
NAME
INSERT_OBJECT_OID_LINK_INDEX, INSERT_OBJECT_INT_LINK_INDEX,

FIND_OBJECT_OID_LINK_INDEX, NEXT_OBJECT_OID_LINK_INDEX,

FIND_OBJECT_INT_LINK_INDEX, NEXT_OBJECT_INT_LINK_INDEX,

INSERT_OBJECT_OID_LINK, INSERT_OBJECT_INT_LINK, FIND_OBJECT_OID_LINK,

NEXT_OBJECT_OID_LINK, FIND_OBJECT_INT_LINK, NEXT_OBJECT_INT_LINK,

INSERT_OBJECT_OID, INSERT_OBJECT_INT, FIND_OBJECT_OID, FIND_OBJECT_INT,

NEXT_OBJECT_OID, NEXT_OBJECT_INT, this_tick, start_tick, get_ticks, systemg, comm_define,

community, oid_zeroDotZero, oid_usmUnknownEngineIDs, oid_usmNotInTimeWindows,

reqid_allocate, reqid_next, reqid_base, reqid_istype, reqid_type, timer_start, timer_start_repeat,
timer_stop, fd_select, fd_deselect, fd_suspend, fd_resume, or_register, or_unregister, buf_alloc,

buf_size, snmp_input_start, snmp_input_finish, snmp_output, snmp_send_port, snmp_send_trap,

snmp_pdu_auth_access string_save, string_commit, string_rollback, string_get, string_get_max,

string_free, ip_save, ip_rollback, ip_commit, ip_get, oid_save, oid_rollback, oid_commit, oid_get,
index_decode, index_compare, index_compare_off, index_append, index_append_off, snmpd_usmstats,

bsnmpd_get_usm_stats, bsnmpd_reset_usm_stats, usm_first_user, usm_next_user, usm_find_user,

usm_new_user, usm_delete_user, usm_flush_users, usm_user, snmpd_target_stat,
bsnmpd_get_target_stats, target_first_address, target_next_address, target_new_address,

target_activate_address, target_delete_address, target_first_param, target_next_param,

target_new_param, target_delete_param, target_first_notify, target_next_notify, target_new_notify,

target_delete_notify, target_flush_all, target_address, target_param, target_notify - SNMP daemon

loadable module interface

LIBRARY
Begemot SNMP library (libbsnmp, -lbsnmp)

SYNOPSIS
#include <bsnmp/snmpmod.h>

INSERT_OBJECT_OID_LINK_INDEX(PTR, LIST, LINK, INDEX);

INSERT_OBJECT_INT_LINK_INDEX(PTR, LIST, LINK, INDEX);

FIND_OBJECT_OID_LINK_INDEX(LIST, OID, SUB, LINK, INDEX);

FIND_OBJECT_INT_LINK_INDEX(LIST, OID, SUB, LINK, INDEX);

NEXT_OBJECT_OID_LINK_INDEX(LIST, OID, SUB, LINK, INDEX);

NEXT_OBJECT_INT_LINK_INDEX(LIST, OID, SUB, LINK, INDEX);

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

INSERT_OBJECT_OID_LINK(PTR, LIST, LINK);

INSERT_OBJECT_INT_LINK(PTR, LIST, LINK);

FIND_OBJECT_OID_LINK(LIST, OID, SUB, LINK);

FIND_OBJECT_INT_LINK(LIST, OID, SUB, LINK);

NEXT_OBJECT_OID_LINK(LIST, OID, SUB, LINK);

NEXT_OBJECT_INT_LINK(LIST, OID, SUB, LINK);

INSERT_OBJECT_OID(PTR, LIST);

INSERT_OBJECT_INT(PTR, LIST);

FIND_OBJECT_OID(LIST, OID, SUB);

FIND_OBJECT_INT(LIST, OID, SUB);

NEXT_OBJECT_OID(LIST, OID, SUB);

NEXT_OBJECT_INT(LIST, OID, SUB);

extern uint64_t this_tick;

extern uint64_t start_tick;

uint64_t

get_ticks(void);

extern struct systemg systemg;

u_int

comm_define(u_int priv, const char *descr, struct lmodule *mod, const char *str);

const char *

comm_string(u_int comm);

extern u_int community;

extern const struct asn_oid oid_zeroDotZero;

