
NAME
ffmpeg-devices - FFmpeg devices

DESCRIPTION
This document describes the input and output devices provided by the libavdevice library.

DEVICE OPTIONS
The libavdevice library provides the same interface as libavformat. Namely, an input device is

considered like a demuxer, and an output device like a muxer, and the interface and generic device

options are the same provided by libavformat (see the ffmpeg-formats manual).

In addition each input or output device may support so-called private options, which are specific for

that component.

Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly

in the device "AVFormatContext" options or using the libavutil/opt.h API for programmatic use.

INPUT DEVICES
Input devices are configured elements in FFmpeg which enable accessing the data coming from a

multimedia device attached to your system.

When you configure your FFmpeg build, all the supported input devices are enabled by default. You

can list all available ones using the configure option "--list-indevs".

You can disable all the input devices using the configure option "--disable-indevs", and selectively

enable an input device using the option "--enable-indev=INDEV", or you can disable a particular input

device using the option "--disable-indev=INDEV".

The option "-devices" of the ff* tools will display the list of supported input devices.

A description of the currently available input devices follows.

alsa
ALSA (Advanced Linux Sound Architecture) input device.

To enable this input device during configuration you need libasound installed on your system.

This device allows capturing from an ALSA device. The name of the device to capture has to be an

ALSA card identifier.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

An ALSA identifier has the syntax:

hw:<CARD>[,<DEV>[,<SUBDEV>]]

where the DEV and SUBDEV components are optional.

The three arguments (in order: CARD,DEV,SUBDEV) specify card number or identifier, device

number and subdevice number (-1 means any).

To see the list of cards currently recognized by your system check the files /proc/asound/cards and

/proc/asound/devices.

For example to capture with ffmpeg from an ALSA device with card id 0, you may run the command:

ffmpeg -f alsa -i hw:0 alsaout.wav

For more information see: <http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html>

Options

sample_rate
Set the sample rate in Hz. Default is 48000.

channels
Set the number of channels. Default is 2.

android_camera
Android camera input device.

This input devices uses the Android Camera2 NDK API which is available on devices with API level

24+. The availability of android_camera is autodetected during configuration.

This device allows capturing from all cameras on an Android device, which are integrated into the

Camera2 NDK API.

The available cameras are enumerated internally and can be selected with the camera_index parameter.

The input file string is discarded.

Generally the back facing camera has index 0 while the front facing camera has index 1.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

Options

video_size
Set the video size given as a string such as 640x480 or hd720. Falls back to the first available

configuration reported by Android if requested video size is not available or by default.

framerate
Set the video framerate. Falls back to the first available configuration reported by Android if

requested framerate is not available or by default (-1).

camera_index
Set the index of the camera to use. Default is 0.

input_queue_size
Set the maximum number of frames to buffer. Default is 5.

avfoundation
AVFoundation input device.

AVFoundation is the currently recommended framework by Apple for streamgrabbing on OSX >= 10.7

as well as on iOS.

The input filename has to be given in the following syntax:

-i "[[VIDEO]:[AUDIO]]"

The first entry selects the video input while the latter selects the audio input. The stream has to be

specified by the device name or the device index as shown by the device list. Alternatively, the video

and/or audio input device can be chosen by index using the

B<-video_device_index E<lt>INDEXE<gt>>

and/or

B<-audio_device_index E<lt>INDEXE<gt>>

, overriding any device name or index given in the input filename.

All available devices can be enumerated by using -list_devices true, listing all device names and

corresponding indices.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

There are two device name aliases:

"default"

Select the AVFoundation default device of the corresponding type.

"none"

Do not record the corresponding media type. This is equivalent to specifying an empty device

name or index.

Options

AVFoundation supports the following options:

-list_devices <TRUE|FALSE>
If set to true, a list of all available input devices is given showing all device names and indices.

-video_device_index <INDEX>
Specify the video device by its index. Overrides anything given in the input filename.

-audio_device_index <INDEX>
Specify the audio device by its index. Overrides anything given in the input filename.

-pixel_format <FORMAT>
Request the video device to use a specific pixel format. If the specified format is not supported, a

list of available formats is given and the first one in this list is used instead. Available pixel

formats are: "monob, rgb555be, rgb555le, rgb565be, rgb565le, rgb24, bgr24, 0rgb, bgr0, 0bgr,

rgb0,

bgr48be, uyvy422, yuva444p, yuva444p16le, yuv444p, yuv422p16, yuv422p10, yuv444p10,

yuv420p, nv12, yuyv422, gray"

-framerate
Set the grabbing frame rate. Default is "ntsc", corresponding to a frame rate of "30000/1001".

-video_size
Set the video frame size.

-capture_cursor
Capture the mouse pointer. Default is 0.

-capture_mouse_clicks

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

Capture the screen mouse clicks. Default is 0.

-capture_raw_data
Capture the raw device data. Default is 0. Using this option may result in receiving the underlying

data delivered to the AVFoundation framework. E.g. for muxed devices that sends raw DV data to

the framework (like tape-based camcorders), setting this option to false results in extracted video

frames captured in the designated pixel format only. Setting this option to true results in receiving

the raw DV stream untouched.

Examples

+o Print the list of AVFoundation supported devices and exit:

$ ffmpeg -f avfoundation -list_devices true -i ""

+o Record video from video device 0 and audio from audio device 0 into out.avi:

$ ffmpeg -f avfoundation -i "0:0" out.avi

+o Record video from video device 2 and audio from audio device 1 into out.avi:

$ ffmpeg -f avfoundation -video_device_index 2 -i ":1" out.avi

+o Record video from the system default video device using the pixel format bgr0 and do not record

any audio into out.avi:

$ ffmpeg -f avfoundation -pixel_format bgr0 -i "default:none" out.avi

+o Record raw DV data from a suitable input device and write the output into out.dv:

$ ffmpeg -f avfoundation -capture_raw_data true -i "zr100:none" out.dv

bktr
BSD video input device.

Options

framerate
Set the frame rate.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

video_size
Set the video frame size. Default is "vga".

standard
Available values are:

pal
ntsc
secam
paln
palm
ntscj

decklink
The decklink input device provides capture capabilities for Blackmagic DeckLink devices.

To enable this input device, you need the Blackmagic DeckLink SDK and you need to configure with

the appropriate "--extra-cflags" and "--extra-ldflags". On Windows, you need to run the IDL files

through widl.

DeckLink is very picky about the formats it supports. Pixel format of the input can be set with

raw_format. Framerate and video size must be determined for your device with -list_formats 1. Audio

sample rate is always 48 kHz and the number of channels can be 2, 8 or 16. Note that all audio

channels are bundled in one single audio track.

