
NAME
pathconf, lpathconf, fpathconf - get configurable pathname variables

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <unistd.h>

long

pathconf(const char *path, int name);

long

lpathconf(const char *path, int name);

long

fpathconf(int fd, int name);

DESCRIPTION
The pathconf(), lpathconf() and fpathconf() system calls provide a method for applications to determine

the current value of a configurable system limit or option variable associated with a pathname or file

descriptor.

For pathconf() and lpathconf(), the path argument is the name of a file or directory. For fpathconf(), the

fd argument is an open file descriptor. The name argument specifies the system variable to be queried.

Symbolic constants for each name value are found in the include file <unistd.h>.

The lpathconf() system call is like pathconf() except in the case where the named file is a symbolic link,

in which case lpathconf() returns information about the link, while pathconf() returns information about

the file the link references.

The available values are as follows:

_PC_LINK_MAX

The maximum file link count.

_PC_MAX_CANON

The maximum number of bytes in terminal canonical input line.

_PC_MAX_INPUT

PATHCONF(2) FreeBSD System Calls Manual PATHCONF(2)

FreeBSD 14.0-RELEASE-p11 August 6, 2021 FreeBSD 14.0-RELEASE-p11



The minimum maximum number of bytes for which space is available in a terminal input

queue.

_PC_NAME_MAX

The maximum number of bytes in a file name.

_PC_PATH_MAX

The maximum number of bytes in a pathname.

_PC_PIPE_BUF

The maximum number of bytes which will be written atomically to a pipe.

_PC_CHOWN_RESTRICTED

Return 1 if appropriate privilege is required for the chown(2) system call, otherwise 0. IEEE

Std 1003.1-2001 ("POSIX.1") requires appropriate privilege in all cases, but this behavior was

optional in prior editions of the standard.

_PC_NO_TRUNC

Return greater than zero if attempts to use pathname components longer than {NAME_MAX}

will result in an [ENAMETOOLONG] error; otherwise, such components will be truncated to

{NAME_MAX}. IEEE Std 1003.1-2001 ("POSIX.1") requires the error in all cases, but this

behavior was optional in prior editions of the standard, and some non-POSIX-compliant file

systems do not support this behavior.

_PC_VDISABLE

Returns the terminal character disabling value.

_PC_ASYNC_IO

Return 1 if asynchronous I/O is supported, otherwise 0.

_PC_PRIO_IO

Returns 1 if prioritised I/O is supported for this file, otherwise 0.

_PC_SYNC_IO

Returns 1 if synchronised I/O is supported for this file, otherwise 0.

_PC_ALLOC_SIZE_MIN

Minimum number of bytes of storage allocated for any portion of a file.

_PC_FILESIZEBITS

PATHCONF(2) FreeBSD System Calls Manual PATHCONF(2)

FreeBSD 14.0-RELEASE-p11 August 6, 2021 FreeBSD 14.0-RELEASE-p11



Number of bits needed to represent the maximum file size.

_PC_REC_INCR_XFER_SIZE

Recommended increment for file transfer sizes between _PC_REC_MIN_XFER_SIZE and

_PC_REC_MAX_XFER_SIZE.

_PC_REC_MAX_XFER_SIZE

Maximum recommended file transfer size.

_PC_REC_MIN_XFER_SIZE

Minimum recommended file transfer size.

_PC_REC_XFER_ALIGN

Recommended file transfer buffer alignment.

_PC_SYMLINK_MAX

Maximum number of bytes in a symbolic link.

_PC_ACL_EXTENDED

Returns 1 if an Access Control List (ACL) can be set on the specified file, otherwise 0.

_PC_ACL_NFS4

Returns 1 if an NFSv4 ACLs can be set on the specified file, otherwise 0.

_PC_ACL_PATH_MAX

Maximum number of ACL entries per file.

_PC_CAP_PRESENT

Returns 1 if a capability state can be set on the specified file, otherwise 0.

_PC_INF_PRESENT

Returns 1 if an information label can be set on the specified file, otherwise 0.

_PC_MAC_PRESENT

Returns 1 if a Mandatory Access Control (MAC) label can be set on the specified file,

otherwise 0.

_PC_MIN_HOLE_SIZE

If a file system supports the reporting of holes (see lseek(2)), pathconf() and fpathconf() return

a positive number that represents the minimum hole size returned in bytes. The offsets of holes

PATHCONF(2) FreeBSD System Calls Manual PATHCONF(2)

FreeBSD 14.0-RELEASE-p11 August 6, 2021 FreeBSD 14.0-RELEASE-p11



returned will be aligned to this same value. A special value of 1 is returned if the file system

does not specify the minimum hole size but still reports holes.

_PC_DEALLOC_PRESENT

Return 1 if a file system supports hole-punching (see fspacectl(2)), otherwise 0.

RETURN VALUES
If the call to pathconf() or fpathconf() is not successful, -1 is returned and errno is set appropriately.

Otherwise, if the variable is associated with functionality that does not have a limit in the system, -1 is

returned and errno is not modified. Otherwise, the current variable value is returned.

ERRORS
If any of the following conditions occur, the pathconf() and fpathconf() system calls shall return -1 and

set errno to the corresponding value.

[EINVAL] The value of the name argument is invalid.

[EINVAL] The implementation does not support an association of the variable name with the

associated file.

The pathconf() system call will fail if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

A component of a pathname exceeded {NAME_MAX} characters (but see

_PC_NO_TRUNC above), or an entire path name exceeded {PATH_MAX}

characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EINTEGRITY] Corrupted data was detected while reading from the file system.

The fpathconf() system call will fail if:

PATHCONF(2) FreeBSD System Calls Manual PATHCONF(2)

FreeBSD 14.0-RELEASE-p11 August 6, 2021 FreeBSD 14.0-RELEASE-p11



[EBADF] The fd argument is not a valid open file descriptor.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EINTEGRITY] Corrupted data was detected while reading from the file system.

SEE ALSO
lseek(2), sysctl(3)

HISTORY
The pathconf() and fpathconf() system calls first appeared in 4.4BSD. The lpathconf() system call first

appeared in FreeBSD 8.0.

PATHCONF(2) FreeBSD System Calls Manual PATHCONF(2)

FreeBSD 14.0-RELEASE-p11 August 6, 2021 FreeBSD 14.0-RELEASE-p11