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

u_int

reqid_allocate(int size, struct lmodule *mod);

int32_t

reqid_next(u_int type);

int32_t

reqid_base(u_int type);

int

reqid_istype(int32_t reqid, u_int type);

u_int

reqid_type(int32_t reqid);

void *

timer_start(u_int ticks, void (*func)(void *), void *uarg, struct lmodule *mod);

void *

timer_start_repeat(u_int ticks, u_int repeat_ticks, void (*func)(void *), void *uarg,

struct lmodule *mod);

void

timer_stop(void *timer_id);

void *

fd_select(int fd, void (*func)(int, void *), void *uarg, struct lmodule *mod);

void

fd_deselect(void *fd_id);

void

fd_suspend(void *fd_id);

int

fd_resume(void *fd_id);

u_int

or_register(const struct asn_oid *oid, const char *descr, struct lmodule *mod);

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

void

or_unregister(u_int or_id);

void *

buf_alloc(int tx);

size_t

buf_size(int tx);

enum snmpd_input_err

snmp_input_start(const u_char *buf, size_t len, const char *source, struct snmp_pdu *pdu, int32_t *ip,

size_t *pdulen);

enum snmpd_input_err

snmp_input_finish(struct snmp_pdu *pdu, const u_char *rcvbuf, size_t rcvlen, u_char *sndbuf,

size_t *sndlen, const char *source, enum snmpd_input_err ierr, int32_t ip, void *data);

void

snmp_output(struct snmp_pdu *pdu, u_char *sndbuf, size_t *sndlen, const char *dest);

void

snmp_send_port(void *trans, const struct asn_oid *port, struct snmp_pdu *pdu,

const struct sockaddr *addr, socklen_t addrlen);

void

snmp_send_trap(const struct asn_oid *oid, ...);

enum snmp_code

snmp_pdu_auth_access(struct snmp_pdu *pdu, int32_t *ip);

int

string_save(struct snmp_value *val, struct snmp_context *ctx, ssize_t req_size, u_char **strp);

void

string_commit(struct snmp_context *ctx);

void

string_rollback(struct snmp_context *ctx, u_char **strp);

int

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

string_get(struct snmp_value *val, const u_char *str, ssize_t len);

int

string_get_max(struct snmp_value *val, const u_char *str, ssize_t len, size_t maxlen);

void

string_free(struct snmp_context *ctx);

int

ip_save(struct snmp_value *val, struct snmp_context *ctx, u_char *ipa);

void

ip_rollback(struct snmp_context *ctx, u_char *ipa);

void

ip_commit(struct snmp_context *ctx);

int

ip_get(struct snmp_value *val, u_char *ipa);

int

oid_save(struct snmp_value *val, struct snmp_context *ctx, struct asn_oid *oid);

void

oid_rollback(struct snmp_context *ctx, struct asn_oid *oid);

void

oid_commit(struct snmp_context *ctx);

int

oid_get(struct snmp_value *val, const struct asn_oid *oid);

int

index_decode(const struct asn_oid *oid, u_int sub, u_int code, ...);

int

index_compare(const struct asn_oid *oid1, u_int sub, const struct asn_oid *oid2);

int

index_compare_off(const struct asn_oid *oid1, u_int sub, const struct asn_oid *oid2, u_int off);

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

void

index_append(struct asn_oid *dst, u_int sub, const struct asn_oid *src);

void

index_append_off(struct asn_oid *dst, u_int sub, const struct asn_oid *src, u_int off);

extern struct snmpd_usmstat snmpd_usmstats;

struct snmpd_usmstat *

bsnmpd_get_usm_stats(void);

void

bsnmpd_reset_usm_stats(void);

struct usm_user *

usm_first_user(void);

struct usm_user *

usm_next_user(struct usm_user *uuser);

struct usm_user *

usm_find_user(uint8_t *engine, uint32_t elen, char *uname);

struct usm_user *

usm_new_user(uint8_t *engine, uint32_t elen, char *uname);

void

usm_delete_user(struct usm_user *);

void

usm_flush_users(void);

extern struct usm_user *usm_user;

struct snmpd_target_stats *

bsnmpd_get_target_stats(void);

struct target_address *

target_first_address(void);

