
NAME
fcntl - file control

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int

fcntl(int fd, int cmd, ...);

DESCRIPTION
The fcntl() system call provides for control over descriptors. The argument fd is a descriptor to be

operated on by cmd as described below. Depending on the value of cmd, fcntl() can take an additional

third argument arg. Unless otherwise noted below for a specific operation, arg has type int.

F_DUPFD Return a new descriptor as follows:

+o Lowest numbered available descriptor greater than or equal to arg.

+o Same object references as the original descriptor.

+o New descriptor shares the same file offset if the object was a file.

+o Same access mode (read, write or read/write).

+o Same file status flags (i.e., both file descriptors share the same file

status flags).

+o The close-on-exec flag FD_CLOEXEC associated with the new file

descriptor is cleared, so the file descriptor is to remain open across

execve(2) system calls.

F_DUPFD_CLOEXEC Like F_DUPFD, but the FD_CLOEXEC flag associated with the new file

descriptor is set, so the file descriptor is closed when execve(2) system call

executes.

F_DUP2FD It is functionally equivalent to

dup2(fd, arg)

F_DUP2FD_CLOEXEC Like F_DUP2FD, but the FD_CLOEXEC flag associated with the new file

descriptor is set.

FCNTL(2) FreeBSD System Calls Manual FCNTL(2)

FreeBSD 14.2-RELEASE December 7, 2021 FreeBSD 14.2-RELEASE



The F_DUP2FD and F_DUP2FD_CLOEXEC constants are not portable, so

they should not be used if portability is needed. Use dup2() instead of

F_DUP2FD.

F_GETFD Get the close-on-exec flag associated with the file descriptor fd as

FD_CLOEXEC. If the returned value ANDed with FD_CLOEXEC is 0, the

file will remain open across exec(), otherwise the file will be closed upon

execution of exec() (arg is ignored).

F_SETFD Set the close-on-exec flag associated with fd to arg, where arg is either 0 or

FD_CLOEXEC, as described above.

F_GETFL Get descriptor status flags, as described below (arg is ignored).

F_SETFL Set descriptor status flags to arg.

F_GETOWN Get the process ID or process group currently receiving SIGIO and SIGURG

signals; process groups are returned as negative values (arg is ignored).

F_SETOWN Set the process or process group to receive SIGIO and SIGURG signals;

process groups are specified by supplying arg as negative, otherwise arg is

interpreted as a process ID.

F_READAHEAD Set or clear the read ahead amount for sequential access to the third argument,

arg, which is rounded up to the nearest block size. A zero value in arg turns

off read ahead, a negative value restores the system default.

F_RDAHEAD Equivalent to Darwin counterpart which sets read ahead amount of 128KB

when the third argument, arg is non-zero. A zero value in arg turns off read

ahead.

F_ADD_SEALS Add seals to the file as described below, if the underlying filesystem supports

seals.

F_GET_SEALS Get seals associated with the file, if the underlying filesystem supports seals.

F_ISUNIONSTACK Check if the vnode is part of a union stack (either the "union" flag from

mount(2) or unionfs). This is a hack not intended to be used outside of libc.

F_KINFO Fills a struct kinfo_file for the file referenced by the specified file descriptor.

FCNTL(2) FreeBSD System Calls Manual FCNTL(2)

FreeBSD 14.2-RELEASE December 7, 2021 FreeBSD 14.2-RELEASE



The arg argument should point to the storage for struct kinfo_file. The

kf_structsize member of the passed structure must be initialized with the

sizeof of struct kinfo_file, to allow for the interface versioning and evolution.

The flags for the F_GETFL and F_SETFL commands are as follows:

O_NONBLOCK Non-blocking I/O; if no data is available to a read(2) system call, or if a write(2)

operation would block, the read or write call returns -1 with the error EAGAIN.

O_APPEND Force each write to append at the end of file; corresponds to the O_APPEND flag of

open(2).

O_DIRECT Minimize or eliminate the cache effects of reading and writing. The system will

attempt to avoid caching the data you read or write. If it cannot avoid caching the

data, it will minimize the impact the data has on the cache. Use of this flag can

drastically reduce performance if not used with care.

O_ASYNC Enable the SIGIO signal to be sent to the process group when I/O is possible, e.g.,

upon availability of data to be read.

O_SYNC Enable synchronous writes. Corresponds to the O_SYNC flag of open(2).

O_FSYNC is an historical synonym for O_SYNC.

O_DSYNC Enable synchronous data writes. Corresponds to the O_DSYNC flag of open(2).

The seals that may be applied with F_ADD_SEALS are as follows:

F_SEAL_SEAL Prevent any further seals from being applied to the file.

F_SEAL_SHRINK Prevent the file from being shrunk with ftruncate(2).

F_SEAL_GROW Prevent the file from being enlarged with ftruncate(2).

F_SEAL_WRITE Prevent any further write(2) calls to the file. Any writes in progress will finish

before fcntl() returns. If any writeable mappings exist, F_ADD_SEALS will fail

and return EBUSY.

Seals are on a per-inode basis and require support by the underlying filesystem. If the underlying

filesystem does not support seals, F_ADD_SEALS and F_GET_SEALS will fail and return EINVAL.