Options

list_devices
If set to true, print a list of devices and exit. Defaults to false. This option is deprecated, please

use the "-sources" option of ffmpeg to list the available input devices.

list_formats
If set to true, print a list of supported formats and exit. Defaults to false.

format_code <FourCC>
This sets the input video format to the format given by the FourCC. To see the supported values of

your device(s) use list_formats. Note that there is a FourCC ’pal ’ that can also be used as pal (3

letters). Default behavior is autodetection of the input video format, if the hardware supports it.

raw_format

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

Set the pixel format of the captured video. Available values are:

auto This is the default which means 8-bit YUV 422 or 8-bit ARGB if format autodetection is

used, 8-bit YUV 422 otherwise.

uyvy422
8-bit YUV 422.

yuv422p10
10-bit YUV 422.

argb
8-bit RGB.

bgra
8-bit RGB.

rgb10
10-bit RGB.

teletext_lines
If set to nonzero, an additional teletext stream will be captured from the vertical ancillary data.

Both SD PAL (576i) and HD (1080i or 1080p) sources are supported. In case of HD sources,

OP47 packets are decoded.

This option is a bitmask of the SD PAL VBI lines captured, specifically lines 6 to 22, and lines

318 to 335. Line 6 is the LSB in the mask. Selected lines which do not contain teletext

information will be ignored. You can use the special all constant to select all possible lines, or

standard to skip lines 6, 318 and 319, which are not compatible with all receivers.

For SD sources, ffmpeg needs to be compiled with "--enable-libzvbi". For HD sources, on older

(pre-4K) DeckLink card models you have to capture in 10 bit mode.

channels
Defines number of audio channels to capture. Must be 2, 8 or 16. Defaults to 2.

duplex_mode
Sets the decklink device duplex/profile mode. Must be unset, half, full, one_sub_device_full,
one_sub_device_half, two_sub_device_full, four_sub_device_half Defaults to unset.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

Note: DeckLink SDK 11.0 have replaced the duplex property by a profile property. For the

DeckLink Duo 2 and DeckLink Quad 2, a profile is shared between any 2 sub-devices that utilize

the same connectors. For the DeckLink 8K Pro, a profile is shared between all 4 sub-devices. So

DeckLink 8K Pro support four profiles.

Valid profile modes for DeckLink 8K Pro(with DeckLink SDK >= 11.0): one_sub_device_full,
one_sub_device_half, two_sub_device_full, four_sub_device_half

Valid profile modes for DeckLink Quad 2 and DeckLink Duo 2: half, full

timecode_format
Timecode type to include in the frame and video stream metadata. Must be none, rp188vitc,

rp188vitc2, rp188ltc, rp188hfr, rp188any, vitc, vitc2, or serial. Defaults to none (not included).

In order to properly support 50/60 fps timecodes, the ordering of the queried timecode types for

rp188any is HFR, VITC1, VITC2 and LTC for >30 fps content. Note that this is slightly different

to the ordering used by the DeckLink API, which is HFR, VITC1, LTC, VITC2.

video_input
Sets the video input source. Must be unset, sdi, hdmi, optical_sdi, component, composite or

s_video. Defaults to unset.

audio_input
Sets the audio input source. Must be unset, embedded, aes_ebu, analog, analog_xlr, analog_rca or

microphone. Defaults to unset.

video_pts
Sets the video packet timestamp source. Must be video, audio, reference, wallclock or

abs_wallclock. Defaults to video.

audio_pts
Sets the audio packet timestamp source. Must be video, audio, reference, wallclock or

abs_wallclock. Defaults to audio.

draw_bars
If set to true, color bars are drawn in the event of a signal loss. Defaults to true.

queue_size
Sets maximum input buffer size in bytes. If the buffering reaches this value, incoming frames will

be dropped. Defaults to 1073741824.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

audio_depth
Sets the audio sample bit depth. Must be 16 or 32. Defaults to 16.

decklink_copyts
If set to true, timestamps are forwarded as they are without removing the initial offset. Defaults to

false.

timestamp_align
Capture start time alignment in seconds. If set to nonzero, input frames are dropped till the system

timestamp aligns with configured value. Alignment difference of up to one frame duration is

tolerated. This is useful for maintaining input synchronization across N different hardware

devices deployed for ’N-way’ redundancy. The system time of different hardware devices should

be synchronized with protocols such as NTP or PTP, before using this option. Note that this

method is not foolproof. In some border cases input synchronization may not happen due to thread

scheduling jitters in the OS. Either sync could go wrong by 1 frame or in a rarer case

timestamp_align seconds. Defaults to 0.

wait_for_tc (bool)
Drop frames till a frame with timecode is received. Sometimes serial timecode isn’t received with

the first input frame. If that happens, the stored stream timecode will be inaccurate. If this option

is set to true, input frames are dropped till a frame with timecode is received. Option

timecode_format must be specified. Defaults to false.

enable_klv(bool)
If set to true, extracts KLV data from VANC and outputs KLV packets. KLV VANC packets are

joined based on MID and PSC fields and aggregated into one KLV packet. Defaults to false.

Examples

+o List input devices:

ffmpeg -sources decklink

+o List supported formats:

ffmpeg -f decklink -list_formats 1 -i ’Intensity Pro’

+o Capture video clip at 1080i50:

ffmpeg -format_code Hi50 -f decklink -i ’Intensity Pro’ -c:a copy -c:v copy output.avi

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

+o Capture video clip at 1080i50 10 bit:

ffmpeg -raw_format yuv422p10 -format_code Hi50 -f decklink -i ’UltraStudio Mini Recorder’ -c:a copy -c:v

+o Capture video clip at 1080i50 with 16 audio channels:

ffmpeg -channels 16 -format_code Hi50 -f decklink -i ’UltraStudio Mini Recorder’ -c:a copy -c:v copy output.avi

dshow
Windows DirectShow input device.

DirectShow support is enabled when FFmpeg is built with the mingw-w64 project. Currently only

audio and video devices are supported.

Multiple devices may be opened as separate inputs, but they may also be opened on the same input,

which should improve synchronism between them.

The input name should be in the format:

<TYPE>=<NAME>[:<TYPE>=<NAME>]

where TYPE can be either audio or video, and NAME is the device’s name or alternative name..

