
NAME
DEBUG_FP, KFAIL_POINT_CODE, KFAIL_POINT_CODE_FLAGS,

KFAIL_POINT_CODE_COND, KFAIL_POINT_ERROR, KFAIL_POINT_EVAL,

KFAIL_POINT_DECLARE, KFAIL_POINT_DEFINE, KFAIL_POINT_GOTO,

KFAIL_POINT_RETURN, KFAIL_POINT_RETURN_VOID,

KFAIL_POINT_SLEEP_CALLBACKS, fail_point - fail points

SYNOPSIS
#include <sys/fail.h>

KFAIL_POINT_CODE(parent, name, code);

KFAIL_POINT_CODE_FLAGS(parent, name, flags, code);

KFAIL_POINT_CODE_COND(parent, name, cond, flags, code);

KFAIL_POINT_ERROR(parent, name, error_var);

KFAIL_POINT_EVAL(name, code);

KFAIL_POINT_DECLARE(name);

KFAIL_POINT_DEFINE(parent, name, flags);

KFAIL_POINT_GOTO(parent, name, error_var, label);

KFAIL_POINT_RETURN(parent, name);

KFAIL_POINT_RETURN_VOID(parent, name);

KFAIL_POINT_SLEEP_CALLBACKS(parent, name, pre_func, pre_arg, post_func, post_arg, code);

DESCRIPTION
Fail points are used to add code points where errors may be injected in a user controlled fashion. Fail

points provide a convenient wrapper around user-provided error injection code, providing a sysctl(9)

MIB, and a parser for that MIB that describes how the error injection code should fire.

The base fail point macro is KFAIL_POINT_CODE() where parent is a sysctl tree (frequently

DEBUG_FP for kernel fail points, but various subsystems may wish to provide their own fail point

trees), and name is the name of the MIB in that tree, and code is the error injection code. The code

FAIL(9) FreeBSD Kernel Developer’s Manual FAIL(9)

FreeBSD 14.0-RELEASE-p11 June 6, 2019 FreeBSD 14.0-RELEASE-p11



argument does not require braces, but it is considered good style to use braces for any multi-line code

arguments. Inside the code argument, the evaluation of RETURN_VALUE is derived from the return()

value set in the sysctl MIB.

Additionally, KFAIL_POINT_CODE_FLAGS() provides a flags argument which controls the fail

point’s behaviour. This can be used to e.g., mark the fail point’s context as non-sleepable, which causes

the sleep action to be coerced to a busy wait. The supported flags are:

FAIL_POINT_USE_TIMEOUT_PATH

Rather than sleeping on a sleep() call, just fire the post-sleep function after a timeout fires.

FAIL_POINT_NONSLEEPABLE

Mark the fail point as being in a non-sleepable context, which coerces sleep() calls to delay() calls.

Likewise, KFAIL_POINT_CODE_COND() supplies a cond argument, which allows you to set the

condition under which the fail point’s code may fire. This is equivalent to:

if (cond)

KFAIL_POINT_CODE_FLAGS(...);

See SYSCTL VARIABLES below.

The remaining KFAIL_POINT_*() macros are wrappers around common error injection paths:

KFAIL_POINT_RETURN(parent, name) is the equivalent of KFAIL_POINT_CODE(..., return
RETURN_VALUE)

KFAIL_POINT_RETURN_VOID(parent, name) is the equivalent of KFAIL_POINT_CODE(..., return)

KFAIL_POINT_ERROR(parent, name, error_var) is the equivalent of KFAIL_POINT_CODE(...,
error_var = RETURN_VALUE)

KFAIL_POINT_GOTO(parent, name, error_var, label) is the equivalent of KFAIL_POINT_CODE(..., {
error_var = RETURN_VALUE; goto label;})

You can also introduce fail points by separating the declaration, definition, and evaluation portions.

KFAIL_POINT_DECLARE(name) is used to declare the fail_point struct.

KFAIL_POINT_DEFINE(parent, name, flags) defines and initializes the fail_point and sets up its

FAIL(9) FreeBSD Kernel Developer’s Manual FAIL(9)

FreeBSD 14.0-RELEASE-p11 June 6, 2019 FreeBSD 14.0-RELEASE-p11



sysctl(9).

