
NAME
fips_module - OpenSSL fips module guide

SYNOPSIS
See the individual manual pages for details.

DESCRIPTION
This guide details different ways that OpenSSL can be used in conjunction with the FIPS module.

Which is the correct approach to use will depend on your own specific circumstances and what you are

attempting to achieve.

For information related to installing the FIPS module see

<https://github.com/openssl/openssl/blob/master/README-FIPS.md>.

Note that the old functions FIPS_mode() and FIPS_mode_set() are no longer present so you must

remove them from your application if you use them.

Applications written to use the OpenSSL 3.0 FIPS module should not use any legacy APIs or features

that avoid the FIPS module. Specifically this includes:

+o Low level cryptographic APIs (use the high level APIs, such as EVP, instead)

+o Engines

+o Any functions that create or modify custom "METHODS" (for example EVP_MD_meth_new(),
EVP_CIPHER_meth_new(), EVP_PKEY_meth_new(), RSA_meth_new(),
EC_KEY_METHOD_new(), etc.)

All of the above APIs are deprecated in OpenSSL 3.0 - so a simple rule is to avoid using all deprecated

functions. See migration_guide(7) for a list of deprecated functions.

Making all applications use the FIPS module by default
One simple approach is to cause all applications that are using OpenSSL to only use the FIPS module

for cryptographic algorithms by default.

This approach can be done purely via configuration. As long as applications are built and linked against

OpenSSL 3.0 and do not override the loading of the default config file or its settings then they can

automatically start using the FIPS module without the need for any further code changes.

To do this the default OpenSSL config file will have to be modified. The location of this config file

FIPS_MODULE(7ossl) OpenSSL FIPS_MODULE(7ossl)

3.0.11 2023-09-19 FIPS_MODULE(7ossl)

will depend on the platform, and any options that were given during the build process. You can check

the location of the config file by running this command:

$ openssl version -d

OPENSSLDIR: "/etc/ssl"

Caution: Many Operating Systems install OpenSSL by default. It is a common error to not have the

correct version of OpenSSL in your $PATH. Check that you are running an OpenSSL 3.0 version like

this:

$ openssl version -v

OpenSSL 3.0.0-dev xx XXX xxxx (Library: OpenSSL 3.0.0-dev xx XXX xxxx)

The OPENSSLDIR value above gives the directory name for where the default config file is stored. So

in this case the default config file will be called /etc/ssl/openssl.cnf.

Edit the config file to add the following lines near the beginning:

config_diagnostics = 1

openssl_conf = openssl_init

.include /etc/ssl/fipsmodule.cnf

[openssl_init]

providers = provider_sect

[provider_sect]

fips = fips_sect

base = base_sect

[base_sect]

activate = 1

Obviously the include file location above should match the path and name of the FIPS module config

file that you installed earlier. See

<https://github.com/openssl/openssl/blob/master/README-FIPS.md>.

For FIPS usage, it is recommended that the config_diagnostics option is enabled to prevent accidental

use of non-FIPS validated algorithms via broken or mistaken configuration. See config(5).

FIPS_MODULE(7ossl) OpenSSL FIPS_MODULE(7ossl)

3.0.11 2023-09-19 FIPS_MODULE(7ossl)

Any applications that use OpenSSL 3.0 and are started after these changes are made will start using

only the FIPS module unless those applications take explicit steps to avoid this default behaviour. Note

that this configuration also activates the "base" provider. The base provider does not include any

cryptographic algorithms (and therefore does not impact the validation status of any cryptographic

operations), but does include other supporting algorithms that may be required. It is designed to be

used in conjunction with the FIPS module.

This approach has the primary advantage that it is simple, and no code changes are required in

applications in order to benefit from the FIPS module. There are some disadvantages to this approach:

+o You may not want all applications to use the FIPS module.

It may be the case that some applications should and some should not use the FIPS module.

+o If applications take explicit steps to not load the default config file or set different settings.

This method will not work for these cases.

+o The algorithms available in the FIPS module are a subset of the algorithms that are available in the

default OpenSSL Provider.

If any applications attempt to use any algorithms that are not present, then they will fail.

+o Usage of certain deprecated APIs avoids the use of the FIPS module.

If any applications use those APIs then the FIPS module will not be used.