Options

If no options are specified, the device’s defaults are used. If the device does not support the requested

options, it will fail to open.

video_size
Set the video size in the captured video.

framerate
Set the frame rate in the captured video.

sample_rate
Set the sample rate (in Hz) of the captured audio.

sample_size
Set the sample size (in bits) of the captured audio.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

channels
Set the number of channels in the captured audio.

list_devices
If set to true, print a list of devices and exit.

list_options
If set to true, print a list of selected device’s options and exit.

video_device_number
Set video device number for devices with the same name (starts at 0, defaults to 0).

audio_device_number
Set audio device number for devices with the same name (starts at 0, defaults to 0).

pixel_format
Select pixel format to be used by DirectShow. This may only be set when the video codec is not

set or set to rawvideo.

audio_buffer_size
Set audio device buffer size in milliseconds (which can directly impact latency, depending on the

device). Defaults to using the audio device’s default buffer size (typically some multiple of

500ms). Setting this value too low can degrade performance. See also

<http://msdn.microsoft.com/en-us/library/windows/desktop/dd377582(v=vs.85).aspx>

video_pin_name
Select video capture pin to use by name or alternative name.

audio_pin_name
Select audio capture pin to use by name or alternative name.

crossbar_video_input_pin_number
Select video input pin number for crossbar device. This will be routed to the crossbar device’s

Video Decoder output pin. Note that changing this value can affect future invocations (sets a new

default) until system reboot occurs.

crossbar_audio_input_pin_number
Select audio input pin number for crossbar device. This will be routed to the crossbar device’s

Audio Decoder output pin. Note that changing this value can affect future invocations (sets a new

default) until system reboot occurs.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

show_video_device_dialog
If set to true, before capture starts, popup a display dialog to the end user, allowing them to change

video filter properties and configurations manually. Note that for crossbar devices, adjusting

values in this dialog may be needed at times to toggle between PAL (25 fps) and NTSC (29.97)

input frame rates, sizes, interlacing, etc. Changing these values can enable different scan

rates/frame rates and avoiding green bars at the bottom, flickering scan lines, etc. Note that with

some devices, changing these properties can also affect future invocations (sets new defaults) until

system reboot occurs.

show_audio_device_dialog
If set to true, before capture starts, popup a display dialog to the end user, allowing them to change

audio filter properties and configurations manually.

show_video_crossbar_connection_dialog
If set to true, before capture starts, popup a display dialog to the end user, allowing them to

manually modify crossbar pin routings, when it opens a video device.

show_audio_crossbar_connection_dialog
If set to true, before capture starts, popup a display dialog to the end user, allowing them to

manually modify crossbar pin routings, when it opens an audio device.

show_analog_tv_tuner_dialog
If set to true, before capture starts, popup a display dialog to the end user, allowing them to

manually modify TV channels and frequencies.

show_analog_tv_tuner_audio_dialog
If set to true, before capture starts, popup a display dialog to the end user, allowing them to

manually modify TV audio (like mono vs. stereo, Language A,B or C).

audio_device_load
Load an audio capture filter device from file instead of searching it by name. It may load

additional parameters too, if the filter supports the serialization of its properties to. To use this an

audio capture source has to be specified, but it can be anything even fake one.

audio_device_save
Save the currently used audio capture filter device and its parameters (if the filter supports it) to a

file. If a file with the same name exists it will be overwritten.

video_device_load
Load a video capture filter device from file instead of searching it by name. It may load additional

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

parameters too, if the filter supports the serialization of its properties to. To use this a video

capture source has to be specified, but it can be anything even fake one.

video_device_save
Save the currently used video capture filter device and its parameters (if the filter supports it) to a

file. If a file with the same name exists it will be overwritten.

use_video_device_timestamps
If set to false, the timestamp for video frames will be derived from the wallclock instead of the

timestamp provided by the capture device. This allows working around devices that provide

unreliable timestamps.

Examples

+o Print the list of DirectShow supported devices and exit:

$ ffmpeg -list_devices true -f dshow -i dummy

+o Open video device Camera:

$ ffmpeg -f dshow -i video="Camera"

+o Open second video device with name Camera:

$ ffmpeg -f dshow -video_device_number 1 -i video="Camera"

+o Open video device Camera and audio device Microphone:

$ ffmpeg -f dshow -i video="Camera":audio="Microphone"

+o Print the list of supported options in selected device and exit:

$ ffmpeg -list_options true -f dshow -i video="Camera"

+o Specify pin names to capture by name or alternative name, specify alternative device name:

$ ffmpeg -f dshow -audio_pin_name "Audio Out" -video_pin_name 2 -i video=video="@device_pnp_\\?\pci#ven_1a0a&dev_6200&subsys_62021461&rev_01#4&e2c7dd6&0&00e1#{65e8773d-8f56-11d0-a3b9-00a0c9223196}\{ca465100-deb0-4d59-818f-8c477184adf6}":audio="Microphone"

+o Configure a crossbar device, specifying crossbar pins, allow user to adjust video capture

properties at startup:

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

$ ffmpeg -f dshow -show_video_device_dialog true -crossbar_video_input_pin_number 0

-crossbar_audio_input_pin_number 3 -i video="AVerMedia BDA Analog Capture":audio="AVerMedia BDA

fbdev
Linux framebuffer input device.

The Linux framebuffer is a graphic hardware-independent abstraction layer to show graphics on a

computer monitor, typically on the console. It is accessed through a file device node, usually /dev/fb0.

For more detailed information read the file Documentation/fb/framebuffer.txt included in the Linux

source tree.

See also <http://linux-fbdev.sourceforge.net/>, and fbset(1).

To record from the framebuffer device /dev/fb0 with ffmpeg:

ffmpeg -f fbdev -framerate 10 -i /dev/fb0 out.avi

You can take a single screenshot image with the command:

ffmpeg -f fbdev -framerate 1 -i /dev/fb0 -frames:v 1 screenshot.jpeg

Options

framerate
Set the frame rate. Default is 25.

gdigrab
Win32 GDI-based screen capture device.

This device allows you to capture a region of the display on Windows.

There are two options for the input filename:

desktop

or

title=<window_title>

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

The first option will capture the entire desktop, or a fixed region of the desktop. The second option will

instead capture the contents of a single window, regardless of its position on the screen.

For example, to grab the entire desktop using ffmpeg:

ffmpeg -f gdigrab -framerate 6 -i desktop out.mpg

Grab a 640x480 region at position "10,20":

ffmpeg -f gdigrab -framerate 6 -offset_x 10 -offset_y 20 -video_size vga -i desktop out.mpg

Grab the contents of the window named "Calculator"

ffmpeg -f gdigrab -framerate 6 -i title=Calculator out.mpg

Options

draw_mouse
Specify whether to draw the mouse pointer. Use the value 0 to not draw the pointer. Default value

is 1.

framerate
Set the grabbing frame rate. Default value is "ntsc", corresponding to a frame rate of

"30000/1001".

show_region
Show grabbed region on screen.

If show_region is specified with 1, then the grabbing region will be indicated on screen. With this

option, it is easy to know what is being grabbed if only a portion of the screen is grabbed.

Note that show_region is incompatible with grabbing the contents of a single window.