FCNTL(2) FreeBSD System Calls Manual FCNTL(2)

FreeBSD 14.2-RELEASE December 7, 2021 FreeBSD 14.2-RELEASE



Several operations are available for doing advisory file locking; they all operate on the following

structure:

struct flock {

off_t l_start; /* starting offset */

off_t l_len; /* len = 0 means until end of file */

pid_t l_pid; /* lock owner */

short l_type; /* lock type: read/write, etc. */

short l_whence; /* type of l_start */

int l_sysid; /* remote system id or zero for local */

};

These advisory file locking operations take a pointer to struct flock as the third argument arg. The

commands available for advisory record locking are as follows:

F_GETLK Get the first lock that blocks the lock description pointed to by the third argument, arg,

taken as a pointer to a struct flock (see above). The information retrieved overwrites the

information passed to fcntl() in the flock structure. If no lock is found that would

prevent this lock from being created, the structure is left unchanged by this system call

except for the lock type which is set to F_UNLCK.

F_SETLK Set or clear a file segment lock according to the lock description pointed to by the third

argument, arg, taken as a pointer to a struct flock (see above). F_SETLK is used to

establish shared (or read) locks (F_RDLCK) or exclusive (or write) locks, (F_WRLCK),

as well as remove either type of lock (F_UNLCK). If a shared or exclusive lock cannot

be set, fcntl() returns immediately with EAGAIN.

F_SETLKW This command is the same as F_SETLK except that if a shared or exclusive lock is

blocked by other locks, the process waits until the request can be satisfied. If a signal

that is to be caught is received while fcntl() is waiting for a region, the fcntl() will be

interrupted if the signal handler has not specified the SA_RESTART (see sigaction(2)).

When a shared lock has been set on a segment of a file, other processes can set shared locks on that

segment or a portion of it. A shared lock prevents any other process from setting an exclusive lock on

any portion of the protected area. A request for a shared lock fails if the file descriptor was not opened

with read access.

An exclusive lock prevents any other process from setting a shared lock or an exclusive lock on any

portion of the protected area. A request for an exclusive lock fails if the file was not opened with write

access.

FCNTL(2) FreeBSD System Calls Manual FCNTL(2)

FreeBSD 14.2-RELEASE December 7, 2021 FreeBSD 14.2-RELEASE



The value of l_whence is SEEK_SET, SEEK_CUR, or SEEK_END to indicate that the relative offset,

l_start bytes, will be measured from the start of the file, current position, or end of the file, respectively.

The value of l_len is the number of consecutive bytes to be locked. If l_len is negative, l_start means

end edge of the region. The l_pid and l_sysid fields are only used with F_GETLK to return the process

ID of the process holding a blocking lock and the system ID of the system that owns that process. Locks

created by the local system will have a system ID of zero. After a successful F_GETLK request, the

value of l_whence is SEEK_SET.

Locks may start and extend beyond the current end of a file, but may not start or extend before the

beginning of the file. A lock is set to extend to the largest possible value of the file offset for that file if

l_len is set to zero. If l_whence and l_start point to the beginning of the file, and l_len is zero, the entire

file is locked. If an application wishes only to do entire file locking, the flock(2) system call is much

more efficient.

There is at most one type of lock set for each byte in the file. Before a successful return from an

F_SETLK or an F_SETLKW request when the calling process has previously existing locks on bytes in

the region specified by the request, the previous lock type for each byte in the specified region is

replaced by the new lock type. As specified above under the descriptions of shared locks and exclusive

locks, an F_SETLK or an F_SETLKW request fails or blocks respectively when another process has

existing locks on bytes in the specified region and the type of any of those locks conflicts with the type

specified in the request.

The queuing for F_SETLKW requests on local files is fair; that is, while the thread is blocked,

subsequent requests conflicting with its requests will not be granted, even if these requests do not

conflict with existing locks.

This interface follows the completely stupid semantics of System V and IEEE Std 1003.1-1988

("POSIX.1") that require that all locks associated with a file for a given process are removed when any

file descriptor for that file is closed by that process. This semantic means that applications must be

aware of any files that a subroutine library may access. For example if an application for updating the

password file locks the password file database while making the update, and then calls getpwnam(3) to

retrieve a record, the lock will be lost because getpwnam(3) opens, reads, and closes the password

database. The database close will release all locks that the process has associated with the database,

even if the library routine never requested a lock on the database. Another minor semantic problem with

this interface is that locks are not inherited by a child process created using the fork(2) system call. The

flock(2) interface has much more rational last close semantics and allows locks to be inherited by child

processes. The flock(2) system call is recommended for applications that want to ensure the integrity of

their locks when using library routines or wish to pass locks to their children.

The fcntl(), flock(2), and lockf(3) locks are compatible. Processes using different locking interfaces can

FCNTL(2) FreeBSD System Calls Manual FCNTL(2)

FreeBSD 14.2-RELEASE December 7, 2021 FreeBSD 14.2-RELEASE



cooperate over the same file safely. However, only one of such interfaces should be used within the

same process. If a file is locked by a process through flock(2), any record within the file will be seen as

locked from the viewpoint of another process using fcntl() or lockf(3), and vice versa. Note that

fcntl(F_GETLK) returns -1 in l_pid if the process holding a blocking lock previously locked the file

descriptor by flock(2).