Selectively making applications use the FIPS module by default
A variation on the above approach is to do the same thing on an individual application basis. The

default OpenSSL config file depends on the compiled in value for OPENSSLDIR as described in the

section above. However it is also possible to override the config file to be used via the

OPENSSL_CONF environment variable. For example the following, on Unix, will cause the

application to be executed with a non-standard config file location:

$ OPENSSL_CONF=/my/nondefault/openssl.cnf myapplication

Using this mechanism you can control which config file is loaded (and hence whether the FIPS module

is loaded) on an application by application basis.

This removes the disadvantage listed above that you may not want all applications to use the FIPS

FIPS_MODULE(7ossl) OpenSSL FIPS_MODULE(7ossl)

3.0.11 2023-09-19 FIPS_MODULE(7ossl)

module. All the other advantages and disadvantages still apply.

Programmatically loading the FIPS module (default library context)
Applications may choose to load the FIPS provider explicitly rather than relying on config to do this.

The config file is still necessary in order to hold the FIPS module config data (such as its self test status

and integrity data). But in this case we do not automatically activate the FIPS provider via that config

file.

To do things this way configure as per "Making all applications use the FIPS module by default"

above, but edit the fipsmodule.cnf file to remove or comment out the line which says "activate = 1"

(note that setting this value to 0 is not sufficient). This means all the required config information will

be available to load the FIPS module, but it is not automatically loaded when the application starts. The

FIPS provider can then be loaded programmatically like this:

#include <openssl/provider.h>

int main(void)

{

OSSL_PROVIDER *fips;

OSSL_PROVIDER *base;

fips = OSSL_PROVIDER_load(NULL, "fips");

if (fips == NULL) {

printf("Failed to load FIPS provider\n");

exit(EXIT_FAILURE);

}

base = OSSL_PROVIDER_load(NULL, "base");

if (base == NULL) {

OSSL_PROVIDER_unload(fips);

printf("Failed to load base provider\n");

exit(EXIT_FAILURE);

}

/* Rest of application */

OSSL_PROVIDER_unload(base);

OSSL_PROVIDER_unload(fips);

exit(EXIT_SUCCESS);

}

FIPS_MODULE(7ossl) OpenSSL FIPS_MODULE(7ossl)

3.0.11 2023-09-19 FIPS_MODULE(7ossl)

Note that this should be one of the first things that you do in your application. If any OpenSSL

functions get called that require the use of cryptographic functions before this occurs then, if no

provider has yet been loaded, then the default provider will be automatically loaded. If you then later

explicitly load the FIPS provider then you will have both the FIPS and the default provider loaded at

the same time. It is undefined which implementation of an algorithm will be used if multiple

implementations are available and you have not explicitly specified via a property query (see below)

which one should be used.

Also note that in this example we have additionally loaded the "base" provider. This loads a sub-set of

algorithms that are also available in the default provider - specifically non cryptographic ones which

may be used in conjunction with the FIPS provider. For example this contains algorithms for encoding

and decoding keys. If you decide not to load the default provider then you will usually want to load the

base provider instead.

In this example we are using the "default" library context. OpenSSL functions operate within the scope

of a library context. If no library context is explicitly specified then the default library context is used.

For further details about library contexts see the OSSL_LIB_CTX(3) man page.

Loading the FIPS module at the same time as other providers
It is possible to have the FIPS provider and other providers (such as the default provider) all loaded at

the same time into the same library context. You can use a property query string during algorithm

fetches to specify which implementation you would like to use.

For example to fetch an implementation of SHA256 which conforms to FIPS standards you can specify

the property query "fips=yes" like this:

EVP_MD *sha256;

sha256 = EVP_MD_fetch(NULL, "SHA2-256", "fips=yes");

If no property query is specified, or more than one implementation matches the property query then it

is undefined which implementation of a particular algorithm will be returned.

This example shows an explicit request for an implementation of SHA256 from the default provider:

EVP_MD *sha256;

sha256 = EVP_MD_fetch(NULL, "SHA2-256", "provider=default");

It is also possible to set a default property query string. The following example sets the default property

FIPS_MODULE(7ossl) OpenSSL FIPS_MODULE(7ossl)

3.0.11 2023-09-19 FIPS_MODULE(7ossl)

query of "fips=yes" for all fetches within the default library context:

EVP_set_default_properties(NULL, "fips=yes");

If a fetch function has both an explicit property query specified, and a default property query is defined

then the two queries are merged together and both apply. The local property query overrides the default

properties if the same property name is specified in both.

There are two important built-in properties that you should be aware of:

The "provider" property enables you to specify which provider you want an implementation to be

fetched from, e.g. "provider=default" or "provider=fips". All algorithms implemented in a provider

have this property set on them.