KFAIL_POINT_EVAL(name, code) is used at the point that the fail point is executed.

SYSCTL VARIABLES
The KFAIL_POINT_*() macros add sysctl MIBs where specified. Many base kernel MIBs can be

found in the debug.fail_point tree (referenced in code by DEBUG_FP).

The sysctl variable may be set in a number of ways:

[<pct>%][<cnt>*]<type>[(args...)][-><more terms>]

The <type> argument specifies which action to take; it can be one of:

off Take no action (does not trigger fail point code)

return Trigger fail point code with specified argument

sleep Sleep the specified number of milliseconds

panic Panic

break Break into the debugger, or trap if there is no debugger support

print Print that the fail point executed

pause Threads sleep at the fail point until the fail point is set to off

yield Thread yields the cpu when the fail point is evaluated

delay Similar to sleep, but busy waits the cpu. (Useful in non-sleepable contexts.)

The <pct>% and <cnt>* modifiers prior to <type> control when <type> is executed. The <pct>% form

(e.g. "1.2%") can be used to specify a probability that <type> will execute. This is a decimal in the

range (0, 100] which can specify up to 1/10,000% precision. The <cnt>* form (e.g. "5*") can be used to

specify the number of times <type> should be executed before this <term> is disabled. Only the last

probability and the last count are used if multiple are specified, i.e. "1.2%2%" is the same as "2%".

When both a probability and a count are specified, the probability is evaluated before the count, i.e.

"2%5*" means "2% of the time, but only 5 times total".

FAIL(9) FreeBSD Kernel Developer’s Manual FAIL(9)

FreeBSD 14.0-RELEASE-p11 June 6, 2019 FreeBSD 14.0-RELEASE-p11



The operator -> can be used to express cascading terms. If you specify <term1>-><term2>, it means

that if <term1> does not ‘execute’, <term2> is evaluated. For the purpose of this operator, the return()

and print() operators are the only types that cascade. A return() term only cascades if the code executes,

and a print() term only cascades when passed a non-zero argument. A pid can optionally be specified.

The fail point term is only executed when invoked by a process with a matching p_pid.

EXAMPLES
sysctl debug.fail_point.foobar="2.1%return(5)"

21/1000ths of the time, execute code with RETURN_VALUE set to 5.

sysctl debug.fail_point.foobar="2%return(5)->5%return(22)"
2/100ths of the time, execute code with RETURN_VALUE set to 5. If that does not happen,

5% of the time execute code with RETURN_VALUE set to 22.

sysctl debug.fail_point.foobar="5*return(5)->0.1%return(22)"
For 5 times, return 5. After that, 1/1000th of the time, return 22.

sysctl debug.fail_point.foobar="0.1%5*return(5)"
Return 5 for 1 in 1000 executions, but only 5 times total.

sysctl debug.fail_point.foobar="1%*sleep(50)"
1/100th of the time, sleep 50ms.

sysctl debug.fail_point.foobar="1*return(5)[pid 1234]"
Return 5 once, when pid 1234 executes the fail point.

AUTHORS
This manual page was written by

Matthew Bryan <matthew.bryan@isilon.com> and

Zach Loafman <zml@FreeBSD.org>.

CAVEATS
It is easy to shoot yourself in the foot by setting fail points too aggressively or setting too many in

combination. For example, forcing malloc() to fail consistently is potentially harmful to uptime.

The sleep() sysctl setting may not be appropriate in all situations. Currently, fail_point_eval() does not

verify whether the context is appropriate for calling msleep(). You can force it to evaluate a sleep action

as a delay action by specifying the FAIL_POINT_NONSLEEPABLE flag at the point the fail point is

FAIL(9) FreeBSD Kernel Developer’s Manual FAIL(9)

FreeBSD 14.0-RELEASE-p11 June 6, 2019 FreeBSD 14.0-RELEASE-p11



declared.

FAIL(9) FreeBSD Kernel Developer’s Manual FAIL(9)

FreeBSD 14.0-RELEASE-p11 June 6, 2019 FreeBSD 14.0-RELEASE-p11