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

struct target_address *

target_next_address(struct target_address *);

struct target_address *

target_new_address(char *);

int

target_activate_address(struct target_address *);

int

target_delete_address(struct target_address *);

struct target_param *

target_first_param(void);

struct target_param *

target_next_param(struct target_param *);

struct target_param *

target_new_param(char *);

int

target_delete_param(struct target_param *);

struct target_notify *

target_first_notify(void);

struct target_notify *

target_next_notify(struct target_notify *);

struct target_notify *

target_new_notify(char *);

int

target_delete_notify(struct target_notify *);

void

target_flush_all(void);

extern const struct asn_oid oid_usmUnknownEngineIDs;

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

extern const struct asn_oid oid_usmNotInTimeWindows;

DESCRIPTION
The bsnmpd(1) SNMP daemon implements a minimal MIB which consists of the system group, part of

the SNMP MIB, a private configuration MIB, a trap destination table, a UDP port table, a community

table, a module table, a statistics group and a debugging group. All other MIBs are support through

loadable modules. This allows bsnmpd(1) to use for task, that are not the classical SNMP task.

MODULE LOADING AND UNLOADING
Modules are loaded by writing to the module table. This table is indexed by a string, that identifies the

module to the daemon. This identifier is used to select the correct configuration section from the

configuration files and to identify resources allocated to this module. A row in the module table is

created by writing a string of non-zero length to the begemotSnmpdModulePath column. This string

must be the complete path to the file containing the module. A module can be unloaded by writing a

zero length string to the path column of an existing row.

Modules may depend on each other an hence must be loaded in the correct order. The dependencies are

listed in the corresponding manual pages.

Upon loading a module the SNMP daemon expects the module file to a export a global symbol config.

This symbol should be a variable of type struct snmp_module:

typedef enum snmpd_proxy_err (*proxy_err_f)(struct snmp_pdu *, void *,

const struct asn_oid *, const struct sockaddr *, socklen_t,

enum snmpd_input_err, int32_t);

struct snmp_module {

const char *comment;

int (*init)(struct lmodule *, int argc, char *argv[]);

int (*fini)(void);

void (*idle)(void);

void (*dump)(void);

void (*config)(void);

void (*start)(void);

proxy_err_f proxy;

const struct snmp_node *tree;

u_int tree_size;

void (*loading)(const struct lmodule *, int);

};

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

This structure must be statically initialized and its fields have the following functions:

comment This is a string that will be visible in the module table. It should give some hint about the

function of this module.

init This function is called upon loading the module. The module pointer should be stored by

the module because it is needed in other calls and the argument vector will contain the

arguments to this module from the daemons command line. This function should return 0

if everything is ok or an UNIX error code (see errno(3)). Once the function returns 0, the

fini function is called when the module is unloaded.

fini The module is unloaded. This gives the module a chance to free resources that are not

automatically freed. Be sure to free all memory, because daemons tend to run very long.

This function pointer may be NULL if it is not needed.

idle If this function pointer is not NULL, the function pointed to by it is called whenever the

daemon is going to wait for an event. Try to avoid using this feature.

dump Whenever the daemon receives a SIGUSR1 it dumps it internal state via syslog(3). If the

dump field is not NULL it is called by the daemon to dump the state of the module.

config Whenever the daemon receives a SIGHUP signal it re-reads its configuration file. If the

config field is not NULL it is called after reading the configuration file to give the module

a chance to adapt to the new configuration.

start If not NULL this function is called after successful loading and initializing the module to

start its actual operation.

proxy If the daemon receives a PDU and that PDU has a community string whose community

was registered by this module and proxy is not NULL than this function is called to handle

the PDU.

tree This is a pointer to the node array for the MIB tree implemented by this module.

tree_size This is the number of nodes in tree.

loading If this pointer is not NULL it is called whenever another module was loaded or unloaded.

It gets a pointer to that module and a flag that is 0 for unloading and 1 for loading.

When everything is ok, the daemon merges the module’s MIB tree into its current global tree, calls the

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

modules init() function. If this function returns an error, the modules MIB tree is removed from the

global one and the module is unloaded. If initialization is successful, the modules start() function is

called. After it returns the loaded() functions of all modules (including the loaded one) are called.

When the module is unloaded, its MIB tree is removed from the global one, the communities, request id

ranges, running timers and selected file descriptors are released, the fini() function is called, the module

file is unloaded and the loaded() functions of all other modules are called.