For example:

ffmpeg -f gdigrab -show_region 1 -framerate 6 -video_size cif -offset_x 10 -offset_y 20 -i desktop out.mpg

video_size
Set the video frame size. The default is to capture the full screen if desktop is selected, or the full

window size if title=window_title is selected.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

offset_x
When capturing a region with video_size, set the distance from the left edge of the screen or

desktop.

Note that the offset calculation is from the top left corner of the primary monitor on Windows. If

you have a monitor positioned to the left of your primary monitor, you will need to use a negative

offset_x value to move the region to that monitor.

offset_y
When capturing a region with video_size, set the distance from the top edge of the screen or

desktop.

Note that the offset calculation is from the top left corner of the primary monitor on Windows. If

you have a monitor positioned above your primary monitor, you will need to use a negative

offset_y value to move the region to that monitor.

iec61883
FireWire DV/HDV input device using libiec61883.

To enable this input device, you need libiec61883, libraw1394 and libavc1394 installed on your

system. Use the configure option "--enable-libiec61883" to compile with the device enabled.

The iec61883 capture device supports capturing from a video device connected via IEEE1394

(FireWire), using libiec61883 and the new Linux FireWire stack (juju). This is the default DV/HDV

input method in Linux Kernel 2.6.37 and later, since the old FireWire stack was removed.

Specify the FireWire port to be used as input file, or "auto" to choose the first port connected.

Options

dvtype
Override autodetection of DV/HDV. This should only be used if auto detection does not work, or

if usage of a different device type should be prohibited. Treating a DV device as HDV (or vice

versa) will not work and result in undefined behavior. The values auto, dv and hdv are supported.

dvbuffer
Set maximum size of buffer for incoming data, in frames. For DV, this is an exact value. For

HDV, it is not frame exact, since HDV does not have a fixed frame size.

dvguid

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

Select the capture device by specifying its GUID. Capturing will only be performed from the

specified device and fails if no device with the given GUID is found. This is useful to select the

input if multiple devices are connected at the same time. Look at /sys/bus/firewire/devices to find

out the GUIDs.

Examples

+o Grab and show the input of a FireWire DV/HDV device.

ffplay -f iec61883 -i auto

+o Grab and record the input of a FireWire DV/HDV device, using a packet buffer of 100000 packets

if the source is HDV.

ffmpeg -f iec61883 -i auto -dvbuffer 100000 out.mpg

jack
JACK input device.

To enable this input device during configuration you need libjack installed on your system.

A JACK input device creates one or more JACK writable clients, one for each audio channel, with

name client_name:input_N, where client_name is the name provided by the application, and N is a

number which identifies the channel. Each writable client will send the acquired data to the FFmpeg

input device.

Once you have created one or more JACK readable clients, you need to connect them to one or more

JACK writable clients.

To connect or disconnect JACK clients you can use the jack_connect and jack_disconnect programs, or

do it through a graphical interface, for example with qjackctl.

To list the JACK clients and their properties you can invoke the command jack_lsp.

Follows an example which shows how to capture a JACK readable client with ffmpeg.

Create a JACK writable client with name "ffmpeg".

$ ffmpeg -f jack -i ffmpeg -y out.wav

Start the sample jack_metro readable client.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

$ jack_metro -b 120 -d 0.2 -f 4000

List the current JACK clients.

$ jack_lsp -c

system:capture_1

system:capture_2

system:playback_1

system:playback_2

ffmpeg:input_1

metro:120_bpm

Connect metro to the ffmpeg writable client.

$ jack_connect metro:120_bpm ffmpeg:input_1

For more information read: <http://jackaudio.org/>

Options

channels
Set the number of channels. Default is 2.

kmsgrab
KMS video input device.

Captures the KMS scanout framebuffer associated with a specified CRTC or plane as a DRM object

that can be passed to other hardware functions.

Requires either DRM master or CAP_SYS_ADMIN to run.

If you don’t understand what all of that means, you probably don’t want this. Look at x11grab instead.

Options

device
DRM device to capture on. Defaults to /dev/dri/card0.

format
Pixel format of the framebuffer. This can be autodetected if you are running Linux 5.7 or later,

but needs to be provided for earlier versions. Defaults to bgr0, which is the most common format

used by the Linux console and Xorg X server.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

format_modifier
Format modifier to signal on output frames. This is necessary to import correctly into some APIs.

It can be autodetected if you are running Linux 5.7 or later, but will need to be provided explicitly

when needed in earlier versions. See the libdrm documentation for possible values.

crtc_id
KMS CRTC ID to define the capture source. The first active plane on the given CRTC will be

used.

plane_id
KMS plane ID to define the capture source. Defaults to the first active plane found if neither

crtc_id nor plane_id are specified.

framerate
Framerate to capture at. This is not synchronised to any page flipping or framebuffer changes - it

just defines the interval at which the framebuffer is sampled. Sampling faster than the

framebuffer update rate will generate independent frames with the same content. Defaults to 30.

Examples

+o Capture from the first active plane, download the result to normal frames and encode. This will

only work if the framebuffer is both linear and mappable - if not, the result may be scrambled or

fail to download.

ffmpeg -f kmsgrab -i - -vf ’hwdownload,format=bgr0’ output.mp4

+o Capture from CRTC ID 42 at 60fps, map the result to VAAPI, convert to NV12 and encode as

H.264.

ffmpeg -crtc_id 42 -framerate 60 -f kmsgrab -i - -vf ’hwmap=derive_device=vaapi,scale_vaapi=w=1920:h=1080:format=nv12’

+o To capture only part of a plane the output can be cropped - this can be used to capture a single

window, as long as it has a known absolute position and size. For example, to capture and encode

the middle quarter of a 1920x1080 plane:

ffmpeg -f kmsgrab -i - -vf ’hwmap=derive_device=vaapi,crop=960:540:480:270,scale_vaapi=960:540:nv12’ -c:v

lavfi
Libavfilter input virtual device.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

This input device reads data from the open output pads of a libavfilter filtergraph.

For each filtergraph open output, the input device will create a corresponding stream which is mapped

to the generated output. The filtergraph is specified through the option graph.

Options

graph
Specify the filtergraph to use as input. Each video open output must be labelled by a unique string

of the form "outN", where N is a number starting from 0 corresponding to the mapped input

stream generated by the device. The first unlabelled output is automatically assigned to the "out0"

label, but all the others need to be specified explicitly.

The suffix "+subcc" can be appended to the output label to create an extra stream with the closed

captions packets attached to that output (experimental; only for EIA-608 / CEA-708 for now).

The subcc streams are created after all the normal streams, in the order of the corresponding

stream. For example, if there is "out19+subcc", "out7+subcc" and up to "out42", the stream #43 is

subcc for stream #7 and stream #44 is subcc for stream #19.

