
NAME
fpu_kern - facility to use the FPU in the kernel

SYNOPSIS
#include <machine/fpu.h>

struct fpu_kern_ctx *

fpu_kern_alloc_ctx(u_int flags);

void

fpu_kern_free_ctx(struct fpu_kern_ctx *ctx);

void

fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags);

int

fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx);

int

fpu_kern_thread(u_int flags);

int

is_fpu_kern_thread(u_int flags);

DESCRIPTION
The fpu_kern family of functions allows the use of FPU hardware in kernel code. Modern FPUs are not

limited to providing hardware implementation for floating point arithmetic; they offer advanced

accelerators for cryptography and other computational-intensive algorithms. These facilities share

registers with the FPU hardware.

Typical kernel code does not need access to the FPU. Saving a large register file on each entry to the

kernel would waste time. When kernel code uses the FPU, the current FPU state must be saved to avoid

corrupting the user-mode state, and vice versa.

The management of the save and restore is automatic. The processor catches accesses to the FPU

registers when the non-current context tries to access them. Explicit calls are required for the allocation

of the save area and the notification of the start and end of the code using the FPU.

The fpu_kern_alloc_ctx() function allocates the memory used by fpu_kern to track the use of the FPU

hardware state and the related software state. The fpu_kern_alloc_ctx() function requires the flags

FPU_KERN(9) FreeBSD Kernel Developer’s Manual FPU_KERN(9)

FreeBSD 14.2-RELEASE October 13, 2020 FreeBSD 14.2-RELEASE



argument, which currently accepts the following flags:

FPU_KERN_NOWAIT Do not wait for the available memory if the request could not be satisfied

without sleep.

0 No special handling is required.

The function returns the allocated context area, or NULL if the allocation failed.

The fpu_kern_free_ctx() function frees the context previously allocated by fpu_kern_alloc_ctx().

The fpu_kern_enter() function designates the start of the region of kernel code where the use of the FPU

is allowed. Its arguments are:

td Currently must be curthread.

ctx The context save area previously allocated by fpu_kern_alloc_ctx() and not currently in use

by another call to fpu_kern_enter().

flags

This argument currently accepts the following flags:

FPU_KERN_NORMAL Indicates that the caller intends to access the full FPU state.

Must be specified currently.

FPU_KERN_KTHR Indicates that no saving of the current FPU state should be

performed, if the thread called fpu_kern_thread(9) function.

This is intended to minimize code duplication in callers which

could be used from both kernel thread and syscall contexts.

The fpu_kern_leave() function correctly handles such

contexts.

FPU_KERN_NOCTX Avoid nesting save area. If the flag is specified, the ctx must

be passed as NULL. The flag should only be used for really

short code blocks which can be executed in a critical section.

It avoids the need to allocate the FPU context by the cost of

increased system latency.

The function does not sleep or block. It could cause an FPU trap during execution, and on the first FPU

access after the function returns, as well as after each context switch. On i386 and amd64 this will be

FPU_KERN(9) FreeBSD Kernel Developer’s Manual FPU_KERN(9)

FreeBSD 14.2-RELEASE October 13, 2020 FreeBSD 14.2-RELEASE



the Device Not Available exception (see Intel Software Developer Manual for the reference).

The fpu_kern_leave() function ends the region started by fpu_kern_enter(). It is erroneous to use the

FPU in the kernel before fpu_kern_enter() or after fpu_kern_leave(). The function takes the td thread

argument, which currently must be curthread, and the ctx context pointer, previously passed to

fpu_kern_enter(). After the function returns, the context may be freed or reused by another invocation

of fpu_kern_enter(). The function always returns 0.

The fpu_kern_thread() function enables an optimization for threads which never leave to the usermode.

The current thread will reuse the usermode save area for the kernel FPU state instead of requiring an

explicitly allocated context. There are no flags defined for the function, and no error states that the

function returns. Once this function has been called, neither fpu_kern_enter() nor fpu_kern_leave() is

required to be called and the fpu is available for use in the calling thread.

The is_fpu_kern_thread() function returns the boolean indicating whether the current thread entered the

mode enabled by fpu_kern_thread(). There is currently no flags defined for the function, the return

value is true if the current thread have the permanent FPU save area, and false otherwise.

NOTES
The fpu_kern is currently implemented only for the i386, amd64, arm64, and powerpc architectures.

There is no way to handle floating point exceptions raised from kernel mode.

The unused flags arguments to the fpu_kern functions are to be extended to allow specification of the set

of the FPU hardware state used by the code region. This would allow optimizations of saving and

restoring the state.

AUTHORS
The fpu_kern facitily and this manual page were written by Konstantin Belousov <kib@FreeBSD.org>.

The arm64 support was added by

Andrew Turner <andrew@FreeBSD.org>. The powerpc support was added by

Shawn Anastasio <sanastasio@raptorengineering.com>.

BUGS
fpu_kern_leave() should probably have type void (like fpu_kern_enter()).

FPU_KERN(9) FreeBSD Kernel Developer’s Manual FPU_KERN(9)

FreeBSD 14.2-RELEASE October 13, 2020 FreeBSD 14.2-RELEASE