IMPLEMENTING TABLES
There are a number of macros designed to help implementing SNMP tables. A problem while

implementing a table is the support for the GETNEXT operator. The GETNEXT operation has to find

out whether, given an arbitrary OID, the lessest table row, that has an OID higher than the given OID.

The easiest way to do this is to keep the table as an ordered list of structures each one of which contains

an OID that is the index of the table row. This allows easy removal, insertion and search.

The helper macros assume, that the table is organized as a TAILQ (see queue(3) and each structure

contains a struct asn_oid that is used as index. For simple tables with only a integer or unsigned index,

an alternate form of the macros is available, that presume the existence of an integer or unsigned field as

index field.

The macros have name of the form

{INSERT,FIND,NEXT}_OBJECT_{OID,INT}[_LINK[_INDEX]]

The INSERT_*() macros are used in the SET operation to insert a new table row into the table. The

FIND_*() macros are used in the GET operation to find a specific row in the table. The NEXT_*()

macros are used in the GETNEXT operation to find the next row in the table. The last two macros

return a pointer to the row structure if a row is found, NULL otherwise. The macros

_OBJECT_OID_() assume the existence of a struct asn_oid that is used as index, the macros

_OBJECT_INT_() assume the existence of an unsigned integer field that is used as index.

The macros *_INDEX() allow the explicit naming of the index field in the parameter INDEX, whereas

the other macros assume that this field is named index. The macros *_LINK_*() allow the explicit

naming of the link field of the tail queues, the others assume that the link field is named link. Explicitly

naming the link field may be necessary if the same structures are held in two or more different tables.

The arguments to the macros are as follows:

PTR A pointer to the new structure to be inserted into the table.

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

LIST A pointer to the tail queue head.

LINK The name of the link field in the row structure.

INDEX The name of the index field in the row structure.

OID Must point to the var field of the value argument to the node operation callback. This is the

OID to search for.

SUB This is the index of the start of the table index in the OID pointed to by OID. This is usually

the same as the sub argument to the node operation callback.

DAEMON TIMESTAMPS
The variable this_tick contains the tick (there are 100 SNMP ticks in a second) when the current PDU

processing was started. The variable start_tick contains the tick when the daemon was started. The

function get_ticks() returns the current tick. The number of ticks since the daemon was started is

get_ticks() - start_tick

THE SYSTEM GROUP
The scalar fields of the system group are held in the global variable systemg:

struct systemg {

u_char *descr;

struct asn_oid object_id;

u_char *contact;

u_char *name;

u_char *location;

uint32_t services;

uint32_t or_last_change;

};

COMMUNITIES
The SNMP daemon implements a community table. On receipt of a request message the community

string in that message is compared to each of the community strings in that table, if a match is found, the

global variable community is set to the community identifier for that community. Community

identifiers are unsigned integers. For the three standard communities there are three constants defined:

#define COMM_INITIALIZE 0

#define COMM_READ 1

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

#define COMM_WRITE 2

community is set to COMM_INITIALIZE while the assignments in the configuration file are processed.

To COMM_READ or COMM_WRITE when the community strings for the read-write or read-only

community are found in the incoming PDU.

Modules can define additional communities. This may be necessary to provide transport proxying (a

PDU received on one communication link is proxied to another link) or to implement non-UDP access

points to SNMP. A new community is defined with the function comm_define(). It takes the following

parameters:

priv This is an integer identifying the community to the module. Each module has its own

namespace with regard to this parameter. The community table is indexed with the module

name and this identifier.

descr This is a string providing a human readable description of the community. It is visible in the

community table.

mod This is the module defining the community.

str This is the initial community string.

The function returns a globally unique community identifier. If a SNMPv1 or SNMPv2 PDU is received

who’s community string matches, this identifier is set into the global community.

The function comm_string() returns the current community string for the given community.

All communities defined by a module are automatically released when the module is unloaded.

THE USER-BASED SECURITY GROUP
The scalar statistics of the USM group are held in the global variable snmpd_usmstats:

struct snmpd_usmstat {

uint32_t unsupported_seclevels;

uint32_t not_in_time_windows;

uint32_t unknown_users;

uint32_t unknown_engine_ids;

uint32_t wrong_digests;

uint32_t decrypt_errors;

};

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

bsnmpd_get_usm_stats() returns a pointer to the global structure containing the statistics.

bsnmpd_reset_usm_stats() clears the statistics of the USM group.