There is also the "fips" property. All FIPS algorithms match against the property query "fips=yes".

There are also some non-cryptographic algorithms available in the default and base providers that also

have the "fips=yes" property defined for them. These are the encoder and decoder algorithms that can

(for example) be used to write out a key generated in the FIPS provider to a file. The encoder and

decoder algorithms are not in the FIPS module itself but are allowed to be used in conjunction with the

FIPS algorithms.

It is possible to specify default properties within a config file. For example the following config file

automatically loads the default and FIPS providers and sets the default property value to be "fips=yes".

Note that this config file does not load the "base" provider. All supporting algorithms that are in "base"

are also in "default", so it is unnecessary in this case:

config_diagnostics = 1

openssl_conf = openssl_init

.include /etc/ssl/fipsmodule.cnf

[openssl_init]

providers = provider_sect

alg_section = algorithm_sect

[provider_sect]

fips = fips_sect

default = default_sect

[default_sect]

FIPS_MODULE(7ossl) OpenSSL FIPS_MODULE(7ossl)

3.0.11 2023-09-19 FIPS_MODULE(7ossl)

activate = 1

[algorithm_sect]

default_properties = fips=yes

Programmatically loading the FIPS module (nondefault library context)
In addition to using properties to separate usage of the FIPS module from other usages this can also be

achieved using library contexts. In this example we create two library contexts. In one we assume the

existence of a config file called openssl-fips.cnf that automatically loads and configures the FIPS and

base providers. The other library context will just use the default provider.

OSSL_LIB_CTX *fips_libctx, *nonfips_libctx;

OSSL_PROVIDER *defctxnull = NULL;

EVP_MD *fipssha256 = NULL, *nonfipssha256 = NULL;

int ret = 1;

/*

* Create two nondefault library contexts. One for fips usage and

* one for non-fips usage

*/

fips_libctx = OSSL_LIB_CTX_new();

nonfips_libctx = OSSL_LIB_CTX_new();

if (fips_libctx == NULL || nonfips_libctx == NULL)

goto err;

/* Prevent anything from using the default library context */

defctxnull = OSSL_PROVIDER_load(NULL, "null");

/*

* Load config file for the FIPS library context. We assume that

* this config file will automatically activate the FIPS and base

* providers so we don’t need to explicitly load them here.

*/

if (!OSSL_LIB_CTX_load_config(fips_libctx, "openssl-fips.cnf"))

goto err;

/*

* We don’t need to do anything special to load the default

* provider into nonfips_libctx. This happens automatically if no

* other providers are loaded.

FIPS_MODULE(7ossl) OpenSSL FIPS_MODULE(7ossl)

3.0.11 2023-09-19 FIPS_MODULE(7ossl)

* Because we don’t call OSSL_LIB_CTX_load_config() explicitly for

* nonfips_libctx it will just use the default config file.

*/

/* As an example get some digests */

/* Get a FIPS validated digest */

fipssha256 = EVP_MD_fetch(fips_libctx, "SHA2-256", NULL);

if (fipssha256 == NULL)

goto err;

/* Get a non-FIPS validated digest */

nonfipssha256 = EVP_MD_fetch(nonfips_libctx, "SHA2-256", NULL);

if (nonfipssha256 == NULL)

goto err;

/* Use the digests */

printf("Success\n");

ret = 0;

err:

EVP_MD_free(fipssha256);

EVP_MD_free(nonfipssha256);

OSSL_LIB_CTX_free(fips_libctx);

OSSL_LIB_CTX_free(nonfips_libctx);

OSSL_PROVIDER_unload(defctxnull);

return ret;

Note that we have made use of the special "null" provider here which we load into the default library

context. We could have chosen to use the default library context for FIPS usage, and just create one

additional library context for other usages - or vice versa. However if code has not been converted to

use library contexts then the default library context will be automatically used. This could be the case

for your own existing applications as well as certain parts of OpenSSL itself. Not all parts of OpenSSL

are library context aware. If this happens then you could "accidentally" use the wrong library context

for a particular operation. To be sure this doesn’t happen you can load the "null" provider into the

default library context. Because a provider has been explicitly loaded, the default provider will not

automatically load. This means code using the default context by accident will fail because no

algorithms will be available.

FIPS_MODULE(7ossl) OpenSSL FIPS_MODULE(7ossl)

3.0.11 2023-09-19 FIPS_MODULE(7ossl)

See "Library Context" in migration_guide(7) for additional information about the Library Context.

