
NAME
fdc - PC architecture floppy disk controller driver

SYNOPSIS
device fdc

In /boot/device.hints:

hint.fdc.0.at="isa"
hint.fdc.0.port="0x3F0"
hint.fdc.0.irq="6"
hint.fdc.0.drq="2"
hint.fdc.0.flags="0x0"
hint.fd.0.at="fdc0"
hint.fd.0.drive="0"
hint.fd.0.flags="0x0"
hint.fd.1.at="fdc0"
hint.fd.1.drive="1"
hint.fd.1.flags="0x0"

DESCRIPTION
Device Usage
This driver provides access to floppy disk drives. Floppy disks using either FM (single-density) or

MFM (double or high-density) recording can be handled.

Floppy disk controllers can connect up to four drives each. The fdc driver can currently handle up to

two drives per controller (or four drives on ACPI). Upon driver initialization, an attempt is made to find

out the type of the floppy controller in use. The known controller types are either the original NE765 or

i8272 chips, or alternatively enhanced controllers that are compatible with the NE72065 or i82077 chips.

These enhanced controllers (among other enhancements) implement a FIFO for floppy data transfers

that will automatically be enabled once an enhanced chip has been detected. This FIFO activation can

be disabled using the per-controller flags value of 0x1.

By default, this driver creates a single device node /dev/fdN for each attached drive with number N. For

historical reasons, device nodes that use a trailing UFS-style partition letter (ranging from ‘a’ through

‘h’) can also be accessed, which will be implemented as symbolic links to the main device node.

Accessing the main device node will attempt to autodetect the density of the available medium for multi-

density devices. Thus it is possible to use either a 720 KB medium or a 1440 KB medium in a high-

density 3.5 inch standard floppy drive. Normally, this autodetection will only happen once at the first

call to open(2) for the device after inserting the medium. This assumes the drive offers proper

FDC(4) FreeBSD Kernel Interfaces Manual FDC(4)

FreeBSD 14.0-RELEASE-p11 April 7, 2017 FreeBSD 14.0-RELEASE-p11



changeline support so media changes can be detected by the driver. To indicate a drive that does not

have the changeline support, this can be overridden using the per-drive device flags value of 0x10

(causing each call to open(2) to perform the autodetection).

When trying to use a floppy device with special-density media, other device nodes can be created, of the

form /dev/fdN.MMMM, where N is the drive number, and MMMM is a number between one and four

digits describing the device density. Up to 15 additional subdevices per drive can be created that way.

The administrator is free to decide on a policy how to assign these numbers. The two common policies

are to either implement subdevices numbered 1 through 15, or to use a number that describes the

medium density in kilobytes. Initially, each of those devices will be configured to the maximal density

that is possible for the drive type (like 1200 KB for 5.25 inch HD drives or 1440 KB for 3.5 inch HD

drives). The desired density to be used on that subdevice needs to be configured using fdcontrol(8).

Drive types are configured using the lower four bits of the per-drive device flags. The following values

can be specified:

1 5.25 inch double-density device with 40 cylinders (360 KB native capacity)

2 5.25 inch high-density device with 80 cylinders (1200 KB native capacity)

3 3.5 inch double-density device with 80 cylinders (720 KB native capacity)

4 3.5 inch high-density device with 80 cylinders (1440 KB native capacity)

5 3.5 inch extra-density device with 80 cylinders (2880 KB native capacity, usage currently

restricted to at most 1440 KB media)

6 Same as type 5, available for compatibility with some BIOSes

On IA32 architectures, the drive type can be specified as 0 for the drives. In that case, the CMOS

configuration memory will be consulted to obtain the value for that drive. The ACPI probe

automatically determines these values via the _FDE and _FDI methods, but this can be overridden by

specifying a drive type hint.

Normally, each configured drive will be probed at initialization time, using a short seek sequence. This

is intended to find out about drives that have been configured but are actually missing or otherwise not

responding. (The ACPI probe method does not perform this seek.) In some environments (like laptops

with detachable drives), it might be desirable to bypass this drive probe, and pretend a drive to be there

so the driver autoconfiguration will work even if the drive is currently not present. For that purpose, a

per-drive device flags value of 0x20 needs to be specified.

