
NAME
firmware_register, firmware_unregister, firmware_get, firmware_get_flags, firmware_put - firmware

image loading and management

SYNOPSIS
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/linker.h>
#include <sys/firmware.h>

struct firmware {

const char *name; /* system-wide name */

const void *data; /* location of image */

size_t datasize; /* size of image in bytes */

unsigned int version; /* version of the image */

};

const struct firmware *

firmware_register(const char *imagename, const void *data, size_t datasize, unsigned int version,

const struct firmware *parent);

int

firmware_unregister(const char *imagename);

const struct firmware *

firmware_get(const char *imagename);

const struct firmware *

firmware_get_flags(const char *imagename, uint32_t flags);

void

firmware_put(const struct firmware *fp, int flags);

DESCRIPTION
The firmware abstraction provides a convenient interface for loading firmware images into the kernel,

and for accessing such images from kernel components.

A firmware image (or image for brevity) is an opaque block of data residing in kernel memory. It is

associated to a unique imagename which constitutes a search key, and to an integer version number,

which is also an opaque piece of information for the firmware subsystem.

FIRMWARE(9) FreeBSD Kernel Developer’s Manual FIRMWARE(9)

FreeBSD 14.0-RELEASE-p11 January 27, 2021 FreeBSD 14.0-RELEASE-p11

An image is registered with the firmware subsystem by calling the function firmware_register(), and

unregistered by calling firmware_unregister(). These functions are usually (but not exclusively) called

by specially crafted kernel modules that contain the firmware image. The modules can be statically

compiled in the kernel, or loaded by /boot/loader, manually at runtime, or on demand by the firmware

subsystem.

Clients of the firmware subsystem can request access to a given image by calling the function

firmware_get() with the imagename they want as an argument, or by calling firmware_get_flags() with

the imagename and flags they want as an arguments. If a matching image is not already registered, the

firmware subsystem will try to load it using the mechanisms specified below (typically, a kernel module

with firmware_register the same name as the image).

API DESCRIPTION
The kernel firmware_register firmware API is made of the following functions:

firmware_register() registers with the kernel an image of size datasize located at address data, under the

name imagename.

The function returns NULL on error (e.g. because an image with the same name already exists, or the

image table is full), or a const struct firmware * pointer to the image requested.

firmware_unregister() tries to unregister the firmware image imagename from the system. The function

is successful and returns 0 if there are no pending references to the image, otherwise it does not

unregister the image and returns EBUSY.

firmware_get() and firmware_get_flags() return the requested firmware image. The flags argument may

be set to FIRMWARE_GET_NOWARN to indicate that errors on firmware load or registration should

only be logged in case of booverbose. If the image is not yet registered with the system, the functions

try to load it. This involves the linker subsystem and disk access, so firmware_get() or

firmware_get_flags() must not be called with any locks (except for Giant). Note also that if the

firmware image is loaded from a filesystem it must already be mounted. In particular this means that it

may be necessary to defer requests from a driver attach method unless it is known the root filesystem is

already mounted.

On success, firmware_get() and firmware_get_flags() return a pointer to the image description and

increase the reference count for this image. On failure, the functions return NULL.

firmware_put() drops a reference to a firmware image. The flags argument may be set to

FIRMWARE_UNLOAD to indicate that firmware_put is free to reclaim resources associated with the

firmware image if this is the last reference. By default a firmware image will be deferred to a

FIRMWARE(9) FreeBSD Kernel Developer’s Manual FIRMWARE(9)

FreeBSD 14.0-RELEASE-p11 January 27, 2021 FreeBSD 14.0-RELEASE-p11

taskqueue(9) thread so the call may be done while holding a lock. In certain cases, such as on driver

detach, this cannot be allowed.

FIRMWARE LOADING MECHANISMS
As mentioned before, any component of the system can register firmware images at any time by simply

calling firmware_register().

This is typically done when a module containing a firmware image is given control, whether compiled

in, or preloaded by /boot/loader, or manually loaded with kldload(8). However, a system can implement

additional mechanisms to bring these images in memory before calling firmware_register().

When firmware_get() or firmware_get_flags() does not find the requested image, it tries to load it using

one of the available loading mechanisms. At the moment, there is only one, namely Loadable kernel
modules.

A firmware image named foo is looked up by trying to load the module named foo.ko, using the

facilities described in kld(4). In particular, images are looked up in the directories specified by the sysctl

variable kern.module_path which on most systems defaults to /boot/kernel;/boot/modules.

Note that in case a module contains multiple images, the caller should first request a firmware_get() or

firmware_get_flags() for the first image contained in the module, followed by requests for the other

images.

BUILDING FIRMWARE LOADABLE MODULES
A firmware module is built by embedding the firmware image into a suitable loadable kernel module

that calls firmware_register() on loading, and firmware_unregister() on unloading.

Various system scripts and makefiles let you build a module by simply writing a Makefile with the

following entries:

KMOD= imagename

FIRMWS= image_file:imagename[:version]

.include <bsd.kmod.mk>

where KMOD is the basename of the module; FIRMWS is a list of colon-separated tuples indicating the

image_file’s to be embedded in the module, the imagename and version of each firmware image.

If you need to embed firmware images into a system, you should write appropriate entries in the

<files.arch> file, e.g. this example is from sys/arm/xscale/ixp425/files.ixp425:

FIRMWARE(9) FreeBSD Kernel Developer’s Manual FIRMWARE(9)

FreeBSD 14.0-RELEASE-p11 January 27, 2021 FreeBSD 14.0-RELEASE-p11

ixp425_npe_fw.c optional npe_fw \

compile-with "${AWK} -f $S/tools/fw_stub.awk \

IxNpeMicrocode.dat:npe_fw -mnpe -c${.TARGET}" \

no-implicit-rule before-depend local \

clean "ixp425_npe_fw.c"

#

NB: ld encodes the path in the binary symbols generated for the

firmware image so link the file to the object directory to

get known values for reference in the _fw.c file.

#

IxNpeMicrocode.fwo optional npe_fw \

dependency "IxNpeMicrocode.dat" \

compile-with "${LD} -b binary -d -warn-common \

-r -d -o ${.TARGET} IxNpeMicrocode.dat" \

no-implicit-rule \

clean "IxNpeMicrocode.fwo"

Firmware was previously committed to the source tree as uuencoded files, but this is no longer required;

the binary firmware file should be committed to the tree as provided by the vendor.

Note that generating the firmware modules in this way requires the availability of the following tools:

awk(1), make(1), the compiler and the linker.

SEE ALSO
kld(4), module(9)

/usr/share/examples/kld/firmware

HISTORY
The firmware system was introduced in FreeBSD 6.1.

AUTHORS
This manual page was written by Max Laier <mlaier@FreeBSD.org>.

FIRMWARE(9) FreeBSD Kernel Developer’s Manual FIRMWARE(9)

FreeBSD 14.0-RELEASE-p11 January 27, 2021 FreeBSD 14.0-RELEASE-p11