Using Encoders and Decoders with the FIPS module
Encoders and decoders are used to read and write keys or parameters from or to some external format

(for example a PEM file). If your application generates keys or parameters that then need to be written

into PEM or DER format then it is likely that you will need to use an encoder to do this. Similarly you

need a decoder to read previously saved keys and parameters. In most cases this will be invisible to you

if you are using APIs that existed in OpenSSL 1.1.1 or earlier such as i2d_PrivateKey(3). However the

appropriate encoder/decoder will need to be available in the library context associated with the key or

parameter object. The built-in OpenSSL encoders and decoders are implemented in both the default

and base providers and are not in the FIPS module boundary. However since they are not cryptographic

algorithms themselves it is still possible to use them in conjunction with the FIPS module, and

therefore these encoders/decoders have the "fips=yes" property against them. You should ensure that

either the default or base provider is loaded into the library context in this case.

Using the FIPS module in SSL/TLS
Writing an application that uses libssl in conjunction with the FIPS module is much the same as writing

a normal libssl application. If you are using global properties and the default library context to specify

usage of FIPS validated algorithms then this will happen automatically for all cryptographic algorithms

in libssl. If you are using a nondefault library context to load the FIPS provider then you can supply

this to libssl using the function SSL_CTX_new_ex(3). This works as a drop in replacement for the

function SSL_CTX_new(3) except it provides you with the capability to specify the library context to

be used. You can also use the same function to specify libssl specific properties to use.

In this first example we create two SSL_CTX objects using two different library contexts.

/*

* We assume that a nondefault library context with the FIPS

* provider loaded has been created called fips_libctx.

*/

SSL_CTX *fips_ssl_ctx = SSL_CTX_new_ex(fips_libctx, NULL, TLS_method());

/*

* We assume that a nondefault library context with the default

* provider loaded has been created called non_fips_libctx.

*/

SSL_CTX *non_fips_ssl_ctx = SSL_CTX_new_ex(non_fips_libctx, NULL,

TLS_method());

In this second example we create two SSL_CTX objects using different properties to specify FIPS

usage:

FIPS_MODULE(7ossl) OpenSSL FIPS_MODULE(7ossl)

3.0.11 2023-09-19 FIPS_MODULE(7ossl)

/*

* The "fips=yes" property includes all FIPS approved algorithms

* as well as encoders from the default provider that are allowed

* to be used. The NULL below indicates that we are using the

* default library context.

*/

SSL_CTX *fips_ssl_ctx = SSL_CTX_new_ex(NULL, "fips=yes", TLS_method());

/*

* The "provider!=fips" property allows algorithms from any

* provider except the FIPS provider

*/

SSL_CTX *non_fips_ssl_ctx = SSL_CTX_new_ex(NULL, "provider!=fips",

TLS_method());

Confirming that an algorithm is being provided by the FIPS module
A chain of links needs to be followed to go from an algorithm instance to the provider that implements

it. The process is similar for all algorithms. Here the example of a digest is used.

To go from an EVP_MD_CTX to an EVP_MD, use EVP_MD_CTX_md(3) . To go from the

EVP_MD to its OSSL_PROVIDER, use EVP_MD_get0_provider(3). To extract the name from the

OSSL_PROVIDER, use OSSL_PROVIDER_get0_name(3).

NOTES
Some released versions of OpenSSL do not include a validated FIPS provider. To determine which

versions have undergone the validation process, please refer to the OpenSSL Downloads page

<https://www.openssl.org/source/>. If you require FIPS-approved functionality, it is essential to build

your FIPS provider using one of the validated versions listed there. Normally, it is possible to utilize a

FIPS provider constructed from one of the validated versions alongside libcrypto and libssl compiled

from any release within the same major release series. This flexibility enables you to address bug fixes

and CVEs that fall outside the FIPS boundary.

SEE ALSO
migration_guide(7), crypto(7), fips_config(5), <https://www.openssl.org/source/>

HISTORY
The FIPS module guide was created for use with the new FIPS provider in OpenSSL 3.0.

COPYRIGHT
Copyright 2021-2023 The OpenSSL Project Authors. All Rights Reserved.

FIPS_MODULE(7ossl) OpenSSL FIPS_MODULE(7ossl)

3.0.11 2023-09-19 FIPS_MODULE(7ossl)

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

FIPS_MODULE(7ossl) OpenSSL FIPS_MODULE(7ossl)

3.0.11 2023-09-19 FIPS_MODULE(7ossl)