A global list of configured USM users is maintained by the daemon.

struct usm_user {

struct snmp_user suser;

uint8_t user_engine_id[SNMP_ENGINE_ID_SIZ];

uint32_t user_engine_len;

char user_public[SNMP_ADM_STR32_SIZ];

uint32_t user_public_len;

int32_t status;

int32_t type;

SLIST_ENTRY(usm_user) up;

};

This structure represents an USM user. The daemon only responds to SNMPv3 PDUs with user

credentials matching an USM user entry in its global list. If a SNMPv3 PDU is received, whose security

model is USM, the global usm_user is set to point at the user entry that matches the credentials

contained in the PDU. However, the daemon does not create or remove USM users, it gives an interface

to external loadable module(s) to manage the list. usm_new_user() adds an user entry in the list, and

usm_delete_user() deletes an existing entry from the list. usm_flush_users() is used to remove all

configured USM users. usm_first_user() will return the first user in the list, or NULL if the list is

empty. usm_next_user() will return the next user of a given entry if one exists, or NULL. The list is

sorted according to the USM user name and Engine ID. usm_find_user() returns the USM user entry

matching the given engine and uname or NULL if an user with the specified name and engine id is not

present in the list.

THE MANAGEMENT TARGET GROUP
The Management Target group holds target address information used when sending SNMPv3

notifications.

The scalar statistics of the Management Target group are held in the global variable snmpd_target_stats:

struct snmpd_target_stats {

uint32_t unavail_contexts;

uint32_t unknown_contexts;

};

bsnmpd_get_target_stats() returns a pointer to the global structure containing the statistics.

Three global lists of configured management target addresses, parameters and notifications respectively

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

are maintained by the daemon.

struct target_address {

char name[SNMP_ADM_STR32_SIZ];

uint8_t address[SNMP_UDP_ADDR_SIZ];

int32_t timeout;

int32_t retry;

char taglist[SNMP_TAG_SIZ];

char paramname[SNMP_ADM_STR32_SIZ];

int32_t type;

int32_t socket;

int32_t status;

SLIST_ENTRY(target_address) ta;

};

This structure represents a SNMPv3 Management Target address. Each time a SNMP TRAP is send the

daemon will send the Trap to all active Management Target addresses in its global list.

struct target_param {

char name[SNMP_ADM_STR32_SIZ];

int32_t mpmodel;

int32_t sec_model;

char secname[SNMP_ADM_STR32_SIZ];

enum snmp_usm_level sec_level;

int32_t type;

int32_t status;

SLIST_ENTRY(target_param) tp;

};

This structure represents the information used to generate SNMP messages to the associated SNMPv3

Management Target addresses.

struct target_notify {

char name[SNMP_ADM_STR32_SIZ];

char taglist[SNMP_TAG_SIZ];

int32_t notify_type;

int32_t type;

int32_t status;

SLIST_ENTRY(target_notify) tn;

};

This structure represents Notification Tag entries - SNMP notifications are sent to the Target address for

each entry in the Management Target Address list that has a tag matching the specified tag in this

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

structure.

The daemon does not create or remove entries in the Management Target group lists, it gives an

interface to external loadable module(s) to manage the lists. target_new_address() adds a target address

entry, and target_delete_address() deletes an existing entry from the target address list.

target_activate_address() creates a socket associated with the target address entry so that SNMP

notifications may actually be send to that target address. target_first_address() will return a pointer to

the first target address entry in the list, while target_next_address() will return a pointer to the next target

address of a given entry if one exists. target_new_param() adds a target parameters’ entry, and

target_delete_param() deletes an existing entry from the target parameters list. target_first_param() will

return a pointer to the first target parameters’ entry in the list, while target_next_param() will return a

pointer to the next target parameters of a given entry if one exists. target_new_notify() adds a

notification target entry, and target_delete_notify() deletes an existing entry from the notification target

list. target_first_notify() will return a pointer to the first notification target entry in the list, while

target_next_notify() will return a pointer to the next notification target of a given entry if one exists.

target_flush_all() is used to remove all configured data from the three global Management Target Group

lists.

WELL KNOWN OIDS
The global variable oid_zeroDotZero contains the OID 0.0. The global variables

oid_usmUnknownEngineIDs oid_usmNotInTimeWindows contains the OIDs 1.3.6.1.6.3.15.1.1.4.0 and

1.3.6.1.6.3.15.1.1.2.0 used in the SNMPv3 USM Engine Discovery.

