line
Can be used several times.

--format=<value> - Format for outputted docs.

=yaml - Documentationin YAML format.

=md - Documentation in MD format.

=html - Documentation in HTML format.
--ignore-map-errors - Continueiif files are not mapped correctly.
--output=<string> - Directory for outputting generated files.
-p <string> - Build path
--project-name=<string> - Name of project.
--public - Document only public declarations.

--repository=<string> -

URL of repository that hosts code.

Used for links to definition locations.
--source-root=<string> -

Directory where processed files are stored.

Links to definition locations will only be

generated if thefileisin thisdir.
--stylesheets=<string> - CSS stylesheets to extend the default styles.

The following flags should only be used if format is set to html: - repository - source-root -
stylesheets

The Doxygen documentation describes the inter nal software that makes up the tools of

15 December 15, 2023 EXTRACLANGTOOL (1)

EXTRACLANGTOOL (1) Extra Clang Tools EXTRACLANGTOOL (1)

clang-tools-extra, not the exter nal use of these tools. The Doxygen documentation contains no
instructions about how to use the toals, only the APIs that make up the software. For usage
instructions, please see the user’s guide or reference manual for each tool.

® Doxygen documentation

NOTE:
This documentation is generated directly from the source code with doxygen. Since the tools of
clang-tools-extra are constantly under active development, what you' re about to read is out of date!
® Index

® Search Page

AUTHOR
The Clang Team

COPYRIGHT
2007-2023, The Clang Team

15 December 15, 2023 EXTRACLANGTOOL (1)