All locks associated with a file for a given process are removed when the process terminates.

All locks obtained before a call to execve(2) remain in effect until the new program releases them. If the

new program does not know about the locks, they will not be released until the program exits.

A potential for deadlock occurs if a process controlling a locked region is put to sleep by attempting to

lock the locked region of another process. This implementation detects that sleeping until a locked

region is unlocked would cause a deadlock and fails with an EDEADLK error.

RETURN VALUES
Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD A new file descriptor.

F_DUP2FD A file descriptor equal to arg.

F_GETFD Value of flag (only the low-order bit is defined).

F_GETFL Value of flags.

F_GETOWN Value of file descriptor owner.

other Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
The fcntl() system call will fail if:

[EAGAIN] The argument cmd is F_SETLK, the type of lock (l_type) is a shared lock

(F_RDLCK) or exclusive lock (F_WRLCK), and the segment of a file to be

locked is already exclusive-locked by another process; or the type is an exclusive

lock and some portion of the segment of a file to be locked is already shared-

locked or exclusive-locked by another process.

FCNTL(2) FreeBSD System Calls Manual FCNTL(2)

FreeBSD 14.2-RELEASE December 7, 2021 FreeBSD 14.2-RELEASE



[EBADF] The fd argument is not a valid open file descriptor.

The argument cmd is F_DUP2FD, and arg is not a valid file descriptor.

The argument cmd is F_SETLK or F_SETLKW, the type of lock (l_type) is a

shared lock (F_RDLCK), and fd is not a valid file descriptor open for reading.

The argument cmd is F_SETLK or F_SETLKW, the type of lock (l_type) is an

exclusive lock (F_WRLCK), and fd is not a valid file descriptor open for writing.

[EBUSY] The argument cmd is F_ADD_SEALS, attempting to set F_SEAL_WRITE, and

writeable mappings of the file exist.

[EDEADLK] The argument cmd is F_SETLKW, and a deadlock condition was detected.

[EINTR] The argument cmd is F_SETLKW, and the system call was interrupted by a

signal.

[EINVAL] The cmd argument is F_DUPFD and arg is negative or greater than the maximum

allowable number (see getdtablesize(2)).

The argument cmd is F_GETLK, F_SETLK or F_SETLKW and the data to which

arg points is not valid.

The argument cmd is F_ADD_SEALS or F_GET_SEALS, and the underlying

filesystem does not support sealing.

The argument cmd is invalid.

[EMFILE] The argument cmd is F_DUPFD and the maximum number of file descriptors

permitted for the process are already in use, or no file descriptors greater than or

equal to arg are available.

[ENOTTY] The fd argument is not a valid file descriptor for the requested operation. This

may be the case if fd is a device node, or a descriptor returned by kqueue(2).

[ENOLCK] The argument cmd is F_SETLK or F_SETLKW, and satisfying the lock or unlock

request would result in the number of locked regions in the system exceeding a

system-imposed limit.

FCNTL(2) FreeBSD System Calls Manual FCNTL(2)

FreeBSD 14.2-RELEASE December 7, 2021 FreeBSD 14.2-RELEASE



[EOPNOTSUPP] The argument cmd is F_GETLK, F_SETLK or F_SETLKW and fd refers to a file

for which locking is not supported.

[EOVERFLOW] The argument cmd is F_GETLK, F_SETLK or F_SETLKW and an off_t

calculation overflowed.

[EPERM] The cmd argument is F_SETOWN and the process ID or process group given as

an argument is in a different session than the caller.

The cmd argument is F_ADD_SEALS and the F_SEAL_SEAL seal has already

been set.

[ESRCH] The cmd argument is F_SETOWN and the process ID given as argument is not in

use.

In addition, if fd refers to a descriptor open on a terminal device (as opposed to a descriptor open on a

socket), a cmd of F_SETOWN can fail for the same reasons as in tcsetpgrp(3), and a cmd of

F_GETOWN for the reasons as stated in tcgetpgrp(3).

SEE ALSO
close(2), dup2(2), execve(2), flock(2), getdtablesize(2), open(2), sigaction(2), lockf(3), tcgetpgrp(3),

tcsetpgrp(3)

STANDARDS
The F_DUP2FD constant is non portable. It is provided for compatibility with AIX and Solaris.

Per Version 4 of the Single UNIX Specification ("SUSv4"), a call with F_SETLKW should fail with

[EINTR] after any caught signal and should continue waiting during thread suspension such as a stop

signal. However, in this implementation a call with F_SETLKW is restarted after catching a signal with

a SA_RESTART handler or a thread suspension such as a stop signal.

HISTORY
The fcntl() system call appeared in 4.2BSD.

The F_DUP2FD constant first appeared in FreeBSD 7.1.

FCNTL(2) FreeBSD System Calls Manual FCNTL(2)

FreeBSD 14.2-RELEASE December 7, 2021 FreeBSD 14.2-RELEASE