REQUEST ID RANGES
For modules that implement SNMP client functions besides SNMP agent functions it may be necessary

to identify SNMP requests by their identifier to allow easier routing of responses to the correct sub-

system. Request id ranges provide a way to acquire globally non-overlapping sub-ranges of the entire

31-bit id range.

A request id range is allocated with reqid_allocate(). The arguments are: the size of the range and the

module allocating the range. For example, the call

id = reqid_allocate(1000, module);

allocates a range of 1000 request ids. The function returns the request id range identifier or 0 if there is

not enough identifier space. The function reqid_base() returns the lowest request id in the given range.

Request id are allocated starting at the lowest one linear throughout the range. If the client application

may have a lot of outstanding request the range must be large enough so that an id is not reused until it is

really expired. reqid_next() returns the sequentially next id in the range.

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

The function reqid_istype() checks whether the request id reqid is within the range identified by type.

The function reqid_type() returns the range identifier for the given reqid or 0 if the request id is in none

of the ranges.

TIMERS
The SNMP daemon supports an arbitrary number of timers with SNMP tick granularity. The function

timer_start() arranges for the callback func to be called with the argument uarg after ticks SNMP ticks

have expired. mod is the module that starts the timer. These timers are one-shot, they are not restarted.

Repeatable timers are started with timer_start_repeat() which takes an additional argument repeat_ticks.

The argument ticks gives the number of ticks until the first execution of the callback, while repeat_ticks

is the number of ticks between invocations of the callback. Note, that currently the number of initial

ticks silently may be set identical to the number of ticks between callback invocations. The function

returns a timer identifier that can be used to stop the timer via timer_stop(). If a module is unloaded all

timers started by the module that have not expired yet are stopped.

FILE DESCRIPTOR SUPPORT
A module may need to get input from socket file descriptors without blocking the daemon (for example

to implement alternative SNMP transports).

The function fd_select() causes the callback function func to be called with the file descriptor fd and the

user argument uarg whenever the file descriptor fd can be read or has a close condition. If the file

descriptor is not in non-blocking mode, it is set to non-blocking mode. If the callback is not needed

anymore, fd_deselect() may be called with the value returned from fd_select(). All file descriptors

selected by a module are automatically deselected when the module is unloaded.

To temporarily suspend the file descriptor registration fd_suspend() can be called. This also causes the

file descriptor to be switched back to blocking mode if it was blocking prior the call to fd_select(). This

is necessary to do synchronous input on a selected socket. The effect of fd_suspend() can be undone

with fd_resume().

OBJECT RESOURCES
The system group contains an object resource table. A module may create an entry in this table by

calling or_register() with the oid to be registered, a textual description in str and a pointer to the module

mod. The registration can be removed with or_unregister(). All registrations of a module are

automatically removed if the module is unloaded.

TRANSMIT AND RECEIVE BUFFERS
A buffer is allocated via buf_alloc(). The argument must be 1 for transmit and 0 for receive buffers.

The function may return NULL if there is no memory available. The current buffersize can be obtained

with buf_size().

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

PROCESSING PDUS
For modules that need to do their own PDU processing (for example for proxying) the following

functions are available:

Function snmp_input_start() decodes the PDU, searches the community, and sets the global this_tick. It

returns one of the following error codes:

SNMPD_INPUT_OK Everything ok, continue with processing.

SNMPD_INPUT_FAILED The PDU could not be decoded, has a wrong version or an

unknown community string.

SNMPD_INPUT_VALBADLEN A SET PDU had a value field in a binding with a wrong length

field in an ASN.1 header.

SNMPD_INPUT_VALRANGE A SET PDU had a value field in a binding with a value that is out

of range for the given ASN.1 type.

SNMPD_INPUT_VALBADENC A SET PDU had a value field in a binding with wrong ASN.1

encoding.

SNMPD_INPUT_TRUNC The buffer appears to contain a valid begin of a PDU, but is too

short. For streaming transports this means that the caller must

save what he already has and trying to obtain more input and

reissue this input to the function. For datagram transports this

means that part of the datagram was lost and the input should be

ignored.

The function snmp_input_finish() does the other half of processing: if snmp_input_start() did not return

OK, tries to construct an error response. If the start was OK, it calls the correct function from

bsnmpagent(3) to execute the request and depending on the outcome constructs a response or error

response PDU or ignores the request PDU. It returns either SNMPD_INPUT_OK or

SNMPD_INPUT_FAILED. In the first case a response PDU was constructed and should be sent.