If not specified defaults to the filename specified for the input device.

graph_file
Set the filename of the filtergraph to be read and sent to the other filters. Syntax of the filtergraph

is the same as the one specified by the option graph.

dumpgraph
Dump graph to stderr.

Examples

+o Create a color video stream and play it back with ffplay:

ffplay -f lavfi -graph "color=c=pink [out0]" dummy

+o As the previous example, but use filename for specifying the graph description, and omit the

"out0" label:

ffplay -f lavfi color=c=pink

+o Create three different video test filtered sources and play them:

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

ffplay -f lavfi -graph "testsrc [out0]; testsrc,hflip [out1]; testsrc,negate [out2]" test3

+o Read an audio stream from a file using the amovie source and play it back with ffplay:

ffplay -f lavfi "amovie=test.wav"

+o Read an audio stream and a video stream and play it back with ffplay:

ffplay -f lavfi "movie=test.avi[out0];amovie=test.wav[out1]"

+o Dump decoded frames to images and closed captions to a file (experimental):

ffmpeg -f lavfi -i "movie=test.ts[out0+subcc]" -map v frame%08d.png -map s -c copy -f rawvideo subcc.bin

libcdio
Audio-CD input device based on libcdio.

To enable this input device during configuration you need libcdio installed on your system. It requires

the configure option "--enable-libcdio".

This device allows playing and grabbing from an Audio-CD.

For example to copy with ffmpeg the entire Audio-CD in /dev/sr0, you may run the command:

ffmpeg -f libcdio -i /dev/sr0 cd.wav

Options

speed
Set drive reading speed. Default value is 0.

The speed is specified CD-ROM speed units. The speed is set through the libcdio

"cdio_cddap_speed_set" function. On many CD-ROM drives, specifying a value too large will

result in using the fastest speed.

paranoia_mode
Set paranoia recovery mode flags. It accepts one of the following values:

disable
verify

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

overlap
neverskip
full

Default value is disable.

For more information about the available recovery modes, consult the paranoia project

documentation.

libdc1394
IIDC1394 input device, based on libdc1394 and libraw1394.

Requires the configure option "--enable-libdc1394".

Options

framerate
Set the frame rate. Default is "ntsc", corresponding to a frame rate of "30000/1001".

pixel_format
Select the pixel format. Default is "uyvy422".

video_size
Set the video size given as a string such as "640x480" or "hd720". Default is "qvga".

openal
The OpenAL input device provides audio capture on all systems with a working OpenAL 1.1

implementation.

To enable this input device during configuration, you need OpenAL headers and libraries installed on

your system, and need to configure FFmpeg with "--enable-openal".

OpenAL headers and libraries should be provided as part of your OpenAL implementation, or as an

additional download (an SDK). Depending on your installation you may need to specify additional

flags via the "--extra-cflags" and "--extra-ldflags" for allowing the build system to locate the OpenAL

headers and libraries.

An incomplete list of OpenAL implementations follows:

Creative

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

The official Windows implementation, providing hardware acceleration with supported devices

and software fallback. See <http://openal.org/>.

OpenAL Soft
Portable, open source (LGPL) software implementation. Includes backends for the most common

sound APIs on the Windows, Linux, Solaris, and BSD operating systems. See

<http://kcat.strangesoft.net/openal.html>.

Apple
OpenAL is part of Core Audio, the official Mac OS X Audio interface. See

<http://developer.apple.com/technologies/mac/audio-and-video.html>

This device allows one to capture from an audio input device handled through OpenAL.

You need to specify the name of the device to capture in the provided filename. If the empty string is

provided, the device will automatically select the default device. You can get the list of the supported

devices by using the option list_devices.

Options

channels
Set the number of channels in the captured audio. Only the values 1 (monaural) and 2 (stereo) are

currently supported. Defaults to 2.

sample_size
Set the sample size (in bits) of the captured audio. Only the values 8 and 16 are currently

supported. Defaults to 16.

sample_rate
Set the sample rate (in Hz) of the captured audio. Defaults to 44.1k.

list_devices
If set to true, print a list of devices and exit. Defaults to false.

Examples

Print the list of OpenAL supported devices and exit:

$ ffmpeg -list_devices true -f openal -i dummy out.ogg

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

Capture from the OpenAL device DR-BT101 via PulseAudio:

$ ffmpeg -f openal -i ’DR-BT101 via PulseAudio’ out.ogg

Capture from the default device (note the empty string ’’ as filename):

$ ffmpeg -f openal -i ’’ out.ogg

Capture from two devices simultaneously, writing to two different files, within the same ffmpeg
command:

$ ffmpeg -f openal -i ’DR-BT101 via PulseAudio’ out1.ogg -f openal -i ’ALSA Default’ out2.ogg

Note: not all OpenAL implementations support multiple simultaneous capture - try the latest OpenAL

Soft if the above does not work.

oss
Open Sound System input device.

The filename to provide to the input device is the device node representing the OSS input device, and is

usually set to /dev/dsp.

For example to grab from /dev/dsp using ffmpeg use the command:

ffmpeg -f oss -i /dev/dsp /tmp/oss.wav

For more information about OSS see: <http://manuals.opensound.com/usersguide/dsp.html>

Options

sample_rate
Set the sample rate in Hz. Default is 48000.

channels
Set the number of channels. Default is 2.

pulse
PulseAudio input device.

To enable this output device you need to configure FFmpeg with "--enable-libpulse".

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

The filename to provide to the input device is a source device or the string "default"

To list the PulseAudio source devices and their properties you can invoke the command pactl list
sources.

More information about PulseAudio can be found on <http://www.pulseaudio.org>.

Options

server
Connect to a specific PulseAudio server, specified by an IP address. Default server is used when

not provided.

name
Specify the application name PulseAudio will use when showing active clients, by default it is the

"LIBAVFORMAT_IDENT" string.

stream_name
Specify the stream name PulseAudio will use when showing active streams, by default it is

"record".

sample_rate
Specify the samplerate in Hz, by default 48kHz is used.

channels
Specify the channels in use, by default 2 (stereo) is set.

frame_size
This option does nothing and is deprecated.

fragment_size
Specify the size in bytes of the minimal buffering fragment in PulseAudio, it will affect the audio

latency. By default it is set to 50 ms amount of data.

wallclock
Set the initial PTS using the current time. Default is 1.

Examples

Record a stream from default device:

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

ffmpeg -f pulse -i default /tmp/pulse.wav

sndio
sndio input device.

To enable this input device during configuration you need libsndio installed on your system.

The filename to provide to the input device is the device node representing the sndio input device, and

is usually set to /dev/audio0.