FDC(4) FreeBSD Kernel Interfaces Manual FDC(4)

FreeBSD 14.0-RELEASE-p11 April 7, 2017 FreeBSD 14.0-RELEASE-p11



Programming Interface
In addition to the normal read and write functionality, the fdc driver offers a number of configurable

options using ioctl(2). In order to access any of this functionality, programmers need to include the

header file <sys/fdcio.h> into their programs. The call to open(2) can be performed in two possible

ways. When opening the device without the O_NONBLOCK flag set, the device is opened in a normal

way, which would cause the main device nodes to perform automatic media density selection, and which

will yield a file descriptor that is fully available for any I/O operation or any of the following ioctl(2)

commands.

When opening the device with O_NONBLOCK set, automatic media density selection will be bypassed,

and the device remains in a half-opened state. No actual I/O operations are possible, but many of the

ioctl(2) commands described below can be performed. This mode is intended for access to the device

without the requirement to have an accessible media present, like for status inquiries to the drive, or in

order to format a medium. O_NONBLOCK needs to be cleared before I/O operations are possible on

the descriptor, which requires a prior specification of the density using the FD_STYPE command (see

below). Operations that are not allowed on the half-opened descriptor will cause an error value of

EAGAIN.

The following ioctl(2) commands are currently available:

FD_FORM Used to format a floppy disk medium. Third argument is a pointer to a struct fd_formb

specifying which track to format, and which parameters to fill into the ID fields of the

floppy disk medium.

FD_GTYPE Returns the current density definition record for the selected device. Third argument is a

pointer to struct fd_type.

FD_STYPE Adjusts the density definition of the selected device. Third argument is a pointer to

struct fd_type. For the fixed-density subdevices (1 through 15 per drive), this operation

is restricted to a process with superuser privileges. For the auto-selecting subdevice 0,

the operation is temporarily allowed to any process, but this setting will be lost again

upon the next autoselection. This can be used when formatting a new medium (which

will require to open the device using O_NONBLOCK, and thus to later adjust the density

using FD_STYPE).

FD_GOPTS Obtain the current drive options. Third argument is a pointer to int, containing a bitwise

union of the following possible flag values:

FDOPT_NORETRY Do not automatically retry operations upon failure.

FDC(4) FreeBSD Kernel Interfaces Manual FDC(4)

FreeBSD 14.0-RELEASE-p11 April 7, 2017 FreeBSD 14.0-RELEASE-p11



FDOPT_NOERRLOG Do not cause "hard error" kernel logs for failed I/O operations.

FDOPT_NOERROR Do not indicate I/O errors when returning from read(2) or

write(2) system calls. The caller is assumed to use FD_GSTAT

calls in order to inquire about the success of each operation. This

is intended to allow even erroneous data from bad blocks to be

retrieved using normal I/O operations.

FDOPT_AUTOSEL Device performs automatic density selection. Unlike the above

flags, this one is read-only.

FD_SOPTS Set device options, see above for their meaning. Third argument is a pointer to int.

Drive options will always be cleared when closing the descriptor.

FD_CLRERR

Clear the internal low-level error counter. Normally, controller-level I/O errors are only

logged up to FDC_ERRMAX errors (currently defined to 100). This command resets the

counter. Requires superuser privileges.

FD_READID Read one sector ID field from the floppy disk medium. Third argument is a pointer to

struct fdc_readid, where the read data will be returned. Can be used to analyze a floppy

disk medium.

FD_GSTAT Return the recent floppy disk controller status, if available. Third argument is a pointer

to struct fdc_status, where the status registers (ST0, ST1, ST2, C, H, R, and N) are being

returned. EINVAL will be caused if no recent status is available.

FD_GDTYPE

Returns the floppy disk drive type. Third argument is a pointer to enum fd_drivetype.

This type is the same as being used in the per-drive configuration flags, or in the CMOS

configuration data or ACPI namespace on IA32 systems.

FILES
/dev/fd* floppy disk device nodes

SEE ALSO
fdread(1), fdwrite(1), ioctl(2), open(2), read(2), write(2), fdcontrol(8), fdformat(8)

AUTHORS
This man page was initially written by Wilko Bulte, and later vastly rewritten by J"org Wunsch.

FDC(4) FreeBSD Kernel Interfaces Manual FDC(4)

FreeBSD 14.0-RELEASE-p11 April 7, 2017 FreeBSD 14.0-RELEASE-p11