The function snmp_output() takes a PDU and encodes it.

The function snmp_send_port() takes a PDU, encodes it and sends it through the given port (identified

by the transport and the index in the port table) to the given address.

The function snmp_send_trap() sends a trap to all trap destinations. The arguments are the oid

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

identifying the trap and a NULL-terminated list of struct snmp_value pointers that are to be inserted into

the trap binding list. snmp_pdu_auth_access() verifies whether access to the object IDs contained in the

pdu

should be granted or denied, according to the configured View-Based Access rules. ip contains the

index of the first varbinding to which access was denied, or 0 if access to all varbindings in the PDU is

granted.

SIMPLE ACTION SUPPORT
For simple scalar variables that need no dependencies a number of support functions is available to

handle the set, commit, rollback and get.

The following functions are used for OCTET STRING scalars, either NUL terminated or not:

string_save() should be called for SNMP_OP_SET. value and ctx are the resp. arguments to the

node callback. valp is a pointer to the pointer that holds the current value and req_size

should be -1 if any size of the string is acceptable or a number larger or equal zero if

the string must have a specific size. The function saves the old value in the scratch

area (note, that any initial value must have been allocated by malloc(3)), allocates a

new string, copies over the new value, NUL-terminates it and sets the new current

value.

string_commit()
simply frees the saved old value in the scratch area.

string_rollback()

frees the new value, and puts back the old one.

string_get() is used for GET or GETNEXT. The function

string_get_max()

can be used instead of string_get() to ensure that the returned string has a certain

maximum length. If len is -1, the length is computed via strlen(3) from the current

string value. If the current value is NULL, a OCTET STRING of zero length is

returned.

string_free() must be called if either rollback or commit fails to free the saved old value.

The following functions are used to process scalars of type IP-address:

ip_save() Saves the current value in the scratch area and sets the new value from valp.

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

ip_commit() Does nothing.

ip_rollback() Restores the old IP address from the scratch area.

ip_get() Retrieves the IP current address.

The following functions handle OID-typed variables:

oid_save() Saves the current value in the scratch area by allocating a struct asn_oid with malloc(3)

and sets the new value from oid.

oid_commit() Frees the old value in the scratch area.

oid_rollback() Restores the old OID from the scratch area and frees the old OID.

oid_get() Retrieves the OID

TABLE INDEX HANDLING
The following functions help in handling table indexes:

index_decode() Decodes the index part of the OID. The parameter oid must be a pointer to the var

field of the value argument of the node callback. The sub argument must be the index

of the start of the index in the OID (this is the sub argument to the node callback).

code is the index expression (parameter idx to the node callback). These parameters

are followed by parameters depending on the syntax of the index elements as follows:

INTEGER int32_t * expected as argument.

COUNTER64 uint64_t * expected as argument. Note, that this syntax is illegal

for indexes.

OCTET STRING A u_char ** and a size_t * expected as arguments. A buffer is

allocated to hold the decoded string.

OID A struct asn_oid * is expected as argument.

IP ADDRESS A u_int8_t * expected as argument that points to a buffer of at

least four byte.

COUNTER, GAUGE, TIMETICKS

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

A u_int32_t expected.

NULL No argument expected.

index_compare()

compares the current variable with an OID. oid1 and sub come from the node callback

arguments value->var and sub resp. oid2 is the OID to compare to. The function

returns -1, 0, +1 when the variable is lesser, equal, higher to the given OID. oid2 must

contain only the index part of the table column.

index_compare_off()
is equivalent to index_compare() except that it takes an additional parameter off that

causes it to ignore the first off components of both indexes.

index_append() appends OID src beginning at position sub to dst.

index_append_off()
appends OID src beginning at position off to dst beginning at position sub + off.

SEE ALSO
gensnmptree(1), bsnmpd(1), bsnmpagent(3), bsnmpclient(3), bsnmplib(3)

STANDARDS
This implementation conforms to the applicable IETF RFCs and ITU-T recommendations.

AUTHORS
Hartmut Brandt <harti@FreeBSD.org>

SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)

FreeBSD 14.0-RELEASE-p6 December 19, 2010 FreeBSD 14.0-RELEASE-p6