For example to grab from /dev/audio0 using ffmpeg use the command:

ffmpeg -f sndio -i /dev/audio0 /tmp/oss.wav

Options

sample_rate
Set the sample rate in Hz. Default is 48000.

channels
Set the number of channels. Default is 2.

video4linux2, v4l2
Video4Linux2 input video device.

"v4l2" can be used as alias for "video4linux2".

If FFmpeg is built with v4l-utils support (by using the "--enable-libv4l2" configure option), it is

possible to use it with the "-use_libv4l2" input device option.

The name of the device to grab is a file device node, usually Linux systems tend to automatically create

such nodes when the device (e.g. an USB webcam) is plugged into the system, and has a name of the

kind /dev/videoN, where N is a number associated to the device.

Video4Linux2 devices usually support a limited set of widthxheight sizes and frame rates. You can

check which are supported using -list_formats all for Video4Linux2 devices. Some devices, like TV

cards, support one or more standards. It is possible to list all the supported standards using

-list_standards all.

The time base for the timestamps is 1 microsecond. Depending on the kernel version and configuration,

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

the timestamps may be derived from the real time clock (origin at the Unix Epoch) or the monotonic

clock (origin usually at boot time, unaffected by NTP or manual changes to the clock). The

-timestamps abs or -ts abs option can be used to force conversion into the real time clock.

Some usage examples of the video4linux2 device with ffmpeg and ffplay:

+o List supported formats for a video4linux2 device:

ffplay -f video4linux2 -list_formats all /dev/video0

+o Grab and show the input of a video4linux2 device:

ffplay -f video4linux2 -framerate 30 -video_size hd720 /dev/video0

+o Grab and record the input of a video4linux2 device, leave the frame rate and size as previously

set:

ffmpeg -f video4linux2 -input_format mjpeg -i /dev/video0 out.mpeg

For more information about Video4Linux, check <http://linuxtv.org/>.

Options

standard
Set the standard. Must be the name of a supported standard. To get a list of the supported

standards, use the list_standards option.

channel
Set the input channel number. Default to -1, which means using the previously selected channel.

video_size
Set the video frame size. The argument must be a string in the form WIDTHxHEIGHT or a valid

size abbreviation.

pixel_format
Select the pixel format (only valid for raw video input).

input_format
Set the preferred pixel format (for raw video) or a codec name. This option allows one to select

the input format, when several are available.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

framerate
Set the preferred video frame rate.

list_formats
List available formats (supported pixel formats, codecs, and frame sizes) and exit.

Available values are:

all Show all available (compressed and non-compressed) formats.

raw Show only raw video (non-compressed) formats.

compressed
Show only compressed formats.

list_standards
List supported standards and exit.

Available values are:

all Show all supported standards.

timestamps, ts
Set type of timestamps for grabbed frames.

Available values are:

default
Use timestamps from the kernel.

abs Use absolute timestamps (wall clock).

mono2abs
Force conversion from monotonic to absolute timestamps.

Default value is "default".

use_libv4l2
Use libv4l2 (v4l-utils) conversion functions. Default is 0.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

vfwcap
VfW (Video for Windows) capture input device.

The filename passed as input is the capture driver number, ranging from 0 to 9. You may use "list" as

filename to print a list of drivers. Any other filename will be interpreted as device number 0.

Options

video_size
Set the video frame size.

framerate
Set the grabbing frame rate. Default value is "ntsc", corresponding to a frame rate of

"30000/1001".

x11grab
X11 video input device.

To enable this input device during configuration you need libxcb installed on your system. It will be

automatically detected during configuration.

This device allows one to capture a region of an X11 display.

The filename passed as input has the syntax:

[<hostname>]:<display_number>.<screen_number>[+<x_offset>,<y_offset>]

hostname:display_number.screen_number specifies the X11 display name of the screen to grab from.

hostname can be omitted, and defaults to "localhost". The environment variable DISPLAY contains the

default display name.

x_offset and y_offset specify the offsets of the grabbed area with respect to the top-left border of the

X11 screen. They default to 0.

Check the X11 documentation (e.g. man X) for more detailed information.

Use the xdpyinfo program for getting basic information about the properties of your X11 display (e.g.

grep for "name" or "dimensions").

For example to grab from :0.0 using ffmpeg:

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

ffmpeg -f x11grab -framerate 25 -video_size cif -i :0.0 out.mpg

Grab at position "10,20":

ffmpeg -f x11grab -framerate 25 -video_size cif -i :0.0+10,20 out.mpg

Options

select_region
Specify whether to select the grabbing area graphically using the pointer. A value of 1 prompts

the user to select the grabbing area graphically by clicking and dragging. A single click with no

dragging will select the whole screen. A region with zero width or height will also select the

whole screen. This option overwrites the video_size, grab_x, and grab_y options. Default value is

0.

draw_mouse
Specify whether to draw the mouse pointer. A value of 0 specifies not to draw the pointer. Default

value is 1.

follow_mouse
Make the grabbed area follow the mouse. The argument can be "centered" or a number of pixels

PIXELS.

When it is specified with "centered", the grabbing region follows the mouse pointer and keeps the

pointer at the center of region; otherwise, the region follows only when the mouse pointer reaches

within PIXELS (greater than zero) to the edge of region.

For example:

ffmpeg -f x11grab -follow_mouse centered -framerate 25 -video_size cif -i :0.0 out.mpg

To follow only when the mouse pointer reaches within 100 pixels to edge:

ffmpeg -f x11grab -follow_mouse 100 -framerate 25 -video_size cif -i :0.0 out.mpg

framerate
Set the grabbing frame rate. Default value is "ntsc", corresponding to a frame rate of

"30000/1001".

show_region

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

Show grabbed region on screen.

If show_region is specified with 1, then the grabbing region will be indicated on screen. With this

option, it is easy to know what is being grabbed if only a portion of the screen is grabbed.

region_border
Set the region border thickness if -show_region 1 is used. Range is 1 to 128 and default is 3

(XCB-based x11grab only).

For example:

ffmpeg -f x11grab -show_region 1 -framerate 25 -video_size cif -i :0.0+10,20 out.mpg

With follow_mouse:

ffmpeg -f x11grab -follow_mouse centered -show_region 1 -framerate 25 -video_size cif -i :0.0 out.mpg

window_id
Grab this window, instead of the whole screen. Default value is 0, which maps to the whole screen

(root window).

The id of a window can be found using the xwininfo program, possibly with options -tree and

-root.

If the window is later enlarged, the new area is not recorded. Video ends when the window is

closed, unmapped (i.e., iconified) or shrunk beyond the video size (which defaults to the initial

window size).

This option disables options follow_mouse and select_region.

video_size
Set the video frame size. Default is the full desktop or window.

grab_x
grab_y

Set the grabbing region coordinates. They are expressed as offset from the top left corner of the

X11 window and correspond to the x_offset and y_offset parameters in the device name. The

default value for both options is 0.

OUTPUT DEVICES

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

Output devices are configured elements in FFmpeg that can write multimedia data to an output device

attached to your system.

When you configure your FFmpeg build, all the supported output devices are enabled by default. You

can list all available ones using the configure option "--list-outdevs".

You can disable all the output devices using the configure option "--disable-outdevs", and selectively

enable an output device using the option "--enable-outdev=OUTDEV", or you can disable a particular

input device using the option "--disable-outdev=OUTDEV".

The option "-devices" of the ff* tools will display the list of enabled output devices.

A description of the currently available output devices follows.

alsa
ALSA (Advanced Linux Sound Architecture) output device.

Examples

+o Play a file on default ALSA device:

ffmpeg -i INPUT -f alsa default

+o Play a file on soundcard 1, audio device 7:

ffmpeg -i INPUT -f alsa hw:1,7

AudioToolbox
AudioToolbox output device.

Allows native output to CoreAudio devices on OSX.

The output filename can be empty (or "-") to refer to the default system output device or a number that

refers to the device index as shown using: "-list_devices true".

Alternatively, the audio input device can be chosen by index using the

B<-audio_device_index E<lt>INDEXE<gt>>

, overriding any device name or index given in the input filename.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

All available devices can be enumerated by using -list_devices true, listing all device names, UIDs and

corresponding indices.

Options

AudioToolbox supports the following options:

-audio_device_index <INDEX>
Specify the audio device by its index. Overrides anything given in the output filename.

Examples

+o Print the list of supported devices and output a sine wave to the default device:

$ ffmpeg -f lavfi -i sine=r=44100 -f audiotoolbox -list_devices true -

+o Output a sine wave to the device with the index 2, overriding any output filename:

$ ffmpeg -f lavfi -i sine=r=44100 -f audiotoolbox -audio_device_index 2 -

caca
CACA output device.

This output device allows one to show a video stream in CACA window. Only one CACA window is

allowed per application, so you can have only one instance of this output device in an application.

To enable this output device you need to configure FFmpeg with "--enable-libcaca". libcaca is a

graphics library that outputs text instead of pixels.

For more information about libcaca, check: <http://caca.zoy.org/wiki/libcaca>

Options

window_title
Set the CACA window title, if not specified default to the filename specified for the output device.

window_size
Set the CACA window size, can be a string of the form widthxheight or a video size abbreviation.

If not specified it defaults to the size of the input video.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

driver
Set display driver.

algorithm
Set dithering algorithm. Dithering is necessary because the picture being rendered has usually far

more colours than the available palette. The accepted values are listed with "-list_dither

algorithms".

antialias
Set antialias method. Antialiasing smoothens the rendered image and avoids the commonly seen

staircase effect. The accepted values are listed with "-list_dither antialiases".

charset
Set which characters are going to be used when rendering text. The accepted values are listed

with "-list_dither charsets".

color
Set color to be used when rendering text. The accepted values are listed with "-list_dither colors".

list_drivers
If set to true, print a list of available drivers and exit.

list_dither
List available dither options related to the argument. The argument must be one of "algorithms",

"antialiases", "charsets", "colors".

Examples

+o The following command shows the ffmpeg output is an CACA window, forcing its size to 80x25:

ffmpeg -i INPUT -c:v rawvideo -pix_fmt rgb24 -window_size 80x25 -f caca -

+o Show the list of available drivers and exit:

ffmpeg -i INPUT -pix_fmt rgb24 -f caca -list_drivers true -

+o Show the list of available dither colors and exit:

ffmpeg -i INPUT -pix_fmt rgb24 -f caca -list_dither colors -

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

decklink
The decklink output device provides playback capabilities for Blackmagic DeckLink devices.

To enable this output device, you need the Blackmagic DeckLink SDK and you need to configure with

the appropriate "--extra-cflags" and "--extra-ldflags". On Windows, you need to run the IDL files

through widl.

DeckLink is very picky about the formats it supports. Pixel format is always uyvy422, framerate, field

order and video size must be determined for your device with -list_formats 1. Audio sample rate is

always 48 kHz.

Options

list_devices
If set to true, print a list of devices and exit. Defaults to false. This option is deprecated, please

use the "-sinks" option of ffmpeg to list the available output devices.

list_formats
If set to true, print a list of supported formats and exit. Defaults to false.

preroll
Amount of time to preroll video in seconds. Defaults to 0.5.

duplex_mode
Sets the decklink device duplex/profile mode. Must be unset, half, full, one_sub_device_full,
one_sub_device_half, two_sub_device_full, four_sub_device_half Defaults to unset.

Note: DeckLink SDK 11.0 have replaced the duplex property by a profile property. For the

DeckLink Duo 2 and DeckLink Quad 2, a profile is shared between any 2 sub-devices that utilize

the same connectors. For the DeckLink 8K Pro, a profile is shared between all 4 sub-devices. So

DeckLink 8K Pro support four profiles.

Valid profile modes for DeckLink 8K Pro(with DeckLink SDK >= 11.0): one_sub_device_full,
one_sub_device_half, two_sub_device_full, four_sub_device_half

Valid profile modes for DeckLink Quad 2 and DeckLink Duo 2: half, full

timing_offset
Sets the genlock timing pixel offset on the used output. Defaults to unset.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

link Sets the SDI video link configuration on the used output. Must be unset, single link SDI, dual link

SDI or quad link SDI. Defaults to unset.

sqd Enable Square Division Quad Split mode for Quad-link SDI output. Must be unset, true or false.

Defaults to unset.

level_a
Enable SMPTE Level A mode on the used output. Must be unset, true or false. Defaults to unset.

vanc_queue_size
Sets maximum output buffer size in bytes for VANC data. If the buffering reaches this value,

outgoing VANC data will be dropped. Defaults to 1048576.

Examples

+o List output devices:

ffmpeg -sinks decklink

+o List supported formats:

ffmpeg -i test.avi -f decklink -list_formats 1 ’DeckLink Mini Monitor’

+o Play video clip:

ffmpeg -i test.avi -f decklink -pix_fmt uyvy422 ’DeckLink Mini Monitor’

+o Play video clip with non-standard framerate or video size:

ffmpeg -i test.avi -f decklink -pix_fmt uyvy422 -s 720x486 -r 24000/1001 ’DeckLink Mini Monitor’

fbdev
Linux framebuffer output device.

The Linux framebuffer is a graphic hardware-independent abstraction layer to show graphics on a

computer monitor, typically on the console. It is accessed through a file device node, usually /dev/fb0.

For more detailed information read the file Documentation/fb/framebuffer.txt included in the Linux

source tree.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

Options

xoffset
yoffset

Set x/y coordinate of top left corner. Default is 0.

Examples

Play a file on framebuffer device /dev/fb0. Required pixel format depends on current framebuffer

settings.

ffmpeg -re -i INPUT -c:v rawvideo -pix_fmt bgra -f fbdev /dev/fb0

See also <http://linux-fbdev.sourceforge.net/>, and fbset(1).

opengl
OpenGL output device.

To enable this output device you need to configure FFmpeg with "--enable-opengl".

This output device allows one to render to OpenGL context. Context may be provided by application

or default SDL window is created.

When device renders to external context, application must implement handlers for following messages:

"AV_DEV_TO_APP_CREATE_WINDOW_BUFFER" - create OpenGL context on current thread.

"AV_DEV_TO_APP_PREPARE_WINDOW_BUFFER" - make OpenGL context current.

"AV_DEV_TO_APP_DISPLAY_WINDOW_BUFFER" - swap buffers.

"AV_DEV_TO_APP_DESTROY_WINDOW_BUFFER" - destroy OpenGL context. Application is

also required to inform a device about current resolution by sending

"AV_APP_TO_DEV_WINDOW_SIZE" message.

Options

background
Set background color. Black is a default.

no_window
Disables default SDL window when set to non-zero value. Application must provide OpenGL

context and both "window_size_cb" and "window_swap_buffers_cb" callbacks when set.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

window_title
Set the SDL window title, if not specified default to the filename specified for the output device.

Ignored when no_window is set.

window_size
Set preferred window size, can be a string of the form widthxheight or a video size abbreviation.

If not specified it defaults to the size of the input video, downscaled according to the aspect ratio.

Mostly usable when no_window is not set.

Examples

Play a file on SDL window using OpenGL rendering:

ffmpeg -i INPUT -f opengl "window title"

oss
OSS (Open Sound System) output device.

pulse
PulseAudio output device.

To enable this output device you need to configure FFmpeg with "--enable-libpulse".

More information about PulseAudio can be found on <http://www.pulseaudio.org>

Options

server
Connect to a specific PulseAudio server, specified by an IP address. Default server is used when

not provided.

name
Specify the application name PulseAudio will use when showing active clients, by default it is the

"LIBAVFORMAT_IDENT" string.

stream_name
Specify the stream name PulseAudio will use when showing active streams, by default it is set to

the specified output name.

device

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

Specify the device to use. Default device is used when not provided. List of output devices can be

obtained with command pactl list sinks.

buffer_size
buffer_duration

Control the size and duration of the PulseAudio buffer. A small buffer gives more control, but

requires more frequent updates.

buffer_size specifies size in bytes while buffer_duration specifies duration in milliseconds.

When both options are provided then the highest value is used (duration is recalculated to bytes

using stream parameters). If they are set to 0 (which is default), the device will use the default

PulseAudio duration value. By default PulseAudio set buffer duration to around 2 seconds.

prebuf
Specify pre-buffering size in bytes. The server does not start with playback before at least prebuf
bytes are available in the buffer. By default this option is initialized to the same value as

buffer_size or buffer_duration (whichever is bigger).

minreq
Specify minimum request size in bytes. The server does not request less than minreq bytes from

the client, instead waits until the buffer is free enough to request more bytes at once. It is

recommended to not set this option, which will initialize this to a value that is deemed sensible by

the server.

Examples

Play a file on default device on default server:

ffmpeg -i INPUT -f pulse "stream name"

sdl
SDL (Simple DirectMedia Layer) output device.

"sdl2" can be used as alias for "sdl".

This output device allows one to show a video stream in an SDL window. Only one SDL window is

allowed per application, so you can have only one instance of this output device in an application.

To enable this output device you need libsdl installed on your system when configuring your build.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

For more information about SDL, check: <http://www.libsdl.org/>

Options

window_borderless
Set SDL window border off. Default value is 0 (enable window border).

window_enable_quit
Enable quit action (using window button or keyboard key) when non-zero value is provided.

Default value is 1 (enable quit action).

window_fullscreen
Set fullscreen mode when non-zero value is provided. Default value is zero.

window_size
Set the SDL window size, can be a string of the form widthxheight or a video size abbreviation. If

not specified it defaults to the size of the input video, downscaled according to the aspect ratio.

window_title
Set the SDL window title, if not specified default to the filename specified for the output device.

window_x
window_y

Set the position of the window on the screen.

Interactive commands

The window created by the device can be controlled through the following interactive commands.

q, ESC
Quit the device immediately.

Examples

The following command shows the ffmpeg output is an SDL window, forcing its size to the qcif

format:

ffmpeg -i INPUT -c:v rawvideo -pix_fmt yuv420p -window_size qcif -f sdl "SDL output"

sndio

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

sndio audio output device.

v4l2
Video4Linux2 output device.

xv
XV (XVideo) output device.

This output device allows one to show a video stream in a X Window System window.

Options

display_name
Specify the hardware display name, which determines the display and communications domain to

be used.

The display name or DISPLAY environment variable can be a string in the format

hostname[:number[.screen_number]].

hostname specifies the name of the host machine on which the display is physically attached.

number specifies the number of the display server on that host machine. screen_number specifies

the screen to be used on that server.

If unspecified, it defaults to the value of the DISPLAY environment variable.

For example, "dual-headed:0.1" would specify screen 1 of display 0 on the machine named

‘‘dual-headed’’.

Check the X11 specification for more detailed information about the display name format.

window_id
When set to non-zero value then device doesn’t create new window, but uses existing one with

provided window_id. By default this options is set to zero and device creates its own window.

window_size
Set the created window size, can be a string of the form widthxheight or a video size abbreviation.

If not specified it defaults to the size of the input video. Ignored when window_id is set.

window_x
window_y

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

Set the X and Y window offsets for the created window. They are both set to 0 by default. The

values may be ignored by the window manager. Ignored when window_id is set.

window_title
Set the window title, if not specified default to the filename specified for the output device.

Ignored when window_id is set.

For more information about XVideo see <http://www.x.org/>.

Examples

+o Decode, display and encode video input with ffmpeg at the same time:

ffmpeg -i INPUT OUTPUT -f xv display

+o Decode and display the input video to multiple X11 windows:

ffmpeg -i INPUT -f xv normal -vf negate -f xv negated

SEE ALSO
ffmpeg(1), ffplay(1), ffprobe(1), libavdevice(3)

AUTHORS
The FFmpeg developers.

For details about the authorship, see the Git history of the project (https://git.ffmpeg.org/ffmpeg), e.g.

by typing the command git log in the FFmpeg source directory, or browsing the online repository at

<https://git.ffmpeg.org/ffmpeg>.

Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.

FFMPEG-DEVICES(1) FFMPEG-DEVICES(1)

FFMPEG-DEVICES(1)

